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Key Points:7

• Spectrally integrated radiative quantities can be estimated from a small weighted8

set of monochromatic calculations.9

• Tradeoffs between computational cost and accuracy are commensurate with cor-10

related k-distributions.11

• Optimization priorities can be tailored to a specific applications.12
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Abstract13

Broadband (spectrally-integrated) radiation calculations are dominated by the expense14

of spectral integration, and many applications require fast parameterizations for com-15

puting radiative flux. Here we describe a novel approach using a linear weighted sum of16

monochromatic calculations at a small set of optimally-chosen frequencies. The empirically-17

optimized quadrature method is used to compute atmospheric boundary fluxes, net flux18

profiles throughout the atmosphere, heating rate profiles, and top-of-the-atmosphere forc-19

ing by CO2. We evaluate the method against two modern correlated k-distributions and20

find that we can achieve comparable errors with 32 spectral points. We also examine the21

effect of minimizing different cost functions, and find that in order to accurately repre-22

sent heating rates and CO2 forcing, these quantities must be included in the cost func-23

tion.24

Plain Language Summary25

Quantifying the way radiation flows through the atmosphere is computationally26

expensive, and most applications require fast approximation. In this paper, we develop27

an empirically-optimized quadrature method that can compute quantities of interest in28

climate science and weather prediction such as radiative flux throughout the atmosphere,29

heating rates, and forcing by carbon dioxide. The method uses a simple optimization al-30

gorithm, combined with a linear model, to achieve accuracy and computational cost of31

similar order of magnitude to the modern correlated k-distributions. Depending on the32

focus of the application, the algorithm can easily be adapted to prioritize desired quan-33

tities.34

1 Approximations for Spectral Integrals in Radiative Transfer Calcu-35

lations36

Radiation is the mechanism by which the Earth system achieves energy balance;37

radiative heating and cooling within the atmosphere also play a crucial role in setting38

the temperature profile of the atmosphere (Manabe & Wetherald, 1967). The strength39

of the interactions between radiation and the atmosphere depends strongly on frequency40

because the optical properties of gases, fundamentally determined by their molecular struc-41

ture along with local temperature and pressure, vary rapidly in frequency by many or-42
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ders of magnitude. (The optical properties of condensed materials such as clouds and43

aerosols vary much more slowly with frequency and are not considered here.)44

The optical properties of the gases in the atmosphere can be determined at given45

frequencies based on detailed spectroscopic information describing each absorption line46

for each species (e.g., HITRAN, Gordon et al., 2022). The spectrally-integrated (broad-47

band) exchange of radiation can be determined from this information to near-arbitrary48

accuracy by direct integration at very high spectral resolution. Results from line-by-line49

models taking this approach (along with high angular resolution) may be considered ref-50

erence calculations (Pincus et al., 2020).51

Highly detailed calculations are, however, impractical in many contexts, such as52

when radiation must be computed as a diabatic forcing for a model of the atmosphere.53

In these contexts the radiative transfer integral is approximated using parameterizations,54

which reduce both spectral and angular detail. The state-of-the-art method for reduc-55

ing spectral resolution is the correlated k-distribution (CKD) algorithm (Fu & Liou, 1992;56

Lacis & Oinas, 1991; Goody et al., 1989), which sorts frequencies according to their ab-57

sorption coefficient k and determines the average at some set of quadrature points. The58

sorting and averaging creates a much smoother integral that can be evaluated with just59

tens or hundreds of quadrature points, as compared to the millions of points required60

by line-by-line models. These parameterizations seek to minimize the number of these61

quadrature points, called g-points, to limit computational cost (Hogan & Matricardi, 2022).62

There is, however, no theory underlying k-distributions, so developers must make63

a range of somewhat arbitrary choices (Hogan & Matricardi, 2020). Moreover, the com-64

mon experience is that the absorption coefficients determined with any algorithm need65

to be tuned to match reference calculations (Hogan & Matricardi, 2022; Pincus et al.,66

