References
1. K.Y. Song, S.W. Kim, D.C. Nguyen, J.Y. Park, T.T. Luu, D. Choi, J.M. Baik, S. An. Recent progress on nature‐derived biomaterials for eco‐friendly triboelectric nanogenerators. EcoMat. 2023:e12357. doi:https://doi.org/10.1002/eom2.123572. A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen, M.F. Davis, B.H. Davison, R.A. Dixon, P. Gilna, M. Keller. Lignin valorization: improving lignin processing in the biorefinery.Science. 2014;344(6185):1246843. doi:https://doi.org/10.1126/science.12468433. D. Wang, S.H. Lee, J. Kim, C.B. Park. “Waste to wealth”: lignin as a renewable building block for energy harvesting/storage and environmental remediation. ChemSusChem. 2020;13(11):2807-2827. doi:https://doi.org/10.1002/cssc.2020003944. W.-J. Chen, C.-X. Zhao, B.-Q. Li, T.-Q. Yuan, Q. Zhang. Lignin-derived materials and their applications in rechargeable batteries. Green Chem. 2022;24(2):565-584. doi:https://doi.org/10.1039/D1GC02872C5. D. Kai, M.J. Tan, P.L. Chee, Y.K. Chua, Y.L. Yap, X.J. Loh. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016;18(5):1175-1200. doi:https://doi.org/10.1039/C5GC02616D6. W. Qu, J. Yang, X. Sun, X. Bai, H. Jin, M. Zhang. Towards producing high-quality lignin-based carbon fibers: A review of crucial factors affecting lignin properties and conversion techniques. Int. J. Biol. Macromol. 2021;189:768-784. doi:https://doi.org/10.1016/j.ijbiomac.2021.08.1877. G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy. 2015;14:126-138. doi:https://doi.org/10.1016/j.nanoen.2014.11.0508. C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 2019;9(1):1802906. doi:https://doi.org/10.1002/aenm.2018029069. S.A. Lone, K.C. Lim, K. Kaswan, S. Chatterjee, K.-P. Fan, D. Choi, S. Lee, H. Zhang, J. Cheng, Z.-H. Lin. Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy. 2022:107318. doi:https://doi.org/10.1016/j.nanoen.2022.107318
10. S. An, A. Sankaran, A.L. Yarin. Natural biopolymer-based triboelectric nanogenerators via fast, facile, scalable solution blowing. ACS Appl. Mater. Interfaces . 2018;10(43):37749-37759. doi:https://doi.org/10.1021/acsami.8b15597
11. J. Wang, Y. Chen, Y. Xu, J. Mu, J. Li, S. Nie, S. Chen, F. Xu. Sustainable lignin-based electrospun nanofibers for enhanced triboelectric nanogenerators. Sustainable Energy Fuels . 2022;6(8):1974-1982. doi:https://doi.org/10.1039/D1SE02005F
12. A. Kolbasov, S. Sinha-Ray, A. Joijode, M.A. Hassan, D. Brown, B. Maze, B. Pourdeyhimi, A.L. Yarin. Industrial-scale solution blowing of soy protein nanofibers. Ind. Eng. Chem. Res. 2016;55(1):323-333. doi:https://doi.org/10.1021/acsami.8b15597
13. Y. Huang, J. Song, C. Yang, Y. Long, H. Wu. Scalable manufacturing and applications of nanofibers. Mater. Today . 2019;28:98-113.doi:https://doi.org/10.1016/j.mattod.2019.04.018
14. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, Z.L. Wang. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy . 2016;1(10):1-8. doi:https://doi.org/10.1038/nenergy2016138
15. B.L. Dargaville, C. Vaquette, F. Rasoul, J.J. Cooper-White, J.H. Campbell, A.K. Whittaker. Electrospinning and crosslinking of low-molecular-weight poly (trimethylene carbonate-co-l-lactide) as an elastomeric scaffold for vascular engineering. Acta Biomater . 2013;9(6):6885-6897. doi:https://doi.org/10.1016/j.actbio.2013.02.009
16. A.L. Yarin, B. Pourdeyhimi, S. Ramakrishna, Fundamentals and applications of micro-and nanofibers, Cambridge University Press, Cambridge, 2014.
