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Introduction 

In this document, supporting information for the manuscript entitled Quantifying “climate 
distinguishability” after stratospheric aerosol injection using explainable artificial 
intelligence is provided. Specifically, Text S1 discusses the details of the training approach 
of our neural networks and the strategy of how we determine the corresponding 
architectures (i.e., the choices of hyperparameter values). Text S2 provides details on the 
algorithm of Deep SHAP, which is used to gain insights on the decision-making process 
of our networks. Moreover, in Table S1 we present a list of all the variables used in our 
study, together with the corresponding temporal scales and domains of focus.  
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Text S1: Network training and architectures 
 

For each of the two considered tasks (i.e., distinguishability under the SAI or under 
the SSP scenario) and for each variable of interest, we train a fully-connected neural 
network using a cross-validation approach: we use 8 simulation members out of the 10 that 
are available for training (i.e., to estimate the network’s parameters), 1 member for 
validation (to estimate the network’s hyperparameters; see below) and the remaining 1 
member for testing (to assess performance and interpret the predictions). We repeat the 
above 10 times, each time using a different member as the testing one and different 
validation and training members accordingly. The presented results in the main text and 
the conclusions are based only on the testing results. We use the 40-year period 2020-2059 
for our training and validation, whereas for testing, we additionally use the “out-of-sample” 
years 2060-2069 from the testing member to assess the generalizability of the distinctive 
patterns learned by the network.  

Regarding the architecture of the network, for each task, for each variable, and for 
each iteration in the cross-validation sequence, we search across many combinations of 
hyperparameters. Specifically, we consider the following hyperparameters and 
corresponding search spaces: learning rate: [0.00001, 0.0001, 0.001, 0.01]; dropout 
probability in the input layer: [0.1, 0.25, 0.5, 0.75]; number of hidden layers: [0, 1, 2, 4]; 
number of neurons per hidden layer: [3, 5, 10, 25]. We quantify the validation loss (after 
50 epochs of training) for each of the combinations of hyperparameters and we choose the 
one with the lowest loss. We then train the network using the chosen architecture for 10,000 
epochs and using an early stopping approach with a patience parameter equal to 30 and a 
batch size equal to 32. We use ReLU activation functions for all hidden layers. The output 
layer consists of a single neuron with a sigmoid activation function.  

The same training approach as described above is used for both tasks and for all 
variables. Thus, the difference in the network’s performance across different cases signifies 
the diversity of SAI impacts and the degree to which distinctive patterns exist in the data 
or not. Indeed, in some cases the network performs with almost 100% classification 
accuracy, while in other cases, it performs no better than random chance, as we show in 
section 3 of the main text.  
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Text S2: Deep SHAP 
 
Deep SHAP is an attribution method that aims to identify the relative contribution of each 
of the input variables (features) to a specific model output (local attribution method). It is 
based on the use of Shapley values (Shapley, 1953) and is specifically designed for neural 
networks (Lundberg and Lee, 2017). The Shapley values originate from the field of 
cooperative game theory and represent the average expected marginal contribution of each 
player in a cooperative game, after all possible combinations of players have been 
considered (Shapley, 1953). Regarding the importance of Shapley values to explainable 
artificial intelligence, it can be shown (Lundberg and Lee, 2017) that across all additive 
feature attribution methods (a general class of attribution methods that unifies many 
popular methods like Layer-wise Relevance Propagation, Bach et al., 2015, DeepLIFT, 
Shrikumar et al., 2016, etc.), the only method that satisfies all desired properties of local 
accuracy, missingness and consistency (see Lundberg and Lee, 2017, for details on these 
properties) emerges when the feature attributions 𝜑! are equal to the Shapley values:  
 

𝜑! = #
|𝑆|! (|𝑀| − |𝑆| − 1)!

|𝑀|
,𝑓"∪{!}.𝑥"∪{!}0 − 𝑓"(𝑥")1

"⊆'\{!}

	  

 
where 𝑀 is the set of all input features, 𝑀\{𝑖} is the set 𝑀, but with the feature 𝑥! being 
withheld, |𝑀| represents the number of features in 𝑀, and the expression 𝑓"∪{!}.𝑥"∪{!}0 −
𝑓"(𝑥") represents the net contribution (effect) of the feature 𝑥! to the outcome of the model 
𝑓, which is calculated as the difference between the model outcome when the feature 𝑥! is 
present and when it is withheld. Thus, the Shapley value 𝜑! is the (weighted) average 
contribution of the feature 𝑥! across all possible subsets 𝑆 ⊆ 𝑀\{𝑖}. Due to computational 
constraints, Deep SHAP approximates the contribution of each feature in the input to the 
network’s prediction by computing the Shapley values for small components of the 
network and propagating them backwards until the input layer is reached and the input 
attributions are computed. For more details on Deep SHAP, the reader is referred to the 
original study by Lundberg and Lee (2017). 
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Supplementary Table S1. List of variables used in our study together with their 
corresponding temporal scales and domains of focus. 
 

 
 
  

VARIABLE TEMPORAL FOCUS DOMAIN OF FOCUS 

surface temperature annual mean global 
surface temperature annual mean global land 
surface temperature annual max global 
surface temperature annual max global land 
surface temperature annual 5-day max global land 

precipitation annual mean global 
precipitation annual mean global land 
precipitation annual max global 
precipitation annual max global land 
precipitation annual 5-day max global land 

drought duration  
(precipitation based) annual max global land 

drought intensity  
(precipitation based) annual max global land 

sea level pressure hemispheric winter mean latitudes 30-70 in each 
hemisphere 

soil moisture  
(top ~50 cm of soil) annual mean global land 

evapotranspiration annual mean global land 
active layer thickness Jun-Nov mean latitudes 10N-90N 

snow depth annual mean global land 
sea ice extent Jun-Nov mean latitudes 50N-90N 

ocean heat content  
(top ~400 m) annual mean global ocean 

sea surface temperature annual 5-day max latitudes 55S-55N; ocean 
ocean PH annual mean global ocean 
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