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Abstract 29 

The ocean is a major carbon sink and takes up 25-30% of the anthropogenically emitted CO2. A 30 
state-of-the-art method to quantify this sink are global ocean biogeochemistry models (GOBMs) 31 
but their simulated CO2 uptake differs between models and is systematically lower than 32 
estimates based on statistical methods using surface ocean pCO2 and interior ocean 33 
measurements. Here, we provide an in-depth evaluation of ocean carbon sink estimates from 34 
1980 to 2018 from a GOBM ensemble. As sources of inter-model differences and ensemble-35 
mean biases our study identifies the (i) model set-up, such as the length of the spin-up, the 36 
starting date of the simulation, and carbon fluxes from rivers and into sediments, (ii) the ocean 37 
circulation, such as Atlantic Meridional Overturning Circulation and Southern Ocean mode and 38 
intermediate water formation, and (iii) the oceanic buffer capacity. Our analysis suggests that the 39 
late starting date and biases in the ocean circulation cause a too low anthropogenic CO2 uptake 40 
across the GOBM ensemble. Surface ocean biogeochemistry biases might also cause simulated 41 
anthropogenic fluxes to be too low but the current set-up prevents a robust assessment. For 42 
simulations of the ocean carbon sink, we recommend in the short-term to (1) start simulations in 43 
1765, when atmospheric CO2 started to increase, (2) conduct a sufficiently long spin-up such that 44 
the GOBMs reach steady-state, and (3) provide key metrics for circulation, biogeochemistry, and 45 
the land-ocean interface. In the long-term, we recommend improving the representation of these 46 
metrics in the GOBMs. 47 

 48 

Plain Language Summary 49 

In this study, we evaluate the performance of state-of-art global ocean biogeochemistry models 50 
(GOBMs) with regards to their simulated CO2 uptake from 1980 to 2018. We focus our analysis 51 
on the simulation set-up from the Global Carbon Budget initiative and the GOBMs that are used 52 
in the current version of the Global Carbon Budget. We find that the simulated CO2 uptake by 53 
GOBMs is systematically lower than that of observation-based estimates and that the estimates 54 
differ substantially between GOBMs. We identify several reasons for this underestimation, 55 
relating to the set up of the simulations as well as the set up of the GOBMs themselves. For the 56 
set-up of the simulations, we find that not all GOBMs had the same starting year and the same 57 
initial stability, while the set up of the GOBMs themselves showed that the majority of GOBMs 58 
underestimate the large scale ocean circulation in the Atlantic and do not provide the necessary 59 
output for evaluation of their land-ocean interface. Based on our evaluation, we give 60 
recommendations for the set-up of follow up studies. 61 

 62 

1 Introduction 63 

Currently, the global ocean takes up 25-30% of all human-made CO2 emissions (DeVries, 64 
2014; Friedlingstein et al., 2022; Gruber, Clement, et al., 2019; Gruber et al., 2023; Khatiwala et 65 
al., 2009; Terhaar et al., 2022), thereby reducing the growth of atmospheric CO2 and slowing down 66 
global warming (IPCC, 2021). However, the additional carbon in the ocean causes ocean 67 
acidification (Haugan & Drange, 1996) and reduces the efficiency of the ocean carbon sink 68 
(Broecker et al., 1979; Revelle & Suess, 1957).  69 

The main driver of the evolution of the global ocean carbon sink from preindustrial times 70 
to present is the increasing atmospheric CO2 due to human activity (Sarmiento et al., 1992). The 71 
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additional dissolved inorganic carbon (DIC) in the ocean due to rising atmospheric CO2 72 
concentrations is known as anthropogenic carbon (Cant; Sarmiento et al., 1992), while the DIC that 73 
existed prior to the start of the industrial revolution is called natural carbon (Cnat). Second order 74 
terms in the historical evolution of the ocean carbon sink are climate-change and climate-75 
variability driven changes in the anthropogenic and natural air-sea CO2 fluxes (Joos et al., 1999; 76 
McNeil & Matear, 2013; Le Quéré et al., 2000), as well as anthropogenic changes in the riverine 77 
carbon fluxes (Regnier et al., 2013; Terhaar et al., 2022). At the global scale, the air-sea Cant flux 78 
is controlled by the rate of Cant transport from the surface ocean to the deep ocean, which depends 79 
on the concentration of Cant in the surface ocean (Broecker et al., 1979) and the surface-to-deep 80 
water volume transport (Caldeira & Duffy, 2000; Mikaloff Fletcher et al., 2006; Orr et al., 2001; 81 
Sarmiento et al., 1992). In contrast, the air-sea flux of Cnat is primarily controlled by the interaction 82 
of surface heating or cooling affecting the solubility of CO2 in seawater and transport and mixing, 83 
and biological processes of photosynthesis, respiration, and CaCO3 production (Sarmiento & 84 
Gruber, 2006). While there is agreement on these drivers for Cant and Cnat fluxes and their relative 85 
importance, an accurate quantification of the carbon sink and its processes is still challenging.  86 

