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Key Points: 40 

• Biogeochemical models simulate soil denitrification through multiple pools/processes, 41 
but only incomplete N budgets are reported. 42 

• Missing (unpublished) model outputs are important for model evaluation and benefit 43 
model intercomparison and model development. 44 

• The ecosystem N modelers need to support and encourage the publication of all relevant 45 
N model outputs for denitrification modeling.  46 
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Abstract 47 

Biogeochemical models simulate soil nitrogen (N) turnover and are often used to assess N losses 48 
through denitrification. Though models simulate a complete N budget, only specific N 49 
pools/fluxes (i.e. N2O, NO3

-, NH3, NOx) are usually published, because the full budget cannot be 50 
validated with measured data. Field studies rarely include full N balances, especially N2 fluxes, 51 
which are difficult to quantify. Limiting publication of modeling results based on available field 52 
data is a missed opportunity to improve the understanding of modeled processes. We suggest that 53 
the modeler community support publication of all simulated N pools and processes in future 54 
studies. 55 

Plain Language Summary 56 

Biogeochemical models calculate the entire N balance to describe soil N turnover, but published 57 
results are generally limited to environmentally harmful N losses like N2O fluxes and NO3

- 58 
leaching. We argue that the publication and presentation of the full N cycle calculated by the 59 
model are crucial for model development, quality control, model intercomparison, and 60 
generating new hypothesis for empirical field studies. We therefore encourage ecosystem 61 
modelers to report all relevant results, even those that cannot be fully validated due to a lack of 62 
measurements. We particularly emphasize the importance of denitrification and reporting 63 
modeled N2 fluxes. 64 

1 The denitrification data deficit 65 

1.1 Importance of denitrification (N2O and N2) 66 

Denitrification is an anaerobic metabolic process for energy production in soils driven by 67 
the soil microbial community. It describes the step-wise reduction of nitrate (NO3

-) to nitrite 68 
(NO2

-), nitric oxide (NO), nitrous oxide (N2O), and finally, dinitrogen (N2) as the end product 69 
(Groffman et al., 2009; Nömmik, 1956). Although our knowledge and understanding of 70 
denitrification in terrestrial ecosystems has increased in recent decades (Galloway et al., 2004; 71 
Singh et al., 2011; Zaehle, 2013), we still have limited knowledge of the complex interaction of 72 
the many controlling factors, especially with respect to N2 production. 73 

Denitrification is a key N transformation process in soil, with both positive and negative 74 
consequences. On the one hand, it is a source of N2O, a strong greenhouse gas, and reactant in 75 
the destruction of stratospheric ozone (Canadell et al., 2021; Ravishankara et al., 2009; 76 
Robertson, 2000) and reduces ecosystem N availability and N use efficiency of agricultural 77 
crops. On the other hand, complete reduction to N2 is a sink for N2O, and N loss via this pathway 78 
decreases the possibility of NO3

- leaching, returning N to the atmosphere and closing the N cycle 79 
(Davidson & Seitzinger, 2006). Globally, denitrification rates are associated with large 80 
uncertainties, estimated to be in the range of 109-573 Tg yr-1 (Groffman et al., 2006; Scheer et 81 
al., 2020; Schlesinger, 2009). The lack of data on total denitrification has long been recognized 82 
as one of the reasons that N balances can seldom be closed at the plot scale (Allison, 1955). 83 
Given the importance of this for the N balance of terrestrial ecosystems, it is vital that we reduce 84 
uncertainty through a better understanding of the denitrification process.  85 

The N2O fluxes of agricultural soils are well documented and regularly measured, with 86 
intensive worldwide measurement campaigns over the last 20-30 years (Bouwman et al., 2002; 87 
Reay et al., 2012; Stehfest & Bouwman, 2006). These studies show that N2O emissions are event 88 
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driven, with high variability both spatially and temporally, responding nonlinearly to 89 
environmental parameters, e.g., temperature, oxygen (O2), organic carbon (SOC), pH, 90 
freeze/thaw, and NO3