2019), making the link between the reference and approximate calculations somewhat67

obscure.68

Here we describe an approximation to spectral integration in the longwave consist-69

ing of a weighted sum of monochromatic fluxes computed at a small set of discrete wavenum-70

bers. We optimize both the members of this set and the linear weights to find the best71

estimate of the broadband integrated flux. The idea builds on approaches for comput-72

ing narrow-band radiances originally developed for remote sensing applications (Buehler73

et al., 2010; Moncet et al., 2008) to sample the spectrum sparsely rather than averag-74
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ing absorption coefficients. Our work is in the same spirit as de Mourgues et al. (2023),75

though we take a more general approach and treat a wider range of applications includ-76

ing heating rates, boundary fluxes, and CO2 forcing. We explore the relationship between77

the quantities targeted in the optimization and individual error profiles, test the effect78

of the vertical discretization of the training dataset, and compare the performance of the79

empirically-optimized quadrature method to state-of-the-art correlated-k methods. We80

find that weighted, sampled monochomatic calculations can predict fluxes, heating rates,81

and CO2 forcing with error-cost relationships commensurate with modern correlated-82

k models, while being flexible to the needs of a given application.83

2 Broadband Radiative Integral Calculation84

The net broadband radiative flux at height z in the atmosphere, F (z), is given by

integrating monochromatic fluxes across all wavenumbers:

F (z) =

∫
Fν(z) dν ≈

∑
i

Fνi(z)∆νi,

where ν denotes wavenumber and Fν(z) is monochromatic net flux. We develop the method85

for the longwave in clear skies, so we disregard scattering.86

Rather than calculating the line-by-line integral directly, we seek to compute the87

broadband net flux from a small subset of representative wavenumbers. This breaks the88

problem into two parts:89

• Optimally select the representative wavenumbers, and90

• Compute the net integrated flux from this subset.91

Inspired by approaches originally developed for remote sensing applications (Buehler et

al., 2010; Moncet et al., 2008), we select the representative subset via a combinatorial

optimization algorithm called simulated annealing (Kirkpatrick et al., 1983), and calcu-

late the net flux by performing a weighted sum of monochromatic fluxes found at the

representative wavenumbers. In other words, we rewrite our problem as:

F (z) ≈
∑
ν∈S

wνFν(z), (1)

where wν is the weight corresponding to wavenumber ν ∈ S, and Fν(z) is the monochro-92

matic flux found at wavenumber ν at height z. Though this is similar to the formula-93
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tion of k-distributions (for example, Eqn. 3 in Lacis and Oinas (1991)), here we are sam-94

pling monochromatic fluxes rather than averaging absorption coefficients.95

2.1 Line-by-Line Spectra and Correlated-K Data96

In order to spectrally sample Fν∈S and choose wν , we need accurate, finely-resolved97

line-by-line spectra at arbitrary frequencies, as well as corresponding integrated fluxes98

and heating rates throughout the atmosphere. Atmospheric profiles used for training must99

be independent and provide a representative sample of conditions for a given applica-100

tions.101

We use the set of atmospheric conditions developed for the Correlated K-Distribution102

Model Intercomparison Project (CKDMIP; see Hogan & Matricardi, 2020). The CKD-103

MIP profiles are chosen from reanalysis data to represent the mean state as well as min-104

imum and maximum extremes in water vapor concentration, ozone concentration, and105

temperature for the present day climate. We use software provided by CKDMIP to gen-106

erate 100 independent present-day, clear-sky reference flux profiles, half for training and107

half for testing, integrated in 4 hemispheric angles. Heating rates are computed from fluxes108

using a simple finite difference. Finally, we perturb the CO2 concentration of the 100 pro-109

files to generate reference CO2 forcing values for the Last Glacial Maximum (180 ppm),110

preindustrial (280 ppm), present day (∼415 ppm), 2x PI (560 ppm), 4x PI (1120 ppm),111

8x PI (2240 ppm) (Hogan & Matricardi, 2020), and 16x PI (4480 ppm) for extreme pa-112

leoclimate scenarios (Bice & Norris, 2002).113

2.2 Predicting Net Flux from a Subset of Spectral Points114

Given a subset of spectral points S of predetermined size |S|, we must obtain a set115

of weights such that the weighted sum of fluxes at those points predicts the broadband116

net flux across the spectrum. The weights wν are found by minimizing a linear cost func-117

tion subject to several constraints.118

First, all wν ≥ 0, since a negative weight would indicate redundant information

(Buehler et al., 2010; Moncet et al., 2008). Also, the weights are normalized so that they

sum to the length of the spectral domain, a general property of integration:

∑
wν =

∑
i

∆νi ≈ 3260 cm−1,
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as we focus on the longwave. This is achieved by formulating the cost function as a lin-119

ear program and solving using the convex optimization package cvxpy in Python (Agrawal120

et al., 2018; Diamond & Boyd, 2016).121

2.3 Wavenumber Subset Optimization Via Simulated Annealing122

Next, we must identify an optimal subset at which to compute the predicted flux.123

We use simulated annealing, a stochastic optimization algorithm that can combinato-124

rially evaluate different subsets in order to find a global minimum in a given cost func-125

tion (Kirkpatrick et al., 1983). The algorithm is guaranteed to converge asymptotically126

to a global minimum in cost function with probability 1 (Dekkers & Aarts, 1991), and127

can do so at much lower computational cost than a brute force approach for a large state128

space.129

Buehler et al. (2010) provides a useful tutorial on algorithm implementation. An-130

nealing temperature is initialized such that 99% of moves will be accepted (Buehler et131

al., 2010). The optimization is organized in blocks of moves that the cost function value132

is averaged over (Buehler et al., 2010). Each block consists of 100 moves that must all133

be successful; otherwise, the algorithm is considered to have converged to a minimum134

and is terminated. Finally, when a block has a lower average cost function value than135

the previous block, the annealing temperature is decreased by a factor of 0.9 (Buehler136

et al., 2010).137

Because the optimization process is stochastic, we perform 16 independent opti-138

mizations for each subset size and plot the standard deviation away from the mean er-139

ror in our results. We refer to a given set of wavenumbers and corresponding weights as140

a model.141

2.4 Cost Function Formulation142

As we are interested in optimizing multiple radiative quantities – fluxes, heating

rates, and top-of-the-atmosphere CO2 forcing – we take inspiration from multi-objective

optimization in the formulation of our cost function (Yang, 2014). Given multiple op-

timization targets F,H, and F , the simplest way to minimize their respective cost func-

tions c simultaneously is to minimize their weighted sum:

C = f1c(F ) + f2c(H) + f3c(F).
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Figure 1. The relative root mean squared error (RMSE) of each radiative term of interest is

plotted as weighting parameters vary. In a), the weight on the heating rate term f2 = 1 is held

fixed while f1 is varied. In b), f1 = 0.15 and f2 = 1 are held fixed while f3 is varied. The grey

lines show the value of the parameter that is used throughout the study.

143

Choosing the values of the weights fi is considered a subjective task with many valid144

solutions (Yang, 2014). In our case, the approach is as follows: first, we fix f2 = 1 and145

f3 = 0 as we vary f1, to focus on the tradeoff between heating rates and fluxes. For each146

value of f1, we fit linear weights to 100 random subsets of size 32 at every fifth vertical147

level for each of the 50 training atmospheres. The maximum relative (percent) error across148

vertical levels is recorded for each of the 100 iterations. The mean of these 100 iterations149

is plotted, where any random subset that produces an ill-conditioned cost function is ig-150

nored. The results of this experiment are shown in Fig. 1a). The grey line indicates the151

parameter value f1 = 0.15 that is chosen, as it occurs where heating rate errors level152

off.153

In Fig. 1b), the same procedure is repeated while holding f1 = 0.15 and f2 =154

1 fixed and varying f3. We choose parameter f3 = 1 in order to minimize increase in155

heating rate and flux errors.156
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3 Accuracy in Flux, Heating Rate, and CO2 Forcing Prediction157

3.1 Boundary Fluxes158

We illustrate the method by training the algorithm only on the outgoing atmospheric

boundary fluxes: the upwelling flux at the top of the atmosphere and the downwelling

flux at the surface. These fluxes can be useful for diagnostic calculations such as radia-

tive forcing or the cloud radiative effect, and can help understand the Earth’s energy bal-

ance. The spectral subset and the corresponding linear weights are chosen to minimize

the cost function

C =
√
(F ↑TOA

est − F ↑TOA
ref )2 + (F ↓surf.

