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Abstract 30 
 31 
West Nile virus is the most significant arbovirus in the United States in terms of both morbidity 32 
and mortality. West Nile exists in a complex transmission cycle between avian hosts and the 33 
arthropod vector, Culex spp. mosquitoes. Human spillover events occur when humans are in 34 
close proximity to vector populations with high rates of infection. Predicting these rates of 35 
infection and therefore the risk to humans is not straightforward. In this study, we evaluate the 36 
hydrological and meteorological drivers associated with mosquito biology and viral development 37 
to determine if these associations can be used to forecast seasonal West Nile risk in the Coachella 38 
Valley of California. To test this, we developed and tested a spatially-resolved ensemble forecast 39 
model of West Nile virus transmission in the Coachella Valley using 17 years of mosquito 40 
surveillance data and NLDAS-2 environmental data. Our multi-model inference system indicated 41 
that the combination of a cooler and dryer winter followed by a wetter and warmer spring and a 42 
cooler than normal summer was most predictive of West Nile positive mosquitoes in the 43 
Coachella Valley. The ability to make accurate early season predictions of West Nile risk could 44 
allow local abatement districts and public health entities to implement early season interventions 45 
such as targeted adulticiding and public messaging before human transmission occurs. Such early 46 
and targeted interventions could better mitigate the risk of West Nile virus to humans in the 47 
Coachella Valley. 48 
 49 
1 Introduction 50 
 51 
The largest county-level arboviral neuroinvasive disease outbreak ever recorded in the United 52 
States occurred in a desert climate in 2021 with 1,427 recorded human West Nile virus (WNV) 53 
neuroinvasive cases resulting in 100 deaths. The extent of this outbreak was over 1.5 times 54 
greater than the total neuroinvasive cases reported in Arizona between 1999 - 2016 but only 55 
represent a fraction of the overall infections (Ronca et al., 2019). However these 1,427 cases do 56 
capture the high morbidity related to this WNV outbreak, which based on previous studies may 57 
be estimated to have cost nearly one billion dollars in hospitalizations, follow-up care, and work 58 
lost (Ronca et al., 2019). The morbidity and mortality of this outbreak emphasizes how critical it 59 
is to gain a better understanding of the environmental drivers associated with the complex 60 
transmission cycle between avian reservoir hosts and Culex genus mosquitoes, which can result 61 
in incidental zoonotic spillover to humans (Colpitts et al., 2012; Nasci & Mutebi, 2019). 62 
 63 
WNV transmission is not only dependent on factors such as bird immunity, the success of 64 
mosquito overwintering, and mosquito feeding behavior but is also substantially driven by 65 
environmental drivers such as meteorological and hydrological conditions (Davis et al., 2017; 66 
DeFelice et al., 2017; Kilpatrick et al., 2006; Paull et al., 2017; Shaman et al., 2005; Wimberly et 67 
al., 2022). Much work has been undertaken to produce accurate forecast models for WNV 68 
transmission, however, there remains significant variability and little consensus between these 69 
products (Barker, 2019; DeFelice et al., 2017; Keyel et al., 2021; Little et al., 2016; Wimberly et 70 
al., 2022). Temperature, humidity, and available water affect the development and survival  of 71 
WNV mosquito vectors (sp. Culex), along with the extrinsic incubation period (EIP) of the virus 72 
(Epstein, 2001; Reisen et al., 2008; Shaman et al., 2005; Wegbreit & Reisen, 2000). Warmer 73 
temperatures accelerate population growth by providing conditions suitable for earlier season 74 
larval development, completion of the gonotrophic cycle, and shortened EIP of the virus (Ciota 75 