More than 100 scientists around the globe have worked on providing an updated 87 
quantification of the carbon fluxes between the atmosphere, land, and ocean during Phase 2 of the 88 
REgional Carbon Cycle Assessment and Processes project (RECCAP2) (Poulter et al., 2022). The 89 
ocean part of RECCAP2 assesses the most up-to-date air-sea carbon flux estimates based on 90 
statistical methods applied to observations of surface ocean partial pressure of CO2 (pCO2 91 
products) and hindcast simulations from global and regional ocean biogeochemistry models 92 
(GOBMs) to better understand the global and regional ocean carbon sink over the last three 93 
decades, its decadal and inter-annual variability and seasonal cycle, and the contribution of the 94 
biological pump. Although they contain data from similar GOBMs and pCO2 products, the 95 
compiled database of RECCAP2 goes well beyond that used in the framework of the Global 96 
Carbon Budget (Friedlingstein et al., 2022). Specifically, the RECCAP2 database contains 97 
simulation results from a broader set of numerical simulations, and it includes much more spatially 98 
and temporally refined data and many more variables. This database permits us to analyze the 99 
spatially and temporally resolved air-sea CO2 fluxes and the processes controlling the ocean carbon 100 
sink. With this study here, we provide an evaluation of the GOBM hindcast simulations to better 101 
contextualize the model results in the different studies of the AGU special issue “REgional Carbon 102 
Cycle Assessment and Processes - 2 (RECCAP2)” and in the 2020 and 2022 edition of the Global 103 
Carbon Budget (Friedlingstein et al., 2020, 2022) and to make recommendations for future 104 
assessments of the ocean carbon sink using GOBMs. 105 

The RECCAP2 project is a continuation of the large efforts that have been undertaken in 106 
the last decades to quantify the past and present ocean carbon sink with pCO2 products (Chau et 107 
al., 2022; Gregor et al., 2019; Gregor & Gruber, 2021; Iida et al., 2021; Landschützer et al., 2014; 108 
Rödenbeck et al., 2013; Watson et al., 2020; Zeng et al., 2014) and GOBMs forced with historic 109 
atmospheric reanalysis data (Hauck et al., 2020; Orr et al., 2001; Sarmiento et al., 1992; Sarmiento 110 
& Sundquist, 1992). The global ocean carbon sink estimates differ across the different methods 111 
and models with the multi-model mean simulated net oceanic carbon sink reported by the Global 112 
Carbon Budget being consistently less negative (lower uptake) than the mean estimate of the 113 
pCO2-products (1990s: -1.91±0.25 Pg C yr-1 in models vs -2.14±0.34 Pg C yr-1 for pCO2 products, 114 
2000s: -2.05±0.27 Pg C yr-1 vs -2.34±0.21 Pg C yr-1, and 2010s: -2.42±0.29 Pg C yr-1 vs -3.02±0.22 115 
Pg C yr-1; Friedlingstein et al., 2022). The difference between the models and pCO2 products in 116 
the 2010s is around half as large as the annual CO2 emissions in the United States of America over 117 
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the same period (Friedlingstein et al., 2022). This highlights the need for a more rigorous 118 
quantification of the ocean carbon sink to fully close the global carbon budget (Hauck et al., 2020). 119 
A better understanding of the fidelity of GOBMs is also needed if such models are to be used for 120 
monitoring, reporting, and verification of ocean-based carbon dioxide removal techniques 121 
(Gattuso et al., 2018). 122 

Prior GOBM intercomparison studies (Khatiwala et al., 2013; Orr et al., 2001; Wanninkhof 123 
et al., 2013) and studies with related Earth System Models (ESMs) suggest several reasons for the 124 
differences mentioned above. Among them are biases in model dynamics such the mode, 125 
intermediate, and deep-water formation in the North Atlantic (Goris et al., 2018; Terhaar et al., 126 
2022) and Southern Ocean (Bourgeois et al., 2022; Fu et al., 2022; Terhaar, Frölicher, et al., 2021; 127 
Terhaar et al., 2022), both causing  a bias in the amount of carbon that is transported from the 128 
surface to the deep ocean. Also biases in the model ocean carbonate chemistry affect the 129 
anthropogenic CO2 uptake (Terhaar et al., 2022; Vaittinada Ayar et al., 2022). Other reasons for 130 
the above-mentioned differences are related to the set-up of the model simulations. For example, 131 
the starting date of model simulations is often several decades delayed relative to the onset of the 132 
anthropogenic CO2 increase in the atmosphere around 1765 (Bronselaer et al., 2017; Terhaar, Orr, 133 
Gehlen, et al., 2019), leading to a too low ocean carbon uptake and storage. Associated with the 134 
set-up of model simulations is also the spin-up procedure (Séférian et al., 2016), where a too short 135 
spin-up can lead to model drift and adds a significant source of uncertainty to the multi-model 136 
spread. Based on these findings, the here presented study identifies inter-model differences 137 
between GOBM simulations of the natural and anthropogenic components of the ocean carbon 138 
sink as well as differences between the ocean carbon sink estimates of GOBMs and pCO2 products 139 
at a global and regional level. We also investigate the underlying reasons for these differences and 140 
provide recommendations for future assessments of the ocean carbon sink using GOBMs. 141 

 142 

2 Materials and Methods 143 

2.1 Ocean biogeochemistry models  144 

The GOBMs analyzed in this study are general ocean circulation models with coupled sea 145 
ice and ocean biogeochemistry model components. They simulate the transport of biogeochemical 146 
tracers through advection and mixing and simulate their cycling through biogeochemical processes 147 
(primary production, grazing, remineralization, etc.) (Fennel et al., 2022). The air-sea CO2 flux in