est − F ↓surf.
ref )2. (2)
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Figure 2. The root mean squared error, in units of W/m2, across a range of wavenumber

subset sizes for boundary fluxes – upward flux at the top of the atmosphere and downward at

the bottom. The blue curve represents the training set, and the purple the testing, when trained

on the cost function in Eqn. 2; the pink curve represents training error when the integral is per-

formed using a Riemann sum over the chosen spectral points. We omit Riemann testing error as

it is nearly identical to the training error. Envelopes denote standard deviation across sixteen in-

dependent optimizations, and crosses show where training took place. The same metric is plotted

for boundary fluxes predicted by correlated-k models ecCKD (black) and RRTMGP (red). 10%,

1%, and 0.1% of mean boundary fluxes are plotted in grey.

Fluxes at the boundaries of the atmosphere can be computed accurately with rel-

atively sparse spectral information (Fig. 2). For various representative subset sizes, the
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best flux and weight configurations are recorded and the root mean squared error away

from reference calculations,

RMSE =

√
1

N

1

M

∑
m,n

(Fm,n
est − Fm,n

ref )2,

where n indexes the atmospheric profiles and m indexes vertical levels, is plotted. This159

is the same as the cost function up to a constant multiplier, which serves to take the av-160

erage of the error across atmospheric profiles and vertical levels rather than the sum. Ad-161

ditionally, using data submitted to CKDMIP (Hogan & Matricardi, 2020) and available162

online, our results are plotted alongside metrics from modern correlated k-distributions,163

the 27 g-point ecCKD (Hogan & Matricardi, 2022), which is trained on the CKDMIP164

training data, and the reduced 128 g-point RRTMGP (Pincus et al., 2019).165

First, to separate the contributions of simulated annealing and linear programming,166

weights are chosen by finding the Euclidean distance between spectral points – a Rie-167

mann sum is performed over the quadrature points chosen by the annealing algorithm.168

The pink curve shows that for a simple diagnostic calculation, the Riemann sum can per-169

form at around 1 W/m2 error with 32 spectral points, similarly to correlated-k models,170

highlighting the effectiveness of simulated annealing at choosing an appropriate repre-171

sentative subset. The purple and blue curves show the training and testing error, respec-172

tively, using both simulated annealing and linear weight optimization. Here, eight spec-173

tral points allow fluxes at the boundaries of the atmosphere to be computed to within174

1 W/m2 (1% accuracy), comparable to ecCKD and RRTMGP. With more than 16 spec-175

tral points, errors in testing data decrease much less rapidly with spectral detail than176

do errors in training data, indicating overfitting. However, the difference between the177

Riemann sum error and the RMS testing error of the model that optimizes Eqn. 2 is at178

close to 1 W/m2 throughout. This highlights the importance of optimizing both the lin-179

ear weights and the representative spectral subset.180

3.2 Net Flux and Heating Rate Profiles181

Boundary fluxes control the total energy exchanged by the Earth and the atmo-

sphere; flux profiles throughout the atmosphere set heating rates and hence the diabatic

forcing of circulation. Simultaneous prediction of fluxes and heating rate can be achieved

by specifying a cost function that contains both quantities, i.e.

C = f1∥Fest − Fref∥+ f2∥Hest −Href∥, (3)
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Figure 3. The root mean squared error (W/m2) for predicted flux values for each pressure

level, for a model that minimizes both flux error and heating rate error (Eqn. 3). Subset sizes

are shown above the plot. Panel a) shows results for the training set, and panel b) plots out-

of-sample testing data. Since the algorithm is trained only on every fifth vertical level, denoted

by crosses on the training plot, in-between levels in the training set are also out-of-sample. En-

velopes denote the standard deviation in RMSE across sixteen algorithm runs. We highlight

ecCKD on the training plot since it is trained on the CKDMIP data (black line), and show RRT-

MGP on the testing plot, since it is tested on our training data (red line). 1% and 0.1% of the

mean flux at each level is plotted in grey for reference.

which sums the ℓ2 norm of the differences between estimated and reference heating rate

and net flux with weights fi across all training profiles and vertical levels, formulated

similarly to Eqn. 2 in Hogan and Matricardi (2022). Fest is defined as the dot product

between the weights and the monochromatic fluxes, as in Eqn. 1, and the heating rate

is computed using this predicted flux; for each vertical level m in a given training pro-

file:

