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Abstract

Image processing is the set of operations performed to extract "information" from
the image. An interesting problem in digital image processing is the restoration of
degraded images. It often happens that the resulting image is different from the ex-
pected image. Our problem will therefore be to recover an image close to the original
image from a poor quality image (that has been skewed by Gaussian and additive
noise). There are a lot of algorithms on how we can improve the broken image in bet-
ter quality.We present in this paper our numerical results obtained with the models of
Tichonov regularization, ROF, Vese Osher, anisotropic and isotropic TV denoising
algorithms.
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1 INTRODUCTION

A digital image is composed of basic units (referred to as pixels) that each represent a specific area of the image. The width
and height of an image are determined by the practically infinite number of pixels that make up each of those dimensions, as well
as the range of grayscale or colors that each pixel can contain (we speak of dynamics of the image). There are three categories
of digital images:

• binary images: in the simplest images, a pixel can only take the values black or white. When a piece of text just has one
color, this form of image is typically used to scan it;

• the grayscale images: images with gray levels typically display 256 shades of gray. Simply put, each of the 256 colors
in a 256 -color image is defined by the range of gray. According to tradition, 0 represents black (null luminous intensity)
and 255 represents white (maximum luminous intensity);

• the color images: in order to represent the colors red, green, and blue, a color image is actually made up of three images.
Each of these three images is referred to as a canal. This representation in red, green, and blue mimics how the human
visual system works.

The fundamentally ill-posed character of some practical problems is recognized and is manifested in a very large class of
problems, called “inverse problems”. There are many types of ill-posed inverse problems, and their applications can be found
in many fields such as: Image processing ; Medical imaging; Ultrasound; MRI; Tomography; Geophysical problems; ...
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Digital image processing is one of the most crucial components of machine learning or computer vision. A fascinating area
of digital image processing is the restoration of images. During the acquisition of a picture (especially through photography), it
is typical for the final image to diverge from the expected image. Denoising is the opposite problem from removing noise from
an image; the outcome would be subpar if noise was left in the image.
Briefly put, noise is parasitic information that is added to the scene. Since noise has a wide range of origins and characteristics,

it can be replicated in many different ways. There are many different kinds of noise, but the case study in this article is Gaussian
additive noisewith grayscale images, or f = u+�. The original image is represented by u, the observed noisy image is represented
by f , and the Gaussian random fluctuation to zero mean is represented by �. Gaussian noise is often referred to as normal noise
in a predefined density function. It is a common technique for including noise in images. According to the following definition,
this noise can be produced randomly and separately inside the image with

p(z) = 1
√

2��
e−

1
2�2
(z−z)2 , (1)

where z stands for intensity, z represents the mean value of z, and � stands for standard deviation. As seen in Figure 1, this
function can be visualized. To return the image to a better level of visual quality, descalation techniques are necessary. The
investigation of various image restoration models with Gaussian noises will be covered in this paper.

2 SOMEMODELS OF IMAGE RESTORATION

Amethod for improving or deteriorating an image while reducing its noise content is image restoration. In the sections below,
we will go over a few of the image restoration models that will be applied in the experiment.

2.1 Tichonov Regularization

The oldest regular method still in used to address inverse problems is the Tikhonov regularization method. In other words,
we replace the ill-posed original problem with a well-posed alternative approximation problem. It is one of the most well-known
methods of regularization in both statistical and digital analysis. The Tichonov regularization is a very commonplace yet overly
simplistic regularization method for image processing. If we assume that the additive noise v is Gaussian and that f represents
the observed image, then we attempt to reconstruct or restore the image u.
Let V = H1

0 (Ω) andH = L2(Ω), we take the original minimization problem (adjustment to the data):

() �∗ ∶= min
u ∈ V

‖u − f‖2H , (2)

where f ∶ Ω ⊂ ℝN ←→ ℝ is the observed image and the following regularized problem:

(�) � ∶= min
u ∈ V

{

‖u − f‖2H + � ‖∇u‖
2
H

}

, � > 0. (3)

The gradient must be “very minimal” in order for us to merely adjust u to the data f (it depends on the parameter). A slight
gradient, in an image, is “smoothed”. The restoration will provide a blurry image because the margins are eroded.

Theorem 1. Assume that () requires at least one answer ũ. The problem (�) requires a one-of-a-kind solution u� . When
� → 0, one can extract a subsequence from the family

(

u�
)

� that converges (possibly) in V to a solution u∗of ().

The restored image u is far less clear (in particular, the edges are eroded), which makes the problem of image restoration
incompatible with the common expression for image restoration, L(u) = ‖∇u‖22 (Tichonov regularization). Think about the
overall variation, or consider L(u) = ∫ |Du|. This strategy is significantly more successful. With respect to the problem of
functions of bounded variation spaces, this leads to a functional minimization in a particular Banach space.

2.2 Rudin, Osher, and Fatemi Model
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Figure 1 Gaussian Noise.

Rudin, Osher, and Fatemi (ROF ) proposed the first image restoration model from a given noisy image having additive noise
using regularization (TV ), which is defined by

TV (u(x, y)) ∶=

⎧

⎪

⎨

⎪

⎩

∫
Ω

|∇u(x, u)| dxdy, with |∇u| =
√

u2x + u2y

⎫

⎪

⎬

⎪

⎭

.

