References
1. Li H, Qiu Z, Li F, Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett [Internet]. 2017 Sep 13 [cited 2023 May 8]; Available from: http://www.spandidos-publications.com/10.3892/ol.2017.6924
2. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, et al. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front Oncol. 2019 Dec 6;9:1370.
3. Xu X, Wang Y, Chen Z, Sternlicht MD, Hidalgo M, Steffensen B. Matrix metalloproteinase-2 contributes to cancer cell migration on collagen. Cancer Res. 2005 Jan 1;65(1):130–6.
4. Tune BXJ, Sim MS, Poh CL, Guad RM, Woon CK, Hazarika I, et al. Matrix Metalloproteinases in Chemoresistance: Regulatory Roles, Molecular Interactions, and Potential Inhibitors. Zheng D, editor. Journal of Oncology. 2022 May 9;2022:1–25.
5. Pavlaki M, Zucker S. Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev. 2003;22(2–3):177–203.
6. Maybee DV, Ink NL, Ali MAM. Novel Roles of MT1-MMP and MMP-2: Beyond the Extracellular Milieu. IJMS. 2022 Aug 23;23(17):9513.
7. Ali MAM, Garcia-Vilas JA, Cromwell CR, Hubbard BP, Hendzel MJ, Schulz R. Matrix metalloproteinase-2 mediates ribosomal RNA transcription by cleaving nucleolar histones [Internet]. Cell Biology; 2020 Feb [cited 2022 Jun 2]. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.02.21.958280
8. Kuo L, Chang HC, Leu TH, Maa MC, Hung WC. Src oncogene activates MMP-2 expression via the ERK/Sp1 pathway. J Cell Physiol. 2006 Jun;207(3):729–34.
9. Guarino M. Src signaling in cancer invasion. J Cell Physiol. 2009;n/a-n/a.
10. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. International Journal of Molecular Medicine. 2016 Mar;37(3):639–48.
11. Chan KC, Lio DSS, Dobson RCJ, Jarasrassamee B, Hossain MI, Roslee AK, et al. Development of the procedures for high-yield expression and rapid purification of active recombinant Csk-homologous kinase (CHK): Comparison of the catalytic activities of CHK and CSK. Protein Expression and Purification. 2010 Dec;74(2):139–47.
12. Irtegun S, Wood RJ, Ormsby AR, Mulhern TD, Hatters DM. Tyrosine 416 Is Phosphorylated in the Closed, Repressed Conformation of c-Src. Lewis P, editor. PLoS ONE. 2013 Jul 26;8(7):e71035.
13. Advani G, Lim YC, Catimel B, Lio DSS, Ng NLY, Chüeh AC, et al. Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Commun Signal. 2017 Dec;15(1):29.
14. Roskoski R. Src kinase regulation by phosphorylation and dephosphorylation. Biochemical and Biophysical Research Communications. 2005 May;331(1):1–14.
15. Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 1996 Jun;1287(2–3):121–49.
16. Zhu J. Csk/CD148 and platelet SFK activation: a balancing act! Blood. 2018 Mar 8;131(10):1042–3.
17. Advani G, Chueh AC, Lim YC, Dhillon A, Cheng HC. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression. Front Biol. 2015 Jun;10(3):195–202.
18. Chüeh AC, Advani G, Foroutan M, Smith J, Ng N, Nandurkar H, et al. CSK-homologous kinase (CHK/MATK) is a potential colorectal cancer tumour suppressor gene epigenetically silenced by promoter methylation. Oncogene. 2021 Apr 29;40(17):3015–29.
19. Chong YP, Mulhern TD, Zhu HJ, Fujita DJ, Bjorge JD, Tantiongco JP, et al. A Novel Non-catalytic Mechanism Employed by the C-terminal Src-homologous Kinase to Inhibit Src-family Kinase Activity. Journal of Biological Chemistry. 2004 May;279(20):20752–66.
20. Meredith AM, Dass CR. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. Journal of Pharmacy and Pharmacology. 2016 May 27;68(6):729–41.
21. Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R, et al. HMGB1 Promotes Drug Resistance in Osteosarcoma. Cancer Research. 2012 Jan 1;72(1):230–8.
22. Chen L, Ye HL, Zhang G, Yao WM, Chen XZ, Zhang FC, et al. Autophagy Inhibition Contributes to the Synergistic Interaction between EGCG and Doxorubicin to Kill the Hepatoma Hep3B Cells. Ho YS, editor. PLoS ONE. 2014 Jan 21;9(1):e85771.
23. Mohammed S, Shamseddine AA, Newcomb B, Chavez RS, Panzner TD, Lee AH, et al. Sublethal doxorubicin promotes migration and invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer Res. 2021 Dec;23(1):76.
24. Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, et al. Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase. Cardiovascular Research. 2006 Feb 15;69(3):736–45.
25. Chan BYH, Roczkowsky A, Moser N, Poirier M, Hughes BG, Ilarraza R, et al. Doxorubicin induces de novo expression of N-terminal-truncated matrix metalloproteinase-2 in cardiac myocytes. Can J Physiol Pharmacol. 2018 Dec;96(12):1238–45.
26. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011 Jan;278(1):16–27.
27. Sakamoto M, Takamura M, Ino Y, Miura A, Genda T, Hirohashi S. Involvement of c-Src in Carcinoma Cell Motility and Metastasis. Japanese Journal of Cancer Research. 2001 Sep;92(9):941–6.
28. Negi P, Cheke RS, Patil VM. Recent advances in pharmacological diversification of Src family kinase inhibitors. Egypt J Med Hum Genet. 2021 Dec;22(1):52.
29. Okada M. Regulation of the Src Family Kinases by Csk. Int J Biol Sci. 2012;8(10):1385–97.
30. Stover DR, Liebetanz J, Lydon NB. Cdc2-mediated modulation of pp60c-src activity. J Biol Chem. 1994 Oct 28;269(43):26885–9.
31. Eaton BR, Schwarz R, Vatner R, Yeh B, Claude L, Indelicato DJ, et al. Osteosarcoma. Pediatric Blood & Cancer [Internet]. 2021 May [cited 2023 May 9];68(S2). Available from: https://onlinelibrary.wiley.com/doi/10.1002/pbc.28352
32. Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, et al. Matrix metalloproteinase‐2 (MMP‐2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP‐ribose) polymerase (PARP) in vitro. FASEB j. 2004 Apr;18(6):690–2.
33. Webb AH, Gao BT, Goldsmith ZK, Irvine AS, Saleh N, Lee RP, et al. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer. 2017 Dec;17(1):434.
34. Tian Z, Yang Y, Yang Y, Zhang F, Li P, Wang J, et al. High cumulative doxorubicin dose for advanced soft tissue sarcoma. BMC Cancer. 2020 Dec;20(1):1139.
35. Pichot CS, Hartig SM, Xia L, Arvanitis C, Monisvais D, Lee FY, et al. Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells. Br J Cancer. 2009 Jul;101(1):38–47.