17. X. Wang, C. Pellerin, C.G. Bazuin. Enhancing the electrospinnability of low molecular weight polymers using small effective cross-linkers.Macromolecules . 2016;49(3):891-899. doi:https://doi.org/10.1021/acs.macromol.5b02670
18. C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai, X. He, P. Wang, Y.C. Wang, P. Feng, D. Li. On the electron‐transfer mechanism in the contact‐electrification effect. Adv. Mater. 2018;30(15):1706790. doi:https://doi.org/10.1002/adma.201706790
19. S. Pan, Z. Zhang. Triboelectric effect: A new perspective on electron transfer process. J. Appl. Phys . 2017;122(14):144302. doi:https://doi.org/10.1063/1.5006634
20. A.E. Green. Hypo-elasticity and plasticity. Proc. R. Soc. London, Ser. A . 1956;234(1196):46-59. doi:https://doi.org/10.1098/rspa.1956.0014
21. Y. Termonia, P. Meakin, P. Smith. Theoretical study of the influence of the molecular weight on the maximum tensile strength of polymer fibers. Macromolecules . 1985;18(11):2246-2252. doi:https://doi.org/10.1021/ma00153a032
22. T. Fornes, P. Yoon, H. Keskkula, D. Paul. Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer . 2001;42(25):09929-09940. doi:https://doi.org/10.1016/S0032-3861(01)00552-3
23. K. Lundquist. NMR studies of lignins. 5. Investigation of non-derivatized spruce and birch lignin by 1HNMR spectroscopy. Acta Chem. Scand. B . 1981;35:497-501. doi:https://doi.org/10.3891/acta.chem.scand.35b-0497
24. Z. Strassberger, S. Tanase, G. Rothenberg. The pros and cons of lignin valorisation in an integrated biorefinery. RSC Adv.2014;4(48):25310-25318. doi:https://doi.org/10.1039/C4RA04747H
25. D. Kai, K. Zhang, L. Jiang, H.Z. Wong, Z. Li, Z. Zhang, X.J. Loh. Sustainable and antioxidant lignin–polyester copolymers and nanofibers for potential healthcare applications. ACS Sustainable Chem. Eng.2017;5(7):6016-6025. doi:https://doi.org/10.1021/acssuschemeng.7b00850
26. I.V. Pylypchuk, P.r.A. Lindén, M.E. Lindström, O. Sevastyanova. New insight into the surface structure of lignin nanoparticles revealed by1H liquid-state NMR spectroscopy. ACS Sustainable Chem. Eng. 2020;8(36):13805-13812. doi:https://doi.org/10.1021/acssuschemeng.0c05119
27. A. Adjaoud, R. Dieden, P. Verge. Sustainable esterification of a soda lignin with phloretic acid. Polymers . 2021;13(4):637. doi:https://doi.org/10.3390/polym13040637
28. D. Kai, W. Ren, L. Tian, P.L. Chee, Y. Liu, S. Ramakrishna, X.J. Loh. Engineering poly (lactide)–lignin nanofibers with antioxidant activity for biomedical application. ACS Sustainable Chem. Eng.2016;4(10):5268-5276. doi:https://doi.org/10.1021/acssuschemeng.6b00478
29. H.V. Halleraker, T. Barth. Quantitative NMR analysis of the aqueous phase from hydrothermal liquefaction of lignin. J. Anal. Appl. Pyrolysis . 2020;151:104919. doi:https://doi.org/10.1016/j.jaap.2020.104919
30. B.C. Percival, M. Grootveld, M. Gibson, Y. Osman, M. Molinari, F. Jafari, T. Sahota, M. Martin, F. Casanova, M.L. Mather. Low-field, benchtop NMR spectroscopy as a potential tool for point-of-care diagnostics of metabolic conditions: Validation, protocols and computational models. High-Throughput . 2018;8(1):2. doi:https://doi.org/10.3390/ht8010002
31. B.-H. Han. Chemical structure analysis of non-ionic monomer contrast agents using 1H-NMR spectroscopy. J. Radiol. Sci. Technol. 2021;44(4):335-342. doi:https://doi.org/10.17946/JRST.2021.44.4.335