The regularization of total variation (TV ) approach of image processing is used to reduce noise from digital images. (TV ) is a
technique that was originally developed by ROF , it has since been applied to a multitude of other imaging problems.
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Rudin, Osher, and Fatemi developed the method known as (TV ) to address the problem of visual degradation. Now, it has
been used to solve numerous additional image problems.
In (10), a model has been proposed by Rudin, Osher, and Fatemi and in which the image is divided into two parts f = u + v,

where u is an unknown image and v is the noise. f is a brilliant measure that is usual at the beginning of a clean image, and is
an agreement parameter. We will thus try to solve the problem and simply apply the regularization to the “bruit” portion using
the u + v formula with u ∈ BV (Ω) and v ∈ L2(Ω). If f ∈ L2 is correct, the ROF problem is well-posed and the minimizer u
exists, is unique, and stable in L2(Ω). ROF proposed the following minimization problem:

(ROF ) �RoF ∶= infu

{

J (u) + 1
2�

‖v‖22 ∶ u ∈ BV (Ω), v ∈ L2(Ω), f = u + v
}

. (4)

This results in a [BV (Ω), L2(Ω)] decomposition of the image f .
J (u) denotes the total variance of u and � > 0.

J (u) = sup

⎧

⎪

⎨

⎪

⎩

∫
Ω

u(x)div('(x))dx ∶ ' ∈ C1c
(

Ω, ℝ2) , ‖'‖∞ ≤ 1
⎫

⎪

⎬

⎪

⎭

.

Also known as BV , or functions of bounded variation space, according to

BV (Ω) =
{

u ∈ L1(Ω), J (u) < +∞
}

.

Here J (u) denotes the TV of u and � > 0 is a weight parameter.

Theorem 2. (10,4) The problem (ROF ) requires a single solution, which is provided by

u = f − �Π�K (f ), (5)

where Π is the orthogonal projector on �K (dilatation of K by �), and K is the overall closure in L2.

K ∶=
{

div(') ∶ ' ∈ C1c
(

Ω, ℝ2) , ‖'‖∞ ≤ 1
}

.

2.3 Meyer’s Model

In (7), Yves Meyer shows that if � is small enough, the ROF model will erase the texture. Yves Meyer suggests the use of a
space of functions, which is in some ways the dual of theBV space, to extract both the u component inBV and the v component
as an oscillating function (texture or noise) from f . The following definition is given by Meyer:

Definition 1. (7), G(ℝ2) is a Banach space made of v distributions that may be written

G(ℝ2) =
{

v(x, y) = )xg1(x, y) + )yg2(x, y) ∕ g1, g2 ∈ L∞(ℝ2)
}

,

We will see that the space G allows for oscillating functions v, as justified by Meyer, and that the oscillations are well measured
by the norm

‖v‖G ∶= inf

⎧

⎪

⎨

⎪

⎩

‖g‖L∞(ℝ2) = ess supx∈(ℝ2) |g(x)| ∕ v = div⃖⃗g , ⃖⃗g = (g1, g2) ∈ L∞(ℝ2) × L∞(ℝ2),

|

|

⃖⃗g|
|

=
√

g21 + g
2
1

⎫

⎪

⎬

⎪

⎭

.

Meyer, suggests the following new image restoration model:

(Meyer) �Meyer ∶= inf
u

{

J (u) + � ‖v‖G ∕ u ∈ BV (Ω), v ∈ G(Ω) ; f = u + v
}

. (6)

J (u) = ∫ |∇u| denotes the total variation of u and � > 0, while G(ℝ2) denotes the space of oscillating functions.

2.3.1 Description of the Model

The interest in this space of oscillating functions stems from the fact that a strongly oscillating image with a small average
norm inG(ℝ2), can have large oscillations but a small average norm, and that theL2(Ω) norm is not the best choice for capturing
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the oscillating portion of an image. That is why he created a new space that was better suited from the start: the G oscillating
functions space. We have ‖.‖G low for oscillating functions with a null average and high for geometric functions.
We have arrived at the following conclusion based on a close approximation of the L∞ standard:

‖

‖

‖

‖

√

g21 + g
2
2

‖

‖

‖

‖L∞
= lim

p←→∞

‖

‖

‖

‖

√

g21 + g
2
2

‖

‖

‖

‖Lp
, g1, g2 ∈ L∞(ℝ2).

Then, if �, � > 0 are tuning parameters, � ←→ ∞ and p ←→ ∞ the approximation of Meyer model is given by

inf
u, g1, g2

{

Gp(u, g1, g2) = ∫ |∇u| + �∫
|

|

|

f − u − )xg1 − )yg2
|

|

|

2
dxdy + �

[(

√

g21 + g
2
1

)p] 1
p
}

. (7)

where

∫ |∇u| insures that u ∈ BV (ℝ2),

∫ |

|

|

f − u − )xg1 − )yg2
|

|

|

2
dxdy insures that f ≈ u + div( ⃖⃗g),

�
[(

√

g21 + g
2
1

)p] 1
p

is a penalty on the norm v = div( ⃖⃗g) in G.