& Kramer, 2013). Conversely, extreme temperature events can negatively affect mosquito 76 
population growth resulting in slower development at low temperatures and significant mortality 77 
at high temperatures (Mordecai et al., 2019). Temperature driven shifts in mosquito activity and 78 
WNV infections have been observed in areas that experience seasonal temperature variations, 79 
such as coastal Los Angeles, where during the extreme hot periods of summer WNV incidence 80 
increases in the Coastal Zones that during the rest of the year are typically too cool for 81 
transmission (Skaff et al., 2020).  82 
 83 
Additionally, the availability of suitable aquatic breeding sites is equally important for mosquito 84 
population success, but less conclusive is how to most effectively measure this habitat. 85 
Precipitation has been demonstrated to have contradictory associations with WNV incidence. On 86 
one hand, heavy rainfall may increase available water for mosquito breeding sites, but it may 87 
also wash out more sustained breeding habitats, such as ditches or catchment basins favored by 88 
Culex spp. (Koenraadt & Harrington, 2008). Conversely, drought periods increase the proximity 89 
and contact between infected mosquitoes and avian hosts, accelerating enzootic amplification of 90 
WNV throughout the mosquito population and increasing the risk of spillover to humans 91 
(Shaman et al., 2005). Using precipitation as an indicator for mosquito population success also 92 
presents a challenge in arid desert environments with little rainfall. However, evapotranspiration 93 
(ET), the measure of the amount of water transferred from the ground or plants to the 94 
atmosphere, offers a unique measure of the available water in an ecosystem (Fisher et al., 2020). 95 
ET may be a better hydrological indicator of mosquito population success and viral amplification 96 
in a desert region where the availability of surface water is primarily driven by agricultural and 97 
recreational practices rather than precipitation. 98 
 99 
Warmer, wetter environments favor mosquito development, whereas dryer than usual conditions 100 
in a geographic location may favor WNV amplification and transmission between the mosquito 101 
vector and bird hosts. However, unusual weather patterns must happen at specific points in a 102 
mosquito population's development to result in WNV amplification in mosquitoes and spillover 103 
events to humans. Lastly, the effect of these environmental deviations on the mosquito infection 104 
rate and therefore the potential risk of a human WNV outbreak may not be apparent until weeks 105 
or months after the environmental events. We hypothesize that extreme heat events seen in 106 
Coachella Valley (CV) during the summer months have the effect of depressing the mosquito 107 
population, thereby slowing WNV transmission, and that cooler-than-average summers lead to 108 
increased rates of WNV transmission. Additionally, we postulate that changes to the late-season 109 
climatology of the CV may play a role in the magnitude of WNV transmission the following 110 
year.  111 
 112 
In this study, we evaluate the hydrological and meteorological drivers that are associated with 113 
mosquito biology and viral development to understand if these associations may be used to 114 
forecast seasonal WNV risk. We developed and tested a spatially resolved ensemble forecast 115 
model of WNV transmission in the CV using 17 years of mosquito surveillance data and 116 
environmental data from the North American Land Data Assimilation System (NLDAS) - 2. We 117 
then cross-validated the ensemble model using a leave-one-year-out strategy and produced real-118 
time monthly forecasts for 2022 with analyses of agreement with observations at the end of the 119 
season. Our work indicates that we can accurately forecast annual mosquito infection rates using 120 
early-season meteorological conditions. The ability to make accurate early season predictions of 121 
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 146 
We used meteorological variables from the North American Land Data Assimilation System 147 
(NLDAS) - 2 (https://ldas.gsfc.nasa.gov/nldas/nldas-get-data) for CV. Correlation testing was 148 
done on 10 monthly estimates of environmental conditions (Table 1, Figure S1). August and 149 
September of the year in question were omitted as these months were the months we were most 150 
interested in predicting. We chose monthly estimates of atmospheric temperature (ATMP) 151 
[Kelvin, 2 m above ground level] and the mosaic hydrology model simulation estimates of 152 
evapotranspiration (ET) [kg/m2, monthly accumulated] with a spatial resolution of 0.125° (≈13 153 
km2 grid cells) creating ten grid cells over CV (Figure 1). 154 
 155 
Table 1. Monthly NLDAS environmental variables. 156 
 157 