32. R. Wahlström, A. Kalliola, J. Heikkinen, H. Kyllönen, T. Tamminen. Lignin cationization with glycidyltrimethylammonium chloride aiming at water purification applications. Ind. Crops Prod.2017;104:188-194. doi:https://doi.org/10.1016/j.indcrop.2017.04.026
33. L. Chen, X. He, H. Liu, L. Qian, S.H. Kim. Water adsorption on hydrophilic and hydrophobic surfaces of silicon. J. Phys. Chem. C . 2018;122(21):11385-11391. doi:https://doi.org/10.1021/acs.jpcc.8b01821
34. O. Gordobil, R. Herrera, F. Poohphajai, J. Sandak, A. Sandak. Impact of drying process on kraft lignin: lignin-water interaction mechanism study by 2D NIR correlation spectroscopy. J. Mater. Res. Technol.2021;12:159-169. doi:https://doi.org/10.1016/j.jmrt.2021.02.080
35. J.V. Barbosa, F. Oliveira, J. Moniz, F.D. Magalhães, M.M. Bastos. Synthesis and characterization of allyl fatty acid derivatives as reactive coalescing agents for latexes. J. Am. Oil Chem. Soc.2012;89:2215-2226. doi:https://doi.org/10.1007/s11746-012-2114-y
36. A.K. Mishra, J.N. Moorthy. Mechanochemical catalytic oxidations in the solid state with in situ-generated Modified IBX from 3, 5-di-tert-Butyl-2-iodobenzoic acid (DTB-IA)/oxone. Org. Chem. Front. 2017;4(3):343-349. doi:https://doi.org/10.1039/C6QO00588H
37. T. Matsumoto, E. Kannan, M. Tomioka, T. Nishino. Effects of the high side-chain densities of hydrophobic poly (substituted methylene) s on their surface free energies. Polym. J. 2022;54(9):1081-1089. doi:https://doi.org/10.1038/s41428-022-00656-6
38. H. Zhu, Y. Liu, M. Zhu, H. Tang, J. Lin, D. Gu, J. Hao. Flexibility, size and hydrophobicity of alkyl side groups in methoxy-poly (ethylene glycol)-polypeptide for the nano-assembly and thermo-sensitivity.Polymer . 2022;263:125499. doi:https://doi.org/10.1016/j.polymer.2022.125499
39. H.L. Hergert. Infrared spectra of lignin and related compounds. II. Conifer lignin and model compounds1, 2. J. Org. Chem.1960;25(3):405-413. doi:https://doi.org/10.1021/jo01073a026
40. R. Al-Itry, K. Lamnawar, A. Maazouz. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. Eur. Polym. J. 2014;58:90-102. doi:https://doi.org/10.1016/j.eurpolymj.2014.06.013
41. I. Korbag, S. Mohamed Saleh. Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film. Int. J. Environ. Stud. 2016;73(2):226-235. doi:https://doi.org/10.1080/00207233.2016.1143700
42. J. Zhuang, M. Li, Y. Pu, A.J. Ragauskas, C.G. Yoo. Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl. Sci. 2020;10(12):4345. doi:https://doi.org/10.3390/app10124345
43. N. Cachet, S. Camy, B. Benjelloun-Mlayah, J.-S. Condoret, M. Delmas. Esterification of organosolv lignin under supercritical conditions.Ind. Crops Prod. 2014;58:287-297. doi:https://doi.org/10.1016/j.indcrop.2014.03.039
44. A.S. Rosa, E.A. Disalvo, M. Frias. Water behavior at the phase transition of phospholipid matrixes assessed by FTIR spectroscopy.J. Phys. Chem. B . 2020;124(29):6236-6244. doi:https://doi.org/10.1021/acs.jpcb.0c03719
45. F. Markowicz, A. Szymańska-Pulikowska. Assessment of the decomposition of oxo-and biodegradable packaging using FTIR spectroscopy. Materials . 2021;14(21):6449. doi:https://doi.org/10.3390/ma14216449