As a result, the form of the Euler-Lagrange equation is given here.

u = f − )xg1 − )yg2 +
1
2�
div

(

∇u
|∇u|

)

. (8)

�
(

‖

‖

‖

‖

√

g21 + g
2
2

‖

‖

‖

‖p

)1−p(√

g21 + g
2
2

)p−2

g1 = 2�
[ )
)x
(u − f ) + )2xxg1 + )

2
xyg2

]

. (9)

�
(

‖

‖

‖

‖

√

g21 + g
2
2

‖

‖

‖

‖p

)1−p(√

g21 + g
2
2

)p−2

g2 = 2�
[

)
)y
(u − f ) + )2xyg1 + )

2
yyg2

]

. (10)

2.4 Vese-Osher Model

Vese and Osher, who were the first to propose an approach to solve Meyer’s problem numerically; that is to say, to realize
the program, they used the approximation of Meyer model as follows:

(V ese_Osℎer) �V ese_Osℎer ∶= inf
(u, v)∈BV ×G(Ω)

{

J (u) + � ‖f − u − v‖22 + � ‖v‖G
∕ u ∈ BV (Ω), v ∈ G(Ω); u + v = f

}

. (11)

In our numerical calculations, the steps to calculate the solution of this problem are:

1 - replace the term ‖v‖G by
‖

‖

‖

‖

√

g21 + g
2
2

‖

‖

‖

‖p
with v = div(g1, g2);

2 - p = 1 is used for digital resonances because it allows for faster calculations each iteration;

3 - gives the equation of Euler-Lagrange;

4 - we apply a fixed point iterative technique with a finite difference semi-implicit scheme.

2.4.1 The Numerical Discretization of Meyer’s Model

The numerical discretization of equations (8), (9) and (10) is performed using the semi-implicit method of difference and the
iterative algorithm based on the fixed point. We used the following initial values for the iterative algorithm:

ℎ = 1, p = 1 and n = 100.
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u0 = f ;

g01 = −
1
2�

fx
|∇f |

;

g02 = −
1
2�

fy
|∇f |

.

The following concepts are used: ui, j = u (iℎ, jℎ) , fi, j = f (iℎ, jℎ) , g1, i, j = g1 (iℎ, jℎ), with the step ℎ > 0 and the point
(iℎ, jℎ) for all 0 ≤ i, j ≤M , and the variable change is taken.

H(g1, g2) =
(

‖

‖

‖

‖

√

g21 + g
2
2

‖

‖

‖

‖p

)1−p(√

g21 + g
2
2

)p−2

.

So the discretization of equations (8),(9) and (10) is given by

un+1i, j =
1

1 + 1
2�ℎ2

(c1 + c2 + c3 + c4
)

⎛

⎜

⎜

⎜

⎝

fi, j −
gn1,i+1, j−g

n
1,i−1, j

2ℎ
−

gn2,i, j+1−g
n
2,i, j−1

2ℎ

+ 1
2�ℎ2

(c1uni+1, j + c2u
n
i−1, j + c3u

n
i, j+1 + c4u

n
i, j−1

⎞

⎟

⎟

⎟

⎠

; (12)

gn+11,i, j =
2�

�H(g1,i, j , g2,i, j)g1,i, j

⎛

⎜

⎜

⎜

⎝

uni+1, j−u
n
i−1, j

2ℎ
− fi+1, j−fi−1, j

2ℎ
+

gn1,i+1, j−2g
n+1
1,i, j+g

n
1,i−1, j

ℎ2

+ 1
4ℎ2
(gn2,i+1,j+1 + g

n
2,i−1,j−1 − g

n
2,i+1,j−1 − g

n
2,i−1,j+1)

⎞

⎟

⎟

⎟

⎠

; (13)

gn+12,i, j =
2�

�H(g1,i, j , g2,i, j)g2,i, j

⎛

⎜

⎜

⎜

⎝

uni,j+1−u
n
i,j−1

2ℎ
− fi,j+1−fi,j−1

2ℎ
+

gn2,i,j+1−2g
n+1
2,i,j+g

n
2,i,j−1

ℎ2

+ 1
4ℎ2
(g1,i+1,j+1 + gn1,i−1,j−1 − g

n
1,i+1,j−1 − g

n
1,i−1,j+1)

⎞

⎟

⎟

⎟

⎠

. (14)

The following notations are used:
c1 =

1
√

(

uni+1, j−u
n
i, j

ℎ

)2

+
(

uni, j+1−u
n
i, j−1

2ℎ

)2
;

c2 =
1

√

(

uni, j−u
n
i−1, j
ℎ

)2

+
(

uni−1, j+1−u
n
i−1, j−1

2ℎ

)2
;

c3 =
1

√

(

uni+1, j−u
n
i−1, j

2ℎ

)2

+
(

uni, j+1−u
n
i, j

ℎ

)2
;

c4 =
1

√

(

uni+1, j−1−u
n
i−1, j−1

2ℎ

)2

+
(

uni, j−u
n
i, j−1
ℎ

)2
.