Hest = −S
g

cp

dFest

dp
≈ −S

g

cp

Fm
est − Fm+1

est

pm − pm+1
,

where S = 3600·24 s/day is a scale factor; g = 9.81 m/s is the gravitational constant;182

cp = 1004 J/kg K is the specific heat at constant pressure for dry air; and pm is pres-183

sure provided by the CKDMIP dataset at vertical level m, given in Pa. The heating rate184

is obtained in units of K/day. Finally, f1 = 0.15 and f2 = 1 are empirically derived185
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hyperparameters that balance the optimization of heating rates and fluxes, as discussed186

in Fig. 1.187

We train the model on every fifth vertical level of the CKDMIP dataset to predict188

vertically-resolved fluxes for these applications. The algorithm requires random access189

to a large (∼170 GB) dataset, so this is a practical limitation, but also allows us to treat190

some levels as out-of-sample, which can help us understand the impact of the vertical191

discretization of the atmosphere on the accuracy of the algorithm.192

In Fig. 3, we show the profiles of absolute RMSE (W/m2) of flux predicted by the193

minimization of Eqn. 3 for each subset size in order to examine this vertical dependence.194

We compare to ecCKD on the training plot as it is trained on CKDMIP data, and to195

RRTMGP on the testing plot, as it is not. Both here and in Fig. 4, pressure is plotted196

linearly in CKDMIP model level because training levels were chosen linearly in model197

level. The figure demonstrates good generalizeability of the method in the vertical as well198

as to out-of-sample atmospheric profiles. Throughout the vertical profile, errors remain199

of a constant order of magnitude. Extrusions between training levels become more pro-200

nounced in larger subset sizes, indicating overfitting. Errors in the testing set are of sim-201

ilar order of magnitude to those in the training set. With 32 spectral points, we achieve202

errors within 0.3 W/m2 (about 0.1% relative error), comparable to the correlated-k mod-203

els.204

Calculating heating rates from predicted fluxes with accuracy is difficult, especially205

at high altitudes, where the small pressure difference will magnify any errors in the flux.206

Furthermore, since heating rate is a derivative of flux computed by a simple finite dif-207

ference, the heating rate error will be determined by the difference in flux error at ad-208

joining vertical levels, rather than by the error in the fluxes themselves. Thus, to pro-209

duce good estimates of heating rate profiles, we include heating rates in the cost func-210

tion (Eqn. 3). Without this term, the optimization produces large heating rate errors211

in the stratosphere and above, even for large subset sizes.212

Fig. 4 shows the absolute root mean squared error in heating rates, in units of K/day.213

Similarly as in Fig. 3, levels we trained on are marked with crosses. In panels a) and b),214

heating RMSE is shown only for the levels in the training set. Though errors are rela-215

tively large for small subset sizes, the errors for 32 and 64 wavenumbers are commen-216
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surate with correlated k-distributions throughout the atmopshere, maintaining errors of217

< 0.2 K/day (approaching 1%).218

In panels c) and d), heating rates computed from predicted fluxes at all levels (as219

in Fig. 3) are shown. Here, for small subset sizes (≤16 representative wavenumbers), heat-220

ing rate errors are larger, especially high in the atmosphere; in the layers immediately221

above the ground, the errors subset sizes 4 and 8 reach as high as 8 and 5 K/day, respec-222

tively, due to the fine pressure discretization in these levels. Even for 16 predictors, where223

flux errors are commensurate with correlated-k models in Fig. 3 at about 1 W/m2 (1%)224

error throughout the atmopshere, the heating rate error is large where pressure thick-225

ness is small. For 64 predictors, the heating rate errors of our model are smaller than226

0.5 K/day for both training and testing throughout most of the atmosphere. However,227

the dependence of accuracy on vertical discretization is highlighted here. The method228

extrapolates fluxes to out-of-sample levels well because the relationship between the monochro-229

matic fluxes and the broadband integral remains fixed. This is not true of heating rates230

when training is performed on certain pressure levels and extrapolation to different pres-231

sure levels is attempted.232

3.3 Forcing by CO2233

The top-of-the-atmosphere radiative forcing is defined as the difference in outgo-

ing longwave radiation (OLR) between two states. This quantity is crucial for studying

how Earth’s energy balance will evolve with changing atmospheric composition. As with

heating rates, it is not sufficient to predict the OLR in the two states; we must also min-

imize their difference. We adjust our cost function accordingly:

C = f1∥Fest − Fref∥+ f2∥Hest −Href∥+ f3∥Fest −Fref∥, (4)

where the TOA forcing by CO2 Fest = OLRpresent
est − OLRperturbed

est , and similarly for234

Fref . Hyperparameters f1 = 0.15 and f2 = 1 are as in Eqn. 3, and f3 is set to 1, as235

described by Fig. 1. Here, we use the difference between 8x preindustrial (PI) CO2 and236

present-day conditions in the cost function, and extrapolate to forcing between present-237

day and the scenarios used in CKDMIP: LGM, PI, 2x PI, and 8x PI (Hogan & Matri-238

cardi, 2020). We also extrapolate to 16x PI (4480 ppm), to test whether our model can239

be useful in extreme paleoclimate scenarios (Bice & Norris, 2002).240
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Fig. 5 shows the RMSE for different subset sizes across all the CO2 scenarios. Our241

method displays highest errors in extrapolations to very low and very high CO2 scenar-242

ios, such as the last glacial maximum and the extreme paleoclimate scenario. With 64243

spectral points, we can achieve about 0.2 W/m2 (< 10%) error across scenarios, which244

is similar to the correlated-k models. Training on just the 2240 ppm scenario is able to245

maintain errors within 10% for all climate scenarios for 32 and 64 spectral points, includ-246

ing extreme high and low CO2 concentrations.247

The choice of climate scenario to train on is somewhat arbitrary; training on any248

perturbation of CO2 yields similar results. This is demonstrated in Fig. 6, where the RMSE249

in CO2 forcing is plotted for three independent optimizations trained on the various cli-250

mate scenarios, each with 32 spectral points. The 8x PI scenario is the same as Fig. 5.251

There are minima in the RMS at the scenarios trained on, and scenarios that are fur-252

ther out-of-sample yield higher errors. For example, when training on the LGM or pre-253

industrial CO2 concentrations, the dramatically-different 16x PI scenario is predicted with254

up to 1 W/m2 error. However, the quadrature method remains flexible to different ap-255

plications, as predictions for all scenarios remain within about 10% error for 32 spectral256

points.257

4 Evaluating Optimization Priorities258

One of our aspirations is to create a framework in which optimization goals can be259

explicitly and transparently specified. For instance, for a weather model, it may be im-260

perative to predict fluxes and heating rates well, but forcing by CO2 may not be a con-261

cern. Adding terms to the cost function increases optimization times. It also results in262

an error tradeoff, as ensuring that multiple quantities are equally optimized yields larger263

errors in each individual quantity.264

Fig. 7 highlights the importance of including quantities of interest in the cost func-265

tion. In panel a), while the model trained only on the outgoing fluxes (dark red) out-266

performs all others, on average, for almost all subset sizes, the others are not far behind.267

In panel b), the tradeoff of adding extra quantities to the cost function is demonstrated268

– the model trained only on fluxes is consistently more accurate than all others, and adding269

heating rates or CO2 to the cost function decreases slightly accuracy for all subset sizes.270

As shown above, including the flux derivative in the cost function is imperative in ac-271
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curately reproducing heating rates. In panel c), the models trained on heating rates (or-272

ange and yellow) achieve 10% error, on average, with 32 spectral points, while the model273

trained only on fluxes (red) exhibits larger errors. Finally, in panel d), we explore forc-274

ing by CO2. Here, it is clear that in order to reproduce this TOA radiative forcing, we275

must include it in the cost function. Although including CO2 forcing in the cost func-276

tion increases errors in the flux profiles and boundary fluxes, these increases are small.277