Environmental Variable NLDAS Abbreviation Scale/Unit 

Total precipitation apcpsfc 𝑘𝑔𝑚ଶ 

0 - 40 cm soil moisture soilm40 𝑘𝑔𝑚ଶ 

0 - 10 cm soil moisture soilm10 𝑘𝑔𝑚ଶ 

Surface pressure pressfc 𝑃𝑎 

2 m above ground specific humidity spfh2m 
𝑘𝑔𝑘𝑔 

Average surface skin temperature 
 

avsftsfc 
 

𝐾 
 

2 m above ground temperature tmp2m 𝐾 

Total evapotranspiration evpsfc 𝑘𝑔𝑚ଶ 

 158 
2.3 Mosquito Data 159 
 160 
Mosquito data was obtained for 17 years (2006 - 2022) from the Coachella Valley Mosquito and 161 
Vector Control District. Trap data was analyzed to evaluate mosquito population abundance per 162 
trap night by CDC week. These data were averaged over the CV. To understand the annual 163 
WNV infection rate in the mosquito population, the control district tests trapped mosquitoes in 164 
pools of one − 50. 165 
 166 
We determined infection rates of mosquitoes at the NLDAS scale using the presence/absence of 167 
mosquito pools and a statistical method [maximum likelihood estimator (MLE)] to estimate the 168 
annual infection rate of mosquitoes per 1,000 mosquitoes tested (IM). Briefly, all traps were 169 
assigned an NLDAS grid, all pools within each grid were combined from CDC weeks 20 - 45, 170 
and the annual infection rate was calculated (Table S1.). For methodology on calculating the 171 
annual IM using the MLE see (Ward et al., 2023). The Centers for Disease Control and 172 



Prevention’s Morbidity and Mortality Weekly Report (CDC week) was used as a temporal 173 
reference for this study.   174 
 175 
To address the uncertainty of the observed WNV mosquito infection rates, we set a threshold of 176 
a minimum of 500 mosquitoes tested within a year to establish a valid annual observation 177 
(DeFelice et al., 2017). This resulted in the inclusion of ten NLDAS grids (Figure 1). Data were 178 
also evaluated for seasonality and completeness before being included as a valid observation. 179 
Seasonality was addressed to include 97.5% of all positive mosquito pools historically were 180 
collected in the Coachella Valley, CDC weeks 20 - 45 (Figure S2). These weeks also correspond 181 
to when the daily low temperature exceeds (14.3 ºC), high enough for viral amplification and 3 182 
weeks after the daily low temperature goes below (Figure 2) (Reisen et al., 2006). IM was 183 
calculated for each of these NLDAS grids for which there were both meteorological and 184 
hydrological data available. Aggregating mosquito data by NLDAS grid cell discounts more 185 
local scale environmental factors that may bias trap collections and allows for analysis of how 186 
climate conditions influence relative mosquito infection rates. 187 
 188 
2.4 Model selection  189 
 190 
We built a hierarchical negative binomial model with annual infection rates at the NLDAS grid 191 
cell scale as the outcome variable and standardized monthly ATMP and ET as independent 192 
variables. The hierarchical negative binomial model was chosen due to high zero-inflation within 193 
the mosquito infection rate data (Figure S3). We included random intercepts for each NLDAS 194 
grid cell, and the annual infection rate of mosquitoes quantified using a maximum likelihood of 195 
all pools collected over the year for each grid cell. We used ATMP and ET data from November - 196 
December of the year prior, and from January to July of the current year, as independent 197 
variables in the regression.  198 
 199 
Models where all variables were significant were selected for use in an ensemble, and this 200 
inference system was then calibrated using data from 2006 - 2018. Retrospective forecasts were 201 
then generated and compared against the 2019 - 2021 observations. Forecasts were generated 202 
using early-season environmental observations to predict areas of concern, which were defined 203 
as grids with IM greater than one infected mosquito per 1,000 tested, which equates to ≥ the 75th 204 
percentile of the historical annual infection rate.  205 
 206 
To identify the best combination of models to include in our environmentally informed forecast 207 
system, we developed a multi-model inference system to identify the combination of 208 
environmental conditions over time and how these combinations of environmental events are 209 
associated with WNV mosquito infection rates. Equations 1-3 are used to identify the best 210 
combination of environmental parameters and calculate model-averaged predictions with 211 
unconditional confidence intervals. Specifically, we identified the best models using whole 212 
model goodness-of-fit estimated from the second order estimation of the Akaike Information 213 
Criterion (AICc) which is a better estimation of model fit when the ratio of parameters (n) to 214 
observations (k) is small ቀ௡௞   <  40ቁ (Burnham & Anderson, 2002). Following evaluation of 215 
numerous model structures, a mixed effects negative binomial model with grid cell as the 216 
random effect produced the best AICc and was used to make predictions with four environmental 217 
variables of ATMP and ET in each model.  218 