(15)

2.4.2 Solution of Vese-Osher Problem

In order to solve the Vese-Osher problem, we will study this final problem in the discriminating case, when the image is a
vector with two dimensions of sizeN ×N , the Eulidian space X = ℝN×N and Y = X ×X.
If u ∈ X then ∇u ∈ Y is defined by (∇u)i, j =

(

(∇u)1i, j , (∇u)
2
i, j

)

, where

(∇u)1i, j =

⎧

⎪

⎨

⎪

⎩

ui+1, j − ui, j if i < N,

0 if i = N,
and (∇u)2i,j =

⎧

⎪

⎨

⎪

⎩

ui, j+1 − ui, j if j < N,

0 if j = N.
(16)

In the discriminating case, the total variance (TV ) of u is defined as

Jd(u) =
∑

1≤i,j≤N
|

|

|

(∇u)i, j
|

|

|

.
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The divergence operator is div = −∇∗ (the adjoint of ∇) where

(div(p))i, j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p1i, j − p
1
i−1, j if 1 < i < N

p1i, j if i = 1

−p1i−1, j if i = N

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p2i, j − p
2
i, j−1 if 1 < j < N

p2i, j if j = 1

−p2i, j−1 if j = N,

(17)

and the Gd-space is defined by
Gd ∶= {v ∈ X ∕ ∃g ∈ Y such that v = div(g)} .

Note that

G�(Ω) ∶ =
{

v ∈ G(Ω) such that ‖v‖G ≤ �
}

,
Gd
�(Ω) ∶ =

{

v ∈ Gd(Ω) such that ‖v‖Gd ≤ �
}

.

As J ∗d is the indicator function of Gd
1 (Ω) defined by

J ∗d (v) = �Gd1 (v) =

⎧

⎪

⎨

⎪

⎩

0 if v ∈ Gd
1

+∞ else.
So to solve the Vese-Osher problem, we propose the following algorithm

Algorithm 1 The algorithm for solving Vese Osher problem

inf (u, v)∈BV (Ω)∗G�(Ω)

{

F�, �(u, v) =

{

J (u) + 1
2�
‖f − u − v‖22 if v ∈ G�(Ω)

+∞ if v ∈ G(Ω)∕G�(Ω)

}}

.

By description;

inf (u, v)∈X∗X

{

F�, �(u, v) =

{

Jd(u) +
1
2�
‖f − u − v‖2X if v ∈ Gd

�(Ω)
+∞ if v ∈ X∕Gd

�(Ω)

}}

.

inf (u, v)∈X∗X F (u, v) = inf (u, v)∈X∗X
{

Jd(u) +
1
2�
‖f − u − v‖2X + J ∗d (

v
�
)
}

.
We divide the problem into two sub-problems:
Pbm1 u solution, v fixed: infv∈X

{

Jd(u) +
1
2�
‖f − u − v‖2X

}

.
↷tℎe solution is

according to ROF
cℎange of variable

f=f−v

u{ = f − v − PGd� (f − v).

P bm2 v solution, u fixed: infv∈Gd� (Ω)
{

‖f − u − v‖2X
}

.

↷
tℎe solution is

according to ROF
cℎange of variable

f=f−u
v{ = PGd� (f − u).

Lemma 1. There is an unique solution (û, v̂) ∈ X ∗ Gd
� that minimizes F�,�(u, v) in X ∗ Gd

� .

2.5 The Split Bregman Algorithm

Goldstein and Osher first proposed the split Bregman algorithm in (12) to handle more general form optimization problems:

$ ∶= min
u∈X

{

H(u) + ‖Φ(u)‖1
}

, (18)

where X is a closed convex set and Φ ∶ X ←→ ℝ, H ∶ X ←→ ℝ are convex functions. This problem is the same as the stress
minimization problem as below:

$ ∶= min
u∈X,d∈ℝ

{

H(u) + ‖d‖1
}

such that d = Φ(u). (19)
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Goldstein and Osher introduced the split Bregman algorithm, which was written as follows: The split Bregman algorithm is

Algorithm 2 The split Bregman algorithm

Initialization: k = 0, u0 = 0, b0 = 0
While ||uk − uk−1|| > tol do
uk+1 = minu H(u) +

�
2
‖

‖

dk − Φ(u) − bk‖
‖

2
2

dk+1 = mind |d| +
�
2
‖

‖

d − Φ(uk+1) − bk‖
‖

2
2

bk+1 = bk + (Φ(uk+1) − dk+1)
k = k + 1
End while.

used to solve some of the most common form optimization problems:

$̂ ∶= min
u∈X

{

z(u) + 1
2
‖u − f‖22

}

. (20)

Anisotropic and isotropic TV denoising problems are solved using the split Bregman method.

2.5.1 Anisotropic TV Denoising Problem

The problem of anisotropic TV denoising is considered in (3).

(1) �1 ∶= minu

{

‖

‖

‖

‖

)u
)x

‖

‖

‖

‖1
+
‖

‖

‖

‖

)u
)y

‖

‖

‖

‖1
+
�
2
‖u − f‖22

}

, (21)

where f is the noisy image, )u
)x

and )u
)y

will be noted by ux and uy respectively. The problem is solved using a constraint equivalent
to a problem (1).
We answer the problem (2) as follows:

(2)

{

�2 ∶= minu ‖‖dx‖‖1 +
‖

‖

‖

dy
‖

‖

‖1
+ �

2
‖u − f‖22

subject to dx = ux, dy = uy.
The Split Bregman algorithm can be used to tackle this last problem:

(3) �3 ∶= min
u,dx,dy

{

‖

‖

dx‖‖1 +
‖

‖

‖

dy
‖

‖

‖1
+
�
2
‖u − f‖22 +

�
2
‖

‖

dx − ux‖‖
2
2 +

�
2
‖

‖

‖

dy − uy
‖

‖

‖

2

2

}

. (22)

We use

sℎrink(x, a) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x − a if x > a,

x + a if x < −a,

0 else.