5 Physical Interpretation of Optimization Choices278

Though simulated annealing is a stochastic optimization algorithm agnostic to the279

physics of the Earth system, we hope to draw some physical understanding from the wavenum-280

ber subsets and associated weights that are chosen. Fig. 8 shows the location of subset281

members on an example OLR spectrum for three independent optimizations. Bars are282

shown below the spectrum noting major features: the atmospheric water vapor window283

as well as absorption by water vapor, carbon dioxide, and ozone. On these bars, the dots284

indicate where subset members lay on the spectrum for three 16-member models trained285

on heating rates and fluxes (Eqn. 3). The size of the dots is proportional to the value286

of the monochromatic flux at that wavenumber multiplied by its linear weight. This quan-287

tifies how much a given subset member contributes to the integrated broadband flux. The288

colors correspond to the three different models.289

The optimization chooses wavenumbers that are distributed across the spectrum,290

spanning absorption by all three major gases as well as the water vapor window. Where291

the Planck curve is small, such as the tails of the spectrum, few points are chosen, and292

those that are tend not to be “important”. The largest contributions tend to come from293

the water vapor window, followed by the main CO2 and H2O bands.294

Next, the amount of absorption captured by each subset member is quantified through295

optical depth. For each wavenumber in a given subset S, the pressure level at which op-296

tical depth τ = 1 is reached from the top of the atmosphere is recorded. The wavenum-297

bers are then sorted by this pressure level, averaged across training atmospheric profiles298

and independent optimizations, and then plotted in Fig. 9. The colorful lines correspond299

to an optimization minimizing error in both heating rates and fluxes (Eqn. 3), while the300

accompanying grey curves result from optimizing only fluxes.301
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As the size of the subset increases, the members span more of the atmosphere –302

the pressure of the lowest optically-thick level decreases. Furthermore, more levels that303

radiate at higher pressures in the atmosphere are included: the slope of the lines below304

100 hPa decreases. Finally, the models trained on only fluxes span less of the atmosphere305

and contain more wavenumbers that radiate from higher pressures on average. This ex-306

plains why the model trained only on fluxes cannot predict heating rates at low pres-307

sures with accuracy, and further justifies our inclusion of heating rates in the cost func-308

tion. It also proposes a relationship between the vertical discretization of the training309

atmospheres and the number of subset members required to accurately predict heating310

rates.311

6 Conclusions312

In this paper, we demonstrate that a small set of spectral points can be used to pre-313

dict flux profiles, heating rate profiles, and CO2 forcing with accuracy comparable to cor-314

related k-distribution methods. The empirically-optimized quadrature method selects315

an optimal subset of spectral points at which to compute a weighted sum to estimate316

the broadband net flux integral. We apply the method to predicting fluxes throughout317

the vertical column and test its generalizeability to out-of-sample atmospheric profiles.318

We can achieve accuracy to within 1 W/m2 for vertically-resolved net fluxes with 16 spec-319

tral points while avoiding overfitting.320

We show that in order to reproduce heating rates accurately, especially high in the321

atmosphere, we must optimize not only on fluxes, but also on the difference between fluxes322

at consecutive height levels. Including heating rates in the cost function yields errors of323

less than 0.2 K/day throughout the atmospheric column for subsets of 32 points. Sim-324

ilarly, in order to explore applications in climate science, we include forcing by CO2 in325

the cost function. We find that by training only on an 8x PI scenario, we can extrap-326

olate to reproduce top-of-the-atmosphere forcing within 10% (< 1 W/m2) with 32 or327

64 spectral points across various scenarios. The ability to optimize quantities of inter-328

est lends flexibility to different applications to the method.329

While our approach performs well on the present-day clear-sky scenarios provided330

in CKDMIP, there are several limitations to this initial demonstration. First, we have331

chosen to focus on clear-sky scenarios, as many k-distributions are initially developed332

15



using only clear skies (e.g., Pincus et al., 2019). The optical properties of clouds vary333

only weakly with wavenumber so we anticipate that training on cloudy profiles would334

not change the accuracy or the flexibility of our quadrature method. However, as with335

choosing clear-sky profiles, choosing an appropriate set of cloudy training profiles is an336

open question, and so we leave it out of the scope of this work.337

We have also limited our training and testing data to the CKDMIP sets, which com-338

mits us to certain atmospheric condition and vertical discretization choices. Choosing339

training atmospheres that will represent diverse conditions and generalize well is an open340

question for many statistical and machine learning applications, and we use only fifty.341

Furthermore, memory constraints (the total size of the spectral training dataset is about342