46. H. Li, C. Xu, G. Ni, J. Lu, Y. Lu, S. Shi, M. Li, Q. Ye. Spectroscopic (FTIR, 1H NMR) and SEM investigation of physicochemical structure changes of coal subjected to microwave-assisted oxidant stimulation. Fuel . 2022;317:123473. doi:https://doi.org/10.1016/j.fuel.2022.123473
47. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods.Solid State Sci. 2011;13(1):251-256. doi:https://doi.org/10.1016/j.solidstatesciences.2010.11.024
48. B. Nasiri-Tabrizi. Thermal treatment effect on structural features of mechano-synthesized fluorapatite-titania nanocomposite: A comparative study. J. Adv. Ceram. 2014;3(1):31-42. doi:https://doi.org/10.1007/s40145-014-0090-4
49. S. Wang, J. Wang, J. Yu, S. Wang. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis. Food Chem. 2016;190:285-292. doi:https://doi.org/10.1016/j.foodchem.2015.05.086
50. S. Shi, Y. Dong, Q. Li, T. Liu, X. Yu. Morphology, structural, thermal and rheological properties of wheat starch–palmitic acid complexes prepared during steam cooking. RSC Adv.2020;10(50):30087-30093. doi:https://doi.org/10.1039/D0RA05954D
51. A.R. Hernández, O.C. Contreras, J.C. Acevedo, L.G.N. Moreno. Poly (ε-caprolactone) degradation under acidic and alkaline conditions.Am. J. Polym. Sci . 2013;3(4):70-75. doi:https://doi.org/10.5923/j.ajps.20130304.02
52. W.H. Hoidy, M.B. Ahmad, E.A.J. Al-Mulla, N.A.B. Ibrahim. Preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites. J. Appl. Sci. 2010;10(2):97-106. doi:https://doi.org/10.3923/jas.2010.97.106
53. Y.-J. Kim, M.R. Park, M.S. Kim, O.H. Kwon. Polyphenol-loaded polycaprolactone nanofibers for effective growth inhibition of human cancer cells. Mater. Chem. Phys. 2012;133(2-3):674-680. doi:https://doi.org/10.1016/j.matchemphys.2012.01.050
54. Y. Zhang, J. Liao, X. Fang, F. Bai, K. Qiao, L. Wang. Renewable high-performance polyurethane bioplastics derived from lignin–poly (ε-caprolactone). ACS Sustainable Chem. Eng. 2017;5(5):4276-4284. doi:https://doi.org/10.1021/acssuschemeng.7b00288
55. J. Bang, J.-H. Kim, S.-W. Park, J. Kim, M. Jung, S. Jung, J.-C. Kim, I.-G. Choi, H.W. Kwak. Effect of chemically modified lignin addition on the physicochemical properties of PCL nanofibers. Int. J. Biol. Macromol. 2023;240:124330. doi:https://doi.org/10.1016/j.ijbiomac.2023.124330
56. Y. Zhang, Q. Zhao, L. Li, R. Yan, J. Zhang, J. Duan, B. Liu, Z. Sun, M. Zhang, W. Hu. Synthesis of a lignin-based phosphorus-containing flame retardant and its application in polyurethane. RSC Adv.2018;8(56):32252-32261. doi:https://doi.org/10.1039/C8RA05598J
57. C.E. de Araujo Padilha, C. da Costa Nogueira, S.C.B. Matias, J.D.B. da Costa Filho, D.F. de Santana Souza, J.A. de Oliveira, E.S. dos Santos. Fabrication of hollow polymer microcapsules and removal of emulsified oil from aqueous environment using soda lignin nanoparticles.Colloids Surf., A . 2020;603:125260. doi:https://doi.org/10.1016/j.colsurfa.2020.125260
58. D.S. Silva, W.M. Facchinatto, D.M. Dos Santos, F.I. Boni, T.A. Valdes, A. Leitão, M.P.D. Gremiao, L.A. Colnago, S.P. Campana-Filho, S.J.L. Ribeiro. N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan: Synthesis, physicochemical and biological properties.Int. J. Biol. Macromol. 2021;178:558-568. doi:https://doi.org/10.1016/j.ijbiomac.2021.02.031
59. M.B. Agustin, K.S. Mikkonen, M. Kemell, P. Lahtinen, M. Lehtonen. Systematic investigation of the adsorption potential of lignin-and cellulose-based nanomaterials towards pharmaceuticals. Environ. Sci.: Nano . 2022;9(6):2006-2019. doi:https://doi.org/10.1039/d2en00186a
60. Y. Chai, Y. Wang, B. Li, W. Qi, R. Su, Z. He. Microfluidic synthesis of lignin/chitosan nanoparticles for the pH-responsive delivery of anticancer drugs. Langmuir . 2021;37(23):7219-7226. doi:https://doi.org/10.1021/acs.langmuir.1c00778
61. B. Yang, W. Zeng, Z.H. Peng, S.R. Liu, K. Chen, X.M. Tao. A fully verified theoretical analysis of contact‐mode triboelectric nanogenerators as a wearable power source. Adv. Energy Mater.2016;6(16):1600505. doi:https://doi.org/10.1002/aenm.201600505
62. J. Peng, S.D. Kang, G.J. Snyder. Optimization principles and the figure of merit for triboelectric generators. Sci. Adv.2017;3(12):eaap8576. doi:https://doi.org/10.1126/sciadv.aap8576
63. S. An, H.S. Jo, G. Li, E. Samuel, S.S. Yoon, A.L. Yarin. Sustainable nanotextured wave energy harvester based on ferroelectric fatigue‐free and flexoelectricity‐enhanced piezoelectric P (VDF‐TrFE) nanofibers with BaSrTiO3 nanoparticles. Adv. Funct. Mater.2020;30(25):2001150. doi:https://doi.org/10.1002/adfm.202001150
64. Z. Fang, K.H. Chan, X. Lu, C.F. Tan, G.W. Ho. Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance. J. Mater. Chem. A . 2018;6(1):52-57. doi:https://doi.org/10.1039/C7TA07696G
65. X.-S. Zhang, J. Brugger, B. Kim. A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network.Nano Energy . 2016;20:37-47. doi:https://doi.org/10.1016/j.nanoen.2015.11.036
66. H.J. Kim, J.H. Kim, K.W. Jun, J.H. Kim, W.C. Seung, O.H. Kwon, J.Y. Park, S.W. Kim, I.K. Oh. Silk nanofiber‐networked bio‐triboelectric generator: silk bio‐TEG. Adv. Energy Mater. 2016;6(8):1502329. doi:https://doi.org/10.1002/aenm.201502329
67. H.-J. Kim, E.-C. Yim, J.-H. Kim, S.-J. Kim, J.-Y. Park, I.-K. Oh. Bacterial nano‐cellulose triboelectric nanogenerator. Nano Energy . 2017;33:130-137. doi:https://doi.org/10.1016/j.nanoen.2017.01.035
68. R. Ccorahua, J. Huaroto, C. Luyo, M. Quintana, E.A. Vela. Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method.Nano Energy . 2019;59:610-618. doi:https://doi.org/10.1016/j.nanoen.2019.03.018
69. Y. Lu, X. Li, J. Ping, J.s. He, J. Wu. A flexible, recyclable, and high‐performance pullulan‐based triboelectric nanogenerator (TENG).Adv. Mater. Technol. 2020;5(2):1900905. doi:https://doi.org/10.1002/admt.201900905
70. K. Yan, X. Li, X.-X. Wang, M. Yu, Z. Fan, S. Ramakrishna, H. Hu, Y.-Z. Long. A non-toxic triboelectric nanogenerator for baby care applications. J. Mater. Chem. A . 2020;8(43):22745-22753. doi:https://doi.org/10.1039/d0ta08909e
71. Z. Yu, Y. Wang, J. Zheng, Y. Xiang, P. Zhao, J. Cui, H. Zhou, D. Li. Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy . 2020;68doi:https://doi.org/10.1016/j.nanoen.2019.104382
72. D. Park, J.-H. Hong, D. Choi, D. Kim, W.H. Jung, S.S. Yoon, K.H. Kim, S.J.N.E. An. Biocompatible and mechanically-reinforced tribopositive nanofiber mat for wearable and antifungal human kinetic-energy harvester based on wood-derived natural product.Nano Energy . 2022;96:107091. doi:https://doi.org/10.1016/j.nanoen.2022.107091
Table 1. M w of kraft, hydrophilic, and hydrophobic lignins.