(23)

The Gauss-Seidel function is also useful.

Gk
i,j =

�
� + 4�

(uki+1,j + u
k
i−1,j + u

k
i,j+1 + u

k
i,j−1 + d

k
x,i−1,j + d

k
x,i,j

+dky,i,j−1 + d
k
y,i,j + b

k
x,i−1,j + b

k
x,i,j + b

k
y,i,j−1 + b

k
y,i,j) +

�
�+4�

fi,j .
(24)

2.5.2 Isotropic TV Denoising Problem

The problem of isotropic TV denoising is considered in (3),

( ′
1) Is1 ∶= minu

{

‖∇u‖2 +
�
2
‖u − f‖22

}

. (25)
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Algorithm 3 The split Bregman algorithm of anisotropic TV denoising

Initialization: k = 0, u0 = 0, b0 = 0.
While ||uk − uk−1|| > tol do,
uk+1 = Gk, where G is the Gauss-Seidel function.
dk+1x = sℎrink (∇xuk+1 + bkx,

1
�
).

dk+1y = sℎrink (∇yuk+1 + bky ,
1
�
).

bk+1x = bkx(∇xu
k+1 − dk+1x ).

bk+1y = bky(∇yu
k+1 − dk+1y ).

k = k + 1.
End while.

The problem ( ′
1) is solved using a constraint equivalent problem ( ′

2):

( ′
2)

{

Ĩs1 ∶= minu
‖

‖

‖

(

dx, dy
)

‖

‖

‖2
+ �

2
‖u − f‖22

subject to dx = ux, dy = uy.
(26)

To solve the problem ( ′
2), we solve the following problem without constraint:

( ′
3) Ĩs3 ∶= min

u,dx,dy

{

‖

‖

‖

(

dx, dy
)

‖

‖

‖2
+
�
2
‖u − f‖22 +

�
2
‖

‖

dx − ux‖‖
2
2 +

�
2
‖

‖

‖

dy − uy
‖

‖

‖

2

2

}

. (27)

The Split Bregman algorithm can be used to tackle this last difficulty.
We give the following definitions:

sk =

√

|ukx − bkx|2 +
|

|

|

uky − bky
|

|

|

2
. (28)

Algorithm 4 The split Bregman algorithm of isotropic TV denoising

Initialization: k = 0, u0 = 0, b0 = 0.
While ‖

‖

uk − uk+1‖
‖

> tol do,
uk+1 = Gk, where G is the Gauss-Seidel function.
dk+1x = sk�(ukx+b

k
x)

sk�+1
.

dk+1y =
sk�(uky+b

k
y )

sk�+1
.

bk+1x = bkx + (u
k+1
x − dk+1x ).

bk+1y = bky + (u
k+1
y − bk+1y ).

k = k + 1
End while.

3 NUMERICAL EXPERIMENTAL RESULTS

We present in this section our numerical results obtained with the following models of: Tichonov regularization, ROF ,
anisotropic and isotropic TV denoising. Let X be the matrices that depict an image of size m × n. We then used Matlab f =
imnoise(X,′ gaussian′, sigma) command to define our noise image f , where sigma is a version of the Gaussian noise level. We
used the values � = 0.1, � = 0.2 and the tolerance T ol = 10−5 in our studies. In our experience, we have tried to implement
several models of rehabilitation. Each model aims to produce a better solution to remove noise from the image. However, we
are going to implement iast in the script. By calculating Performance metrics as well different sigma values, we try to present
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Table 1 Results for the ROF algorithm, sigma = 0.01.

Images Size n × m Number of iterations ||denoised I−noisy I||2

(MN∗sigma2)−1
denoised PSNR

noisyPSNR

cameraman 398 × 398 25 0.1349 24.6132
20.3181 †
barbara 510 × 510 25 0.41724 22.3979
20.1075
camera 340 × 340 26 0.1179 24.9959
20.4143
flower 256 × 256 22 0.099939 25.9711
20.1339
girl 216 × 233 21 0.018344 26.1987

20.2102
Iline 1961 × 3553 24 34.5489 34.5489

19.9895
university 480 × 640 25 0.050125 25.0007
20.554 ‡

the best result. The results for Tichonov regularization, ROF, anisotropic and isotropic TV denoising algorithms are in Tables
1; 2, ; 3; 4; 5; 6; 7 and 8.
In addition, in Tables 9; 10; 11; 12; 13; 14; 15 and 16, we evaluate quality of images restored by the image restoration models,

we use square error (MSE), signal noise rate (SNR), peak signal to noise ratio (PSNR), image quality index (IQI), normal-
ized cross-correlation (NK), average difference (AD), structural content (SC), maximum difference (MD), and normalized
absolute error (NAE); of Tichonov regularization, ROF, anisotropic and isotropic TV denoising algorithms.
In Figure 2, we did an experiment by taking the original image of Barbara (image without noise), then we added white

Gaussian noise (sigma 0.08).
A comparative numerical was carried out between the Tichonov regularization restoration model and the ROF; TV anistropic

and isotropic denoising algorithm for the same parameter sigma 0.08 is shown in Figures 3, 4.
In Figure 5, we did an experiment by taking the original image of girl (image without noise), then we added white Gaussian

noise (sigma 0.08).
Finally, in Figures 7 and 8; we show comparisons and numerical results for the Tichonov regularization restoration model and

the ROF model; TV anistropic and isotropic denoising algorithm with a noisy image of girl for the same parameter sigma 0.08.
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Table 2 Results for the ROF algorithm, sigma = 0.08.