170 GB) also prevent us from training on all model levels in the vertical. Though this343

allows us to highlight the importance of the vertical discretization of the dataset, using344

a finer grid would certainly improve both flux and heating rate predictions. It may also345

require more spectral points to parameterize the extra information.346

Finally, though we know many greenhouse gases exert a forcing on the climate, we347

focus only on CO2. Since we fit one set of weights with a linear regression, there is a limit348

on how many related quantities we can optimize at once before we formulate an ill-conditioned349

problem. In order to predict forcing by different gases, or improve our CO2 forcing es-350

timates across different scenarios, we will have to consider how best to include many dif-351

ferent optimization targets.352

7 Open Data353

Model output data and the Jupyter notebook for creating figures shown in this pa-354

per are publicly available at https://github.com/pczarnecki/quadrature-paper-figures,355

doi:10.5281/zenodo.7939119. The line-by-line code and data is freely available from the356

CKDMIP project (Hogan and Matricardi (2020), https://confluence.ecmwf.int/display/357

CKDMIP).358
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Figure 4. The absolute root mean squared error (in K/day) of the heating rate calculated

from predicted fluxes throughout the atmosphere. Subset sizes are noted above the plot. Panel

a) shows the RMSE of heating rates at only the pressure levels in the training set; panel b)

shows the associated out-of-sample atmospheric columns; c) shows results for the training set

using predicted fluxes for all model levels; panel d) shows absolute RMSE for out-of-sample

atmospheric profiles for all levels. Envelopes denote the standard deviation in absolute RMSE

across sixteen algorithm runs. The black and red lines show heating rates predicted by ecCKD

and RRTMGP, respectively. 10% and 1% of the mean heating rate profile are plotted in grey

dotted lines.
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Figure 5. The root mean squared error (in units of W/m2) of the forcing by CO2 is plot-

ted for different subset sizes across various climate scenarios. Panel a) shows the error from the

training set, and testing error on panel b). Crosses indicate that only forcing from the 2240 ppm

training scenario is included in the cost function. The results from ecCKD and RRTMGP are

shown in black and red, respectively. Clouds show the standard error across sixteen independent

optimizations. 10% and 1% of the mean forcing for each scenario are plotted in grey dotted lines.
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Figure 6. The root mean squared error (in units of W/m2) of the forcing by CO2 is plotted

for a 32-wavenumber subset trained on the different climate scenarios: the last glacial maximum

(LGM), pre-industrial concentrations (PI), and 2-, 4-, 8-, and 16x PI CO2. Panel a) shows the

error from the training set, and testing error on panel b). Crosses indicate which training sce-

nario is included in the cost function. The results from ecCKD and RRTMGP are shown in black

and red, respectively. 10% and 1% of the mean forcing for each scenario are plotted in grey dot-

ted lines. Clouds show the standard error across just three independent optimizations.
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Figure 7. The average errors for models trained on various cost functions: one including only

boundary fluxes (Eqn. 2), in dark red; one including every fifth net flux in the vertical, in red;

one trained on these fluxes as well as corresponding heating rates (Eqn. 3), in orange; and one

where the cost function encompasses fluxes, heating rates, and the CO2 forcing between present

day and 8x PI CO2 (Eqn. 4), in yellow. The panels show: a) the mean RMSE for boundary

fluxes; b) the mean RMSE for fluxes throughout the atmospheric column; c) the average ab-

solute RMSE of heating rates throughout the atmospheric profile and d) the average RMSE of

forcing by CO2 across climate scenarios. The crosses indicate where the given quantity was in-

cluded in the cost function. 10%, 1% and 0.1% of the mean reference values for each quantity are

plotted in grey dotted lines.
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Figure 8. Below an example of a spectrum of OLR, major absorbers are noted. Dots mark

where a wavenumber was chosen, and the size of the dots is proportional to the importance of

that spectral point to the broadband flux integration. The colors correspond to three indepen-

dent optimizations.
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Figure 9. For each wavenumber in the final subset S, the pressure level at which that

wavenumber first reaches optical depth τ = 1 from the top of the atmosphere is plotted. The

colorful lines correspond to models optimizing both fluxes and heating rates (Eqn. 3), and the

accompanying grey lines correspond to models optimizing only fluxes.
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