 219 
The ensemble defined as the weighted average of the combination of the best fitting models, is 220 
used to improve forecast accuracy and account for the uncertainty of their competing predictions. 221 
To rank goodness-of-fit among the models tested, we calculated an AICc score and the weight of 222 
model 𝑖, 𝜔௜, relative to the best model, equation 1: 223 
 224 𝜔௜ = ௘షభమ೩೔∑ ௘షభమ೩೔ೃ೔సభ   (1) 225 

 226 
where 𝛥௜   =  𝐴𝐼𝐶𝑐௜ –  𝐴𝐼𝐶𝑐௠௜௡, 𝐴𝐼𝐶𝑐௠௜௡ is the AICc of the best-fit model, and R is the number 227 
of models where all parameters were statistically significant. We used a subset (N) of models 228 
whose weights summed to 0.95, and after identifying the combination of best fitting models, the 229 
Akaike weights were re-normalized to sum to 1. 230 
 231 
The model averaged prediction was generated from a weighted average, equation 2: 232 𝜃̂ = ∑ 𝜔෥௜ே௜ୀଵ ⋅ 𝜃௜̂ (2) 233 

where 𝜃௜̂ is the estimate of model 𝑖, 𝜔෥௜ is the re-normalized Akaike weight for model 𝑖 in the 234 

ensemble and 𝜃̂ is the mean ensemble prediction calculated from the N best fitting models 235 
identified in the step above. The predictions from the models are calculated on a logarithmic 236 
scale. We first converted them to the natural scale, obtained the weighted ensemble prediction, 237 
and used these values to calculate unconditional model-averaged variance, equation 3: 238 
 239 

𝑉𝑎𝑟 = ቎∑ 𝜔෥௜ே௜ୀଵ ⋅ ඨ𝑉𝑎𝑟 ൬𝜃௜̂൰ + ቆ𝜃௜̂ − 𝜃̂ቇଶ቏ଶ
 (3) 240 

 241 

Where 𝑉𝑎𝑟 ൬𝜃௜̂൰ is the variance of the prediction from model 𝑖 and 𝜃̂ is defined as above. 242 
 243 
This unconditional estimator takes into account the variation within and between each model in 244 
the model set (i.e. the model selection uncertainty) and was used to estimate unconditional 245 
confidence intervals around each model-averaged prediction.  246 
 247 
We performed leave-one-year-out (LOYO) temporal cross validation analysis for each year from 248 
2006 - 2018, with outcome data for that year excluded from the input data, and generated 249 
predictions for that year based on the ensemble model identified from a large number of 250 
candidate models. We identified an ensemble model using data from all years 2006 - 2018 251 
combined, which we used to make predictions retrospectively for 2019, 2020, and 2021. We also 252 
applied the same methodology to data from 2006 - 2021 to develop ensemble models to produce 253 
real-time monthly predictions for 2022. 254 
 255 
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with dissemination North through the valley in outbreak years such as 2019 (Figure 3). 291 
Correlation analysis of available environmental variables led us to choose one environmental 292 
variable for temperature (ATMP) and one for hydrology (ET) for use in our models (Figure S1).  293 
 294 