Images Size n × m Number of iterations ||denoised I−noisy I||2

(MN∗sigma2)−1
denoised PSNR

noisyPSNR

cameraman 398 × 398 25 0.1349 24.6132
20.3181 †
barbara 510 × 510 25 0.41724 22.3979
20.1075
camera 340 × 340 29 -0.87675 20.7695
18.8938
flower 256 × 256 22 0.099939 25.9711
20.1339
girl 216 × 233 20 -0.87384 20.7782

18.1269
Iline 1961 × 3553 29 -0.87735 21.8224

17.9203
university 480 × 640 26 -0.8717 20.6516
18.5907 ‡

Table 3 Results for the ROF algorithm, sigma = 0.2.

Images Size n × m Number of iterations ||denoised I−noisy I||2

(MN∗sigma2)−1
denoised PSNR

noisyPSNR

cameraman 398 × 398 38 -0.94385 13.7602
13.2205 †
barbara 510 × 510 30 -0.93372 13.5776
13.2581
camera 340 × 340 38 -0.9668 15.234
15.0525
flower 256 × 256 34 -0.94424 13.7758
13.078
girl 216 × 233 25 -0.95348 14.0803

13.4558
Iline 1961 × 3553 32 -0.95397 14.0965

13.2012
university 480 × 640 35 -0.95166 14.3564
13.8881
university 480 × 640 25 0.050125 25.0007
20.554 ‡
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Table 4 Results for the Tichonov Regularization algorithm, sigma = 0.01

Images Size n × m ||denoised I−noisy I||2

(MN∗sigma2)−1
denoised PSNR noisyPSNR

cameraman 398 × 398 -0.97352 23.9646 20.3181 †
barbara 510 × 510 -0.96845 23.6274 20.1075
camera 340 × 340 -0.97294 24.0817 20.4143
flower 256 × 256 -0.97523 24.1745 20.1339
girl 216 × 233 -0.97692 24.3646 20.2102
Iline 1961 × 3553 -0.97614 24.2821 19.9895

university 480 × 640 -0.97551 24.3021 20.554
‡

Table 5 Results for the Tichonov Regularization algorithm, sigma = 0.08

Images Size n × m ||denoised I−noisy I||2

(MN∗sigma2)−1
denoised PSNR noisyPSNR

cameraman 398 × 398 -0.97352 23.9646 20.3181 †
barbara 510 × 510 -0.96845 23.6274 20.1075
camera 340 × 340 -0.97294 24.0817 20.4143
flower 256 × 256 -0.97523 24.1745 20.1339
girl 216 × 233 -0.97692 24.3646 20.2102
Iline 1961 × 3553 -0.97614 24.2821 19.9895

university 480 × 640 -0.97551 24.3021 20.554
‡

Table 6 Results for the Tichonov Regularization algorithm, sigma = 0.08

Images Size n × m ||denoised I−noisy I||2

(MN∗sigma2)−1
denoised PSNR noisyPSNR

cameraman 398 × 398 -0.97254 19.8452 17.9764 †
barbara 510 × 510 -0.96842 19.7739 17.9621
camera 340 × 340 -0.97612 20.7023 18.8938
flower 256 × 256 -0.97468 19.9527 17.9206
girl 216 × 233 -0.9771 20.2027 18.1269
Iline 1961 × 3553 -0.97636 20.0426 17.9203

university 480 × 640 -0.97617 20.5036 18.5907
‡
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Table 7 Results for the Tichonov Regularization algorithm, sigma = 0.2

Images Size n × m ||denoised I−noisy I||2

(MN∗sigma2)−1
denoised PSNR noisyPSNR

cameraman 398 × 398 -0.97377 13.7374 13.2205 †
barbara 510 × 510 -0.97051 13.7499 13.2581
camera 340 × 340 -0.98386 15.4174 15.0525
flower 256 × 256 -0.9748 13.6479 13.078
girl 216 × 233 -0.97887 14.0148 13.4558
Iline 1961 × 3553 -0.97781 13.769 13.2012

university 480 × 640 -0.97776 14.4049 13.8881 ‡

Table 8 Results for the anisotropic TV denoising algorithm, sigma = 0.08.

Images Size n × m Number of iterations Relative Error Time (s)

cameraman 398 × 398 43 0.104779 45.680272 †
barbara 510 × 510 41 0.173054 85.609672
camera 340 × 340 7 0.165105 5.001468
flower 256 × 256 51 0.211968 24.340052
girl 216 × 233 47 0.149544 17.045064
Iline 1961 × 3553 164 0.143347 10438.736396
university 480 × 640 141 0.143296 300.869216 ‡

Table 9 Results for the isotropic TV denoising algorithm, sigma = 0.08.