- availability (Davidson & Swank, 1986; Firestone et al., 1979; Groffman et 91 
al., 2009; Mørkved et al., 2006; Nömmik, 1956; Thomas et al., 1994; Wagner-Riddle et al., 92 
2017; Weier et al., 1993). This level of complexity is challenging to model. Laboratory studies 93 
under controlled conditions help to isolate the effects of specific controlling factors (Grosz et al., 94 
2021; Müller & Clough, 2014; Weier et al., 1993), with both field and laboratory measurements 95 
being used to refine biogeochemical models to calculate N2O flux under differing conditions 96 
(Deng et al., 2016; Hergoualc’h et al., 2021). Much effort has been made to monitor, understand, 97 
and model N2O emissions, but N2O is neither the final product, nor in many cases the main 98 
product, of denitrification (Scheer et al., 2020). The end product of denitrification is N2. Unlike 99 
N2O fluxes, measuring N2 fluxes from the soil is fraught with difficulties due to the relatively 100 
small production from denitrification compared to the high atmospheric background. While 101 
several methods exist for measuring N2 fluxes, each has its own shortcomings, and there is no 102 
simple field-appropriate method (Friedl et al., 2020). Therefore, very few in-situ measurements 103 
of N2 fluxes are available (Buchen et al., 2016; Ding et al., 2022; Liu et al., 2022; Scheer et al., 104 
2020; Sgouridis et al., 2016; Zistl-Schlingmann et al., 2019). 105 

 106 

1.2 Considering N2 fluxes in models 107 

Models are tested and calibrated using measured data, so access to measured N2 fluxes is 108 
important for model developers. But those data are simply not yet available in sufficient quantity. 109 
Biogeochemical models have nevertheless been developed for describing the N cycle of 110 
agricultural soils and predicting N2O and N2 emissions (Del Grosso et al., 2000; Li et al., 1992; 111 
Nylinder et al., 2011; Parton et al., 1996; Sihi et al., 2020). Some models (Del Grosso et al., 112 
2000; Parton et al., 1996) have been partly parameterized with data that are no longer considered 113 
reliable (e.g., N2 loss estimation on basis of the acetylene inhibition technique (Weier et al., 114 
1993)) and other model calibrations are simply incomplete.  115 

Given the lack of data to generate empirical models, approaches to describe the 116 
production and transport of N2 are mostly process-oriented. Denitrification models are highly 117 
diverse with regard to their complexity, but the sensitivity of both N2 and N2O to controlling 118 
factors (e.g. temperature, pO2, SOC, pH, freeze/thaw and NO3

- availability) is commonly 119 
constrained solely based on N2O data (Grosz et al., 2021; Zhang et al., 2022). Yet it is notable 120 
that even given the extensive N2O data available, no statistical or process-based model has been 121 
found that can consistently and satisfactorily predict daily N2O emissions. Some models can 122 
simulate the cumulative annual emissions, but these approaches often fail to capture the timing 123 
and magnitude of observed emission peaks (Frolking et al., 1998). The inaccuracy of predicted 124 
daily N2O fluxes by biogeochemical models is a well-known problem (Butterbach-Bahl et al., 125 
2013; Zimmermann et al., 2018), and partly due to the incomplete understanding of the N2/N2O 126 
product ratio of denitrification. 127 

Since the calibration data and approaches of different models vary, they may produce 128 
contrasting results regarding N2 emissions, while still creating similar N2O emissions. Grosz et 129 
al. (2021) compared measured N2 and N2O emissions from a laboratory experiment with 130 
modeled results from the process-based models DNDC and DeNi. It is important to note that the 131 
models were not calibrated and DNDC – without the possibility to manipulate the source code – 132 
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is not ideal for modeling laboratory experiments. Nevertheless, as shown in Table 1, the modeled 133 
N2O fluxes from both models were acceptable, with DNDC producing results of the same 134 
magnitude as measured fluxes, while DeNi produced fluxes four times higher, but not 135 
implausible. In contrast, the modeled N2 fluxes by DNDC were almost 3000 times smaller than 136 
the measured data, while those from DeNi were overestimated by a factor of more than 100. 137 
While model calibration would clearly have improved those results, this example shows that the 138 
additional N2 flux information is critical for understanding model outputs and identifying 139 
implausible model estimates of denitrification. 140 