 295 
 296 
Figure 3. Annual IM for CDC weeks 20 - 45 by NLDAS grid in CV from 2006 – 2022. 297 
 298 
3.2 Model Selection 299 
 300 
The regression analysis using all combinations of four independent variables from 2006 - 2021 301 
yielded 104 significant models (0.979% of total models run, N = 10,626) with two models 302 
comprising the ensemble with weights summing to 95% (Table 2). The same analysis performed 303 
using environmental data from 2006 - 2018 yielded four significant models (0.038% of total 304 
models run, N = 10,626), all of which were included in the ensemble (Table 2). Four-predictor 305 
models for 2006 - 2021 suggest that a cooler and dryer winter followed by a wetter and warmer 306 
spring and a cooler than normal summer are most predictive of WNV IM in the Coachella Valley 307 
(Figure 4).  308 
 309 
Table 2. Significant models summing to 95% used in the ensemble models. Effects of each 310 
parameter are shown, including month, parameter estimate, and the standard error of the estimate 311 
in parentheses. 312 
 313 

Model 
Rank AICc Weight Temperature Evapotranspiration 

Ensemble models 2006 - 2021 

1 321.32 0.76 April 
0.66  

July 
-0.35 - January 

-0.53 
February 

1.05  - 



(0.15) (0.15) (0.22) (0.19) 

2 323.75 0.23 
December 

-0.26 
(0.13) 

April 
0.85 

(0.175) 

July 
-0.59 

(0.134) 

February 
0.71  

(0.11) 
- - 

Ensemble models 2006 - 2018 

1 244.77 0.68 
April 
0.79  

(0.24) 

July 
-0.38 
(0.18) 

- 
January 

-0.76  
(0.33) 

February 
1.24  

(0.39) 
- 

2 248.19 0.12 
May 
0.53  

(0.23) 

June 
0.51  

(0.19) 

July 
-0.72 (0.22) 

February 
0.58  

(0.22) 
- - 

3 248.42 0.11 
June 
0.44  

(0.18) 
- - 

January 
-0.67 
(0.29) 

February 
0.96  

(0.32) 

June 
-0.45 
(0.18) 

4 248.95 0.08 
June 
0.36  

(0.17) 

July 
-0.35 
(0.16) 

- 
February 

0.41  
(0.18) 

June 
-0.39 
(0.19) 

- 

 314 
 315 

 316 
 317 
Figure 4. Effect and contribution of ET and ATMP to ensemble model of IM at the monthly 318 
NLDAS scale for 2006 - 2021. Pies indicate the weight and direction of deviation of each 319 
environmental variable in the ensemble from the average that increases IM (+Blue/-Red). 320 
 321 
3.3 LOYO 2006 – 2021 322 
 323 
We found the LOYO model error was small comparable to the omitted years of data, with a Root 324 
Mean Square Error (RMSE) of 2 IM, indicating that the model can predict future years. 325 
Additionally, there was no single year that dominated the ensemble and the effect/contribution of 326 
the environmental parameters across years was consistent (Figure 5).  327 
 328 
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The sensitivity and specificity of the ensembles’ ability to predict above average years (IM > 1; 333 
75th percentile) was 0.81 and 0.57, respectively for 2006 - 2021 (Table 3). This is comparable to 334 
the best model which was 0.83 and 0.58 (Table 3). When evaluating the observed vs. predicted 335 
LOYO (Figure S4), the ensemble forecast system was better able than the best model to identify 336 
years having above average WNV infection rates closer to the observed value.  337 
 338 
Table 3. Sensitivity and specificity of observed versus predictions for the best model and the 339 
ensemble model for 2006 - 2021. 340 
 341 