Images Size n × m Number of iterations Relative Error Time (s)

cameraman 398 × 398 23 0.104677 57.237110 †
barbara 510 × 510 137 0.17464 182.507988
camera 340 × 340 143 0.172107 86.802806
flower 256 × 256 22 0.210941 41.570893
girl 216 × 233 24 0.151122 18.938243
Iline 1961 × 3553 15 0.143349 771.958677
university 480 × 640 24 0.143312 120.298105 ‡

4 CONCLUSION

In this paper, we have presented and compared theoretical and numerical of different imaging algorithms for solving opti-
mization problems. We are looking for an image that is near to the original as possible among images that have been skewed
by Gaussian and additive noise. Image deconstruction is a technique for restoring a noisy image after it has been captured. Ac-
cording to our experimentation, and by calculating performance metrics as well different sigma values, we can conclude that the
ROF model is better image quality compared to the Tichonov regularization, because the space BV ensures continuity and al-
lows for a stairway effect in restoring smooth images in applications where edges are not the main feature. we can conclude that
the anisotropic TV and isotropic TV denoising algorithms work in a direct correlation relationship. In other words, regardless
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Table 10 Performance metrics for ROF algorithm, sigma = 0.01.

Images MSE SNR PSNR IQI
NK AD SC MD NAE

cameraman 95.4334 3.9647 28.3338 -2.4160e-06
1.3366 -64.3582 0.4536 223 0.6382 †
barbara 96.1126 4.2188 28.3030 4.8606e-08
1.2066 -51.1091 0.4790 223 0.7199
camera 94.6071 4.3055 28.3716 3.1438e-05
1.1302 -37.7750 0.7046 234 0.3002
flower 95.6821 4.2095 28.3225 -7.1457e-07
1.5430 -88.4721 0.2649 182 1.1511
girl 95.0412 4.1605 28.3517 -1.5265e-07
1.3229 -75.2978 0.4226 196 0.7586
Iline 95.9190 4.2459 28.3118 0.9893
1.3479 -58.0632 0.4805 206 0.5112
university 88.4816 4.5937 28.6623 7.7624e-04
1.0743 -46.5255 0.5581 250 0.6777 ‡

Table 11 Performance metrics for ROF algorithm, sigma = 0.08.

Images MSE SNR PSNR IQI
NK AD SC MD NAE

cameraman 95.4334 3.9647 28.3338 -2.4160e-06
1.3366 -64.3582 0.4536 223 0.6382 †
barbara 96.1126 4.2188 28.3030 4.8606e-08
1.2895 -62.4257 0.4411 223 0.7338
camera 162.7122 1.9505 26.0166 3.1438e-05
1.1711 -47.1331 0.6584 234 0.3313
flower 95.6821 4.2095 28.3225 -7.1457e-07
1.5430 -88.4721 0.2649 182 1.1511
girl 163.1718 1.8132 26.0044 -1.5265e-07
1.3696 -82.4141 0.4053 196 0.7715
Iline 164.7801 1.8959 25.9618 0.9893
1.4095 -66.9820 0.4521 188 0.5319
university 151.8053 2.2494 26.3179 7.7624e-04
1.1407 -57.3012 0.5196 250 0.6852 ‡

of how little the sigma value is that we get better and more old image quality results. Finally, it should be mentioned that all the
methods that are common for removing parasitic information are added from an image.
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Table 12 Performance metrics for ROF algorithm, sigma = 0.2.

Images MSE SNR PSNR IQI
NK AD SC MD NAE

cameraman 238.3766 -0.0110 24.3582 -1.5908e-07
1.4816 -89.4316 0.3828 190 0.7872 †
barbara 239.9024 0.2463 24.3305 4.8606e-08
1.4276 -81.4507 0.3819 223 0.8033
camera 236.3087 0.3299 24.3960 3.1438e-05
1.2246 -59.9995 0.6018 234 0.3897
flower 239.7857 0.2196 24.3326 -7.1457e-07
1.7601 -110.2763 0.2341 182 1.2374
girl 237.7749 0.1780 24.3691 -1.5265e-07
1.4474 -94.2270 0.3762 196 0.8140
Iline 239.5990 0.2701 24.3360 0.9893
1.5124 -81.9270 0.4059 160 0.6046
university 219.8879 0.6402 24.7088 7.7624e-04
1.2430 -74.7657 0.4619 250 0.7667 ‡

Table 13 Performance metrics for Tichonov algorithm, sigma = 0.01.