 141 

Table 1. The measured (laboratory experiment with 15N labeling) and modeled (DNDC and 142 
DeNi) average, cumulative N2, N2O fluxes (g N ha−1), for arable sandy soil from Fuhrberg, 143 
Germany (Grosz et al., 2021).  144 

 145 

 Measured DNDC DeNi 
N2 [g N ha-1] 56.63 0.019 7067 

N2O [g N ha-1] 638.5 345.4 2460 
 146 

Unfortunately, although many models estimate N2 fluxes, there are only a few 147 
publications presenting modeled N2 flux results (Del Grosso et al., 2000; Grosz et al., 2021; Leip 148 
et al., 2008; Parton et al., 1996). We argue that the publication of total denitrification rates (both 149 
N2 and N2O, reported on the same time scale), even if N2 fluxes are not validated, would 150 
significantly improve our understanding of different model approaches and aid model 151 
development. Models are often used under soil, climate or management conditions that are not 152 
fully covered by data sets used for model training and evaluation. Especially in these cases, 153 
publishing modeled N2 fluxes would help to assess the quality and improve the comparability of 154 
process descriptions. Presenting only one metabolic intermediate of denitrification, namely N2O 155 
flux, while neglecting N2 flux, compromises data reliability. Moreover, in the future, as more 156 
measured N2 and N2O fluxes from field experiments become available, already published 157 
simulations of N2 fluxes will facilitate the uptake and incorporation of new insights. 158 

2 Additional uncertainties in denitrification modeling 159 

2.1 Unknown N-balances 160 

The inaccuracy of predicted daily N2O fluxes by biogeochemical models (Butterbach-161 
Bahl et al., 2013; Zimmermann et al., 2018) is not only due to uncertainties in N2 fluxes, but also 162 
due to a lack of comprehensive understanding of other processes within the N cycle. N2O fluxes 163 
are an integral part of the N cycle, but only represent 0.1-3.1% of N losses during ecosystem N 164 
cycling (Bolan et al., 2004; Bouwman, 1996; Bouwman et al., 1993; Bremner, 1997; Cameron et 165 
al., 2013; Clough et al., 2005; de Klein et al., 2001; Firestone, 1982; Freney, 1997; Haynes & 166 
Sherlock, 1986; Mosier et al., 1998; Saggar et al., 2009; Thomson et al., 2012). Therefore, they 167 
are highly sensitive to other components of the N cycle, including N pools (NH4

+, NO3
- or 168 

organic N), plant and microbial N immobilization, decomposition, and related N losses like NH3, 169 
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NOx, and NO3
- leaching. Without going into extensive detail, we emphasize here the importance 170 

of publishing the full modeled N balance in denitrification studies. 171 
Publishing modeled N sources for N2O fluxes provides information on what pathways the 172 

model is simulating (e.g., nitrification or denitrification). Under certain environmental 173 
conditions, a model may provide accurate N2O fluxes, even though the underlying processes are 174 
incorrect (i.e. be right for the wrong reason); a high degree of equifinality has been shown in 175 
previous studies (He et al., 2016). Nitrification is particularly important in this context because in 176 
addition to being a source of N2O, it provides substrate (NO2

- and NO3
-) for denitrification. 177 

David et al. (2009) simulated an intensively cropped watershed in Illinois using measured water 178 
drainage and NO3

- concentration and compared denitrification from six different models (David 179 
et al., 2009). Most of the models accurately simulated the measured NO3

- leaching, but the 180 
denitrification rates varied widely among the models. This high variation in NO3

- lost through 181 
denitrification would then impact each model’s availability of soil NO3