Observed versus Sensitivity Specificity RMSE (IM) 
Best Model 0.83 0.58 2.39 

Ensemble 0.81 0.57 1.94 
 342 
3.4 Retrospective Forecast 343 
 344 
Retrospectively, the ensemble forecast correctly predicted if an areas’ annual mosquito infection 345 
rate was above or below one infectious mosquito per 1,000 tested 83% of the time from 2019 to 346 
2021 (Figure 6) using the fit model from 2006 to 2018. 347 
 348 

 349 
 350 
Figure 6. Agreement between observed and predicted IM stratified by NLDAS grid in the CV for 351 
2019 - 2021. Top Row: Observed IM in 2019, 2020, and 2021. Middle Row: Predicted IM in 352 



2019, 2020 and 2021 using a four-predictor model ensemble trained on years 2006 - 2018. 353 
Bottom Row: Proportion of cells in agreement with the ensemble model using one infected 354 
mosquito per 1,000 tested as a cutoff value/threshold. 355 
 356 
Generally, these models indicate that a cooler drier winter followed by a wetting period and a 357 
warm spring with a cooler than normal summer, increase the risk of WNV and are the best 358 
predictors of WNV rates in the Coachella Valley.   359 
 360 
3.5 Real-Time Forecast 2022 361 
 362 
We conducted real-time monthly forecasting between March and August 2022 using our four - 363 
predictor ensemble model based on data from 2006 - 2021 at the NLDAS grid scale. In 2022, 364 
infected mosquito pools were identified in only four grids with three of the four grids becoming 365 
positive in July and August (Figure 7, Row 2). Our ensemble model predicted IM changed in May 366 
and August as additional environmental data were added to the system. These predictions agreed 367 
with the observed values 80% of the time early in the season (March & April) and 90% of the 368 
time for the remainder of the season (Figure 7, Row 4). Furthermore, our model correctly 369 
predicted when IM was greater than one for a 13 km2 grid cell for 75% of the grid cells that were 370 
identified as having WNV during the 2022 season. Lastly, our 2022 forecast, when compared 371 
with the observed values, had a sensitivity of 0.5, a specificity of 1, and a RMSE of 1.902 IM.372 



373 



Figure 7. Real-time forecasting of WNV infected mosquito pools from March - August of 2022 374 
using available NLDAS environmental data (13 km2) and the four - predictor ensemble model. 375 
Row 1: Observed IM in 2022. Row 2: Grid cells in which WNV was identified in the CV 376 
mosquito population year to date (Red = WNV+, Black = WNV not identified). Row 3: 377 
Predicted annual IM. Row 4: Proportion of cells in agreement with the ensemble model using one 378 
infected mosquito per 1,000 tested as a cutoff value/threshold. 379 
 380 
4 Discussion 381 
 382 
This study aims to understand the association between hydrological and meteorological 383 
conditions in the desert climate and their relationship with annual mosquito WNV infection rates 384 
in the Coachella Valley of California. Our multi-model inference system trained on 13 years of 385 
data was able to retrospectively predict IM greater than one for a 13 km2 grid cell 83% of the time 386 
(2019 - 2021); and in real time for 2022 trained on 16 years of data, was able to predict correctly 387 
nine out of 10 grid cells as of May 4th, 2022. This multi-model inference system indicated that 388 
the combination of a cooler and dryer winter followed by a wetter and warmer spring and a 389 
cooler than normal summer was best predictive of the IM of WNV in the Coachella Valley. 390 
 391 
Desert climates such as those of Southern California or the U.S. Southwest pose unique 392 
challenges for arthropods with aquatic larval stages such as mosquitoes. These challenges drive 393 
mosquito populations in desert climates to have unique ecologies and population dynamics 394 
(Reisen et al., 1992). While mosquitoes benefit from mild winters compared to populations at 395 
more northern latitudes, they must weather extreme heat and drought events during the summer 396 
months. The hydrology of desert regions means there is far less larval habitat available, and 397 
populations are restricted to areas with sufficient available water for larval development, 398 
especially during the warmest periods of the year (Chew & Gunstream, 1970; Reisen et al., 399 
1992). Additionally, mosquito populations are further geographically restricted to areas with 400 
sufficient blood meals to facilitate egg development. Paradoxically, this geographic restriction 401 
concentrates both mosquito and avian hosts in the same location facilitating transmission of 402 
WNV between birds and mosquito, and viral amplification in both populations. However, if the 403 
summer is too warm it is detrimental to the mosquito population, causing die offs. During these 404 
years we see average or even below average annual IM in the Coachella Valley. Conversely, and 405 
as demonstrated by our model, during years where the average temperature during the typically 406 
warmest months of the year (July - August) are slightly cooler than normal, mosquito 407 
populations are less stressed, and transmission and amplification more readily occurs leading to 408 
increased annual IM in the Coachella Valley. 409 
 410 
Additionally, in desert climates, where winters are mild compared to other regions of the United 411 
States and where Culex species do not fully diapause, the magnitude of WNV transmission the 412 
previous year may also have a residual effect on the following season (Chew & Gunstream, 413 
1970; Reisen et al., 1992). For instance, in the CV the mosquito population exhibits a substantial 414 
drop during the hottest part of the summer that is usually followed by a rebound period in the fall 415 
going into the winter months. The magnitude of this population recovery may affect the 416 
magnitude of WNV transmission the following season as greater numbers of adult mosquitoes 417 
successfully overwintering may more rapidly build the population the following season. 418 
Furthermore, a cooler than normal winter such as indicated by our model may increase the 419 



success of mosquito overwintering by allowing more mosquitoes to quiescence (Diniz et al., 420 
2017). The ensuing rapid population expansion produces more naive mosquitoes that can 421 
contribute to the WNV transmission cycle. Similarly, greater numbers of successfully 422 
overwintering adult mosquitoes increase the potential that some of those mosquitoes are already 423 
infected with WNV and thus able to transmit the virus to naive birds early in the season. These 424 
factors may be especially important should environmental conditions be ideal for rapid 425 
population growth, such as a wetter and warmer spring. 426 
 427 
The ability of our models to accurately predict WNV infection rates at the beginning of May, 428 
four months prior to the historical peak of infections in the CV (July - August), provides a 429 
valuable decision-making tool for local public health entities and mosquito control districts. 430 
Mosquito control intervention in the Coachella Valley is predominantly aerial application of 431 
adulticide. The forecast model presented here may provide the abatement district with further 432 
spatially refined information on how changes in meteorological and hydrological conditions 433 
early in the year may lead to higher WNV IM. Additionally, it provides empirical data to support 434 
early targeted adulticide applications to mitigate WNV amplification and transmission in the 435 
valley. Furthermore, early season forecasts could provide public health agencies with the 436 
information necessary to target messaging to at-risk populations. This may be especially 437 
important because mosquito populations are paradoxically at their lowest when infection rates 438 
are at their highest. This lower population may skew people’s perception resulting in a perception 439 
of lower risk due to fewer nuisance biting mosquitoes. This, in turn, may reduce the proclivity to 440 
take protective measures, such as wearing repellant or long clothes, at these times when 441 
mosquito infection rates are highest. Early season messaging may help avoid this, but caution 442 
must be used, too, not over-saturate residents and cause message fatigue, whereby residents 443 
become desensitized to risk-related messaging (Eppler & Mengis, 2002; So et al., 2017).  444 
 445 
A major component of industry in the Coachella Valley is agriculture which requires laborers to 446 
work outdoors, potentially in proximity to WNV hot spots. Spatially resolved forecasts, such as 447 
our multi-model inference system, provide local public health entities additional information on 448 
where and when to target educational outreach and risk reduction efforts such as signage, 449 
collaborating with local farm-worker organizations, and providing protective measures such as 450 
DEET products to those at risk. Additionally, due to migrant status and other social-economic 451 
factors such as barriers to care or accessing care in Mexico, it is likely that many, if not a 452 
majority of non-neuroinvasive WNV cases go unreported in migrant farm-worker populations 453 
(Horton & Cole, 2011; Seid et al., 2003; Villarejo, 2003). Early season, targeted outreach could 454 
aid in closing this reporting gap by increasing knowledge about WNV and care-seeking 455 
behaviors, while decreasing barriers to care. 456 
 457 
Our use of NLDAS data have both advantages and disadvantages. First, NLDAS data are freely 458 
downloadable and easily accessible; therefore, this model and ensemble strategy could be 459 
applied to other geographical regions. However, data sets of this scale and complexity do require 460 
a computational skillset to manipulate and make full use of mosquito trapping data. Additionally, 461 
an advantage of NLDAS is its scale. At 13 km2, the grid cells are suitably large to not only 462 
potentially match the scale of aerial abatement interventions, but also are large enough to capture 463 
the effects of meteorology on infection rates over the background of land use, which is essential 464 
for a climatically driven model.  465 



 466 
5 Conclusions 467 
 468 
This study showed the potential for accurate prediction of the annual risk of WNV in Coachella 469 
Valley at the NLDAS scale utilizing an ensemble model, mosquito pool data, and freely available 470 
meteorological data. The ensemble model performed the best and indicated that cooler and dryer 471 
than usual winters followed by a wetter and warmer spring with a cooler than usual summer are 472 
the sequence of conditions best supporting WNV amplification in Culex mosquitoes. The ability 473 
to make accurate early season predictions of WNV risk could allow local abatement districts and 474 
public health entities to implement early season interventions such as targeted adulticiding and 475 
public messaging before human transmission occurs, thereby better mitigating the risk of WNV 476 
to humans in the Coachella Valley. This approach could be applied to other localities with similar 477 
ecologies and patterns of WNV transmission. 478 
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 619 
Figure S4. Distribution of WNV mosquito infection rates from 2006 - 2021 calculated at the 620 
NLDAS grid cell level. The 75th percentile comparison threshold of one IM is shown. 621 
 622 
Table S1. Summary statistics of yearly Culex mosquito trapping effort from CDC week 20 to 45 623 
in Coachella Valley. 624 
 625 

Year Number of 
Pools Positive Pools Number of 

Mosquitoes Trapped 
Estimated Infection 

Rate (IM) 
2006 2,553 24 97,269 0.25 
2007 1,757 26 62,585 0.42 
2008 2,084 54 79,902 0.69 
2009 1,911 14 73,403 0.19 
2010 3,320 69 131,572 0.53 
2011 2,993 43 106,457 0.41 
2012 3,412 115 127,970 0.91 
2013 2,032 43 69,709 0.62 
2014 2,130 66 70,823 0.95 
2015 3,805 102 111,958 0.93 
2016 4,889 19 157,348 0.12 
2017 4,886 120 161,367 0.75 
2018 7,667 45 245,134 0.18 
2019 5,953 555 209,689 2.79 
2020 4,938 55 166,119 0.33 
2021 4,095 99 133,428 0.75 
2022 10,855 148 360,937 0.41 

 626 
Common Language Abstract 627 
 628 
West Nile virus is the most significant arbovirus in the United States and is transmitted 629 
seasonally by mosquitoes. Humans are most at risk when they are in close proximity to infected 630 
mosquitoes. Predicting the risk to humans is not straightforward. In this study, we use deviations 631 
in climate associated with mosquito biology and viral development to forecast seasonal West 632 
Nile risk in the Coachella Valley of California. We developed a statistical model of West Nile 633 
virus transmission in the Coachella Valley using 17 years of mosquito surveillance data and 634 
environmental data. Our model indicated that the combination of a cooler and dryer winter 635 
followed by a wetter and warmer spring and a cooler than normal summer was most predictive of 636 
West Nile positive mosquitoes in the Coachella Valley. The ability to make accurate early season 637 
predictions of West Nile risk could assist local public health entities implement early season 638 
interventions to better mitigate the risk of West Nile virus to humans in the Coachella Valley. 639 
 640 