Images MSE SNR PSNR IQI
NK AD SC MD NAE

cameraman 95.4334 3.9647 28.3338 2.1712e-05
1.3361 -64.2595 0.4506 244 0.6637 †
barbara 96.1126 4.2188 28.3030 6.7731e-09
1.2060 -51.0406 0.4732 223 0.7462
camera 94.6071 4.3055 28.3716 3.0292e-05
1.1294 -37.6595 0.7005 241 0.3220
flower 95.6821 4.2095 28.3225 -3.6032e-06
1.5423 -88.3622 0.2636 201 1.1744
girl 95.0412 28.3517 4.1605 2.0528e-07
1.3220 -75.1643 0.4206 201 0.7728
Iline 95.9190 4.2459 28.3118 0.9841
1.3469 -57.9367 0.4791 254 0.5287
university 88.4816 4.5937 28.6623 7.1609e-04
1.0743 -46.4538 0.5522 254 0.7034 ‡

DATA AVAILABILITY

No data were used to support this study.
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Table 14 Performance metrics for Tichonov algorithm, sigma = 0.08.

Images MSE SNR PSNR IQI
NK AD SC MD NAE

cameraman 164.1012 1.6105 25.9797 -4.2489e-06
1.3902 -73.4494 0.4244 233 0.6934 †
barbara 165.0845 1.8696 25.9537 4.0697e-08
1.2888 -62.3501 0.4363 223 0.7574
camera 162.7122 1.9505 26.0166 3.0208e-05
1.1702 -46.9840 0.6554 235 0.3418
flower 1.8539 164.5883 25.9668 -3.0678e-06
1.6220 -96.3537 0.2529 197 1.1856
girl 163.1718 1.8132 26.0044 2.8824e-07
1.3688 -82.2831 0.4034 202 0.7837
Iline 164.7801 1.8959 25.9618 0.9893
1.4084 -66.8355 0.4511 238 0.5417
university 151.8053 2.2494 26.3179 7.7624e-04
1.1404 -57.1934 0.5148 254 0.7062 ‡

Table 15 Performance metrics for Tichonov algorithm, sigma = 0.2.

Images MSE SNR PSNR IQI
NK AD SC MD NAE

cameraman 238.3766 -0.0110 24.3582 1.1434e-06
1.4810 -89.3073 0.3809 221 0.7922 †
barbara 239.9024 0.2463 24.3305 -4.0468e-08
1.4267 -81.3551 0.3786 223 0.8199
camera 236.3087 0.3299 24.3960 3.0276e-05
1.2233 -59.7684 0.6005 234 0.3932
flower 239.7857 0.2196 24.3326 -2.8803e-06
1.7591 -110.1366 0.2331 182 1.2489
girl 237.7749 0.1780 24.3691 -1.5265e-07
1.4463 -94.0664 0.3748 195 0.8222
Iline 239.5990 0.2701 24.3360 0.9882
1.5113 -81.7794 0.4052 208 0.6085
university 219.8879 0.6402 24.7088 7.7368e-04
1.2425 -74.6313 0.4586 254 0.7748 ‡
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Table 16 Performance metrics for the anisotropic TV denoising algorithm, sigma = 0.08.

Images MSE SNR PSNR IQI
NK AD SC MD NAE

cameraman 7.6326e+03 15.9295 9.3041 2.8414e-05
1.1423 -44.5176 0.6582 255 0.3806 †
barbara 1.4142e+04 11.8896 6.6257 -3.5635e-06
1.3828 -77.6333 0.3766 234 0.8772
camera 1.1758e+04 12.4348 7.4276 -7.3644e-O5
1.3689 -73.9475 0.4184 228 0.7373
flower 1.6863e+04 10.0637 5.8614 5.5853e-06
1.5642 -88.7960 0.2694 255 1.1090
girl 1.3374e+04 12.9140 6.8682 8.4450e-08
1.3312 -75.0687 0.4254 221 0.7501
Iline 232.5184 12.9318 24.4662 0.0052
1.0129 -5.3346 0.9706 255 0.0268
university 1.4088e+04 13.1774 6.6423 2.3093e-04
1.1405 -61.5217 0.4907 255 0.7909 ‡

Table 17 Performance metrics for the isotropic TV denoising algorithm, sigma = 0.08.

Images MSE SNR PSNR IQI
NK AD SC MD NAE

cameraman 7.5933e+03 15.8979 9.3265 3.1550e-05
1.1435 -44.1626 0.6577 255 0.3825 †
barbara 1.3937e+04 11.8882 6.6890 -3.3960e-06
1.3831 -77.6695 0.3784 242 0.8666
camera 1.1626e+04 12.4178 7.4764 -7.3644e-05
1.3804 -76.0561 0.4157 228 0.7384
flower 1.6711e+04 10.1155 5.9007 5.1306e-06
1.5626 -88.6839 0.2706 255 1.0941
girl 1.3120e+04 12.9056 6.9516 4.4023e-07
1.3339 -75.3454 0.4267 221 0.7382
Iline 210.5850 12.9318 24.8965 0.0052
1.0122 -5.0294 0.9724 255 0.0250
university 1.3858e+04 13.1735 6.7138 2.3140e-04
1.1553 -63.5094 0.4866 255 0.7864 ‡
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Figure 2 The original and noisy image barbara for sigma = 0.08.
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Figure 3 Denoised image barbar by Tikhonov and ROF for sigma = 0.08.
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Figure 4 Denoised image barbara by TV anistropic and isotropic for sigma = 0.08.
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Figure 5 The original and noisy image girl for sigma = 0.08.
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Figure 6 Denoised image girl by Tikhonov and ROF for sigma = 0.08.

Figure 7 Denoised image girl by TV anistropic and isotropic for sigma = 0.08.
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