- for plant and microbial 182 
uptake, leaching, and later denitrification. These key difference between models do not become 183 
visible without publishing the complete N balance. Finally, having a complete picture of N pools 184 
and processes within a model exercise makes it possible to recognize knowledge gaps. In Giltrap 185 
et al. (2014), the APSIM and NZ-DNDC models were used for estimating water drainage, NO3

- 186 
leaching, and plant N-uptake from a lysimeter experiment (Giltrap et al., 2014). An important 187 
conclusion of their work was that NO3

- adsorption, a process that was not captured by the 188 
models, could influence the whole N-cycle and the calculated N balance.  189 

Unlike N2, there are available methods for the measurement of the other N pools and 190 
processes mentioned here. However, given the cost and time that would be necessary to include 191 
such a wide array of supporting measurements, few studies (Delon et al., 2017; Janz et al., 2022 192 
are exceptions) can realistically measure all N fluxes in parallel, instead focusing on specific N 193 
pools and processes of interest. This makes it difficult to compare different studies and to use 194 
them for model calibration and validation. We argue here, as we argued above for N2 fluxes, that 195 
publishing unvalidated model output may provide valuable insights into model processes and 196 
support the development of models or sub-processes for N cycling.  197 

2.2 Additional soil information and sources of uncertainty   198 

Ecosystem N cycling does not exist in isolation. Other factors, such as the soil oxygen 199 
availability and distribution (Zhang et al., 2022) and labile organic carbon (Philippot et al., 200 
2007), also affect the success of modeling N2O and N2 production. For example, whether a 201 
model relates  transport functions to water-filled pore space or soil gas diffusivity in order to 202 
understand and model soil aeration, can have a significant effect on the simulated N2O and N2 203 
production (Balaine et al., 2013, 2016). Similarly, soil gas diffusivity may be used by the model 204 
to predict when N2O and N2 become entrapped in the soil, rather than released (Clough et al., 205 
2000, 2001; Ding et al., 2022). Studies show that available C can strongly influence losses of N 206 
and N2O emissions (Philippot et al., 2007), but accounting for labile C is still a knowledge gap 207 
and needs to be better addressed in denitrification modeling (Grosz et al., 2021). Therefore, 208 
reporting both model carbon dioxide (CO2) simulations as well as soil aeration in addition to N 209 
cycling simulation results would considerably improve understanding of model outputs. 210 

3 Recommendations 211 

Although our main focus here is on the importance of reporting both N2 and N2O fluxes 212 
when modeling denitrification, we argue that including the entire N balance and related 213 
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parameters should become standard when publishing the results of N model studies. Based on 214 
what we outlined above, this would: 1) enhance future model development, 2) allow to assess the 215 
robustness of modelled N balances, 3) illustrate the diversity and uncertainty of the different 216 
approaches for modeling denitrification processes in soils, and 4) identify data gaps that should 217 
be addressed in future studies.  218 

We assume that the scarcity of “complete” (i.e. including N2 fluxes and other N 219 
pools/pathways) modeled N balances in the soil denitrification literature stems from the 220 
reluctance of the scientific community to support the publication of unvalidated modeled output, 221 
especially given that the simulation results of these ‘neglected’ N pools may be unrealistic. But 222 
this self-censorship of authors has resulted in a missed opportunity to share knowledge and 223 
improve our understanding of modeled processes. We recommend that future studies exercise 224 
transparency in publishing model outputs. We ask authors to focus on the aspects of their model 225 
that were of particular interest (i.e. validated model developments), but, while clearly stating 226 
which variables were not validated by measurements, to include all related pools and parameters 227 
to the fullest extent possible (e.g. all modeled N pools/pathways, soil aeration and CO2 flux). 228 
Presenting such results does put additional pressure on the authors, as the presented model 229 
outputs have to be sufficiently robust and coherent for publication. However, the publication of 230 
the modeled N-balance simulations is crucial for future model development; it would 231 
fundamentally improve the robustness of models, speed up fine-tuning and ultimately advance 232 
our understanding of the N cycle. 233 
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