REFERENCES
[1] V. Unsur, N. Chen, and A. Ebong, “A mathematical investigation of the impact of gridline and busbar patterns on commercial silicon solar cell performance,” Journal of Computational Electronics , vol. 19, pp. 854–865, 2020.
[2] A. D. Haigh, “Fired through Printed Contacts on Antireflection Coated Silicon Solar Cells,” 1976.
[3] G. Schubert, F. Huster, and P. Fath, “Physical understanding of printed thick-film front contacts of crystalline Si solar cells—Review of existing models and recent developments,” Solar energy materials and solar cells , vol. 90, no. 18–19, pp. 3399–3406, 2006.
[4] E. L. Ralph, “Recent advancements in low cost solar cell processing,” in 11th Photovoltaic Specialists Conference , 1975, p. 315.
[5] B. Hallam et al. , “The silver learning curve for photovoltaics and projected silver demand for net-zero emissions by 2050,” Progress in Photovoltaics: Research and Applications , vol. n/a, no. n/a, doi: 10.1002/pip.3661.
[6] K. Branker, M. J. M. Pathak, and J. M. Pearce, “A review of solar photovoltaic levelized cost of electricity,” Renewable and sustainable energy reviews , vol. 15, no. 9, pp. 4470–4482, 2011.
[7] P. J. Verlinden, “Future challenges for photovoltaic manufacturing at the terawatt level,” Journal of Renewable and Sustainable Energy , vol. 12, no. 5, p. 053505, Sep. 2020, doi: 10.1063/5.0020380.
[8] G. Limodio et al. , “Copper-plating metallization with alternative seed layers for c-Si solar cells embedding carrier-selective passivating contacts,” IEEE journal of photovoltaics , vol. 10, no. 2, pp. 372–382, 2019.
[9] A. Mette, P. L. Richter, M. Hörteis, and S. W. Glunz, “Metal aerosol jet printing for solar cell metallization,” Progress in Photovoltaics: Research and Applications , vol. 15, no. 7, pp. 621–627, 2007.
[10] S. Glunz, A. Mette, M. Alemán, P. Richter, A. Filipovic, and G. Willeke, “New concepts for the front side metallization of silicon solar cells,” in 21st European photovoltaic solar energy conference and exhibition , 2006, p. 8.
[11] S. W. Glunz et al. , “Progress in advanced metallization technology at Fraunhofer ISE,” in 2008 33rd IEEE Photovoltaic Specialists Conference , May 2008, pp. 1–4. doi: 10.1109/PVSC.2008.4922746.
[12] A. U. Rehman and S. H. Lee, “Review of the potential of the Ni/Cu plating technique for crystalline silicon solar cells,”Materials , vol. 7, no. 2, pp. 1318–1341, 2014.
[13] M. C. Raval and C. S. Solanki, “Review of Ni-Cu based front side metallization for c-Si solar cells,” Journal of Solar Energy , vol. 2013, p. 20, 2013.
[14] M. Yoshida, H. Tokuhisa, U. Itoh, T. Kamata, I. Sumita, and S. Sekine, “Novel low-temperature-sintering type Cu-alloy pastes for silicon solar cells,” Energy Procedia , vol. 21, pp. 66–74, 2012.
[15] D. Wood et al. , “Non-contacting busbars for advanced cell structures using low temperature copper paste,” Energy Procedia , vol. 67, pp. 101–107, 2015.
[16] K. Nakamura, T. Takahashi, and Y. Ohshita, “Novel silver and copper pastes for n-type bi-facial PERT cell,” in 31st European Photovoltaic Solar Energy Conference and Exhibition , 2015, pp. 536–539.
[17] S. Huneycutt, A. Ebong, K. Ankireddy, R. Dharmadasa, and T. Druffel, “Understanding the Solar Cell Contacts With Atmospheric Screen-printed Copper,” in 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC) , IEEE, 2022, pp. 0937–0940.
[18] N. Chen et al. , “Thermal Stable High-Efficiency Copper Screen Printed Back Contact Solar Cells,” Solar RRL , vol. 7, no. 2, p. 2200874, 2023, doi: 10.1002/solr.202200874.
[19] D. Rudolph et al. , “Screen printable, non-fire-through copper paste applied as busbar metallization for back contact solar cells,” presented at the PROCEEDINGS OF THE 10TH WORKSHOP ON METALLIZATION AND INTERCONNECTION FOR CRYSTALLINE SILICON SOLAR CELLS, Genk, Belgium, 2022, p. 020006. doi: 10.1063/5.0127359.
[20] M. C. Raval and C. S. Solanki, “Characterization of electroless nickel as a seed layer for silicon solar cell metallization,” Bulletin of Materials Science , vol. 38, pp. 197–201, 2015.
[21] G. Limodio et al. , “Copper-Plating Metallization With Alternative Seed Layers for c-Si Solar Cells Embedding Carrier-Selective Passivating Contacts,” IEEE Journal of Photovoltaics , vol. 10, no. 2, pp. 372–382, Mar. 2020, doi: 10.1109/JPHOTOV.2019.2957671.
[22] T. Fellmeth, A. Born, A. Kimmerle, F. Clement, D. Biro, and R. Preu, “Recombination at Metal-Emitter Interfaces of Front Contact Technologies for Highly Efficient Silicon Solar Cells,” Energy Procedia , vol. 8, pp. 115–121, Jan. 2011, doi: 10.1016/j.egypro.2011.06.111.
[23] P. Padhamnath et al. , “Characterization of screen printed and fire-through contacts on LPCVD based passivating contacts in monoPolyTM solar cells,” Solar Energy , vol. 202, pp. 73–79, May 2020, doi: 10.1016/j.solener.2020.03.087.
[24] M. Li, J. Wong, N. Chen, A. G. Aberle, and R. Stangl, “Determination of Metallization-Induced Recombination Losses of Screen-Printed Silicon Solar Cell Contacts and Their Dependence on the Doping Profile,” IEEE Journal of Photovoltaics , vol. 8, no. 6, pp. 1470–1477, Nov. 2018, doi: 10.1109/JPHOTOV.2018.2866177.
[25] V. Unsur, T. Klein, M. F. van Hest, M. Al Jassim, and A. Ebong, “Rapid thermal processing of cost-effective contacts for silicon solar cells,” Progress in Photovoltaics: Research and Applications , vol. 27, no. 5, pp. 453–459, 2019.
[26] Y. Zhang, M. Kim, L. Wang, P. Verlinden, and B. Hallam, “Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: challenges and opportunities related to silver, indium and bismuth consumption,”Energy & Environmental Science , vol. 14, no. 11, pp. 5587–5610, 2021, doi: 10.1039/D1EE01814K.
[27] D. Ray, “Lazard’s Levelized Cost of Energy Analysis—Version 16.0,” p. 21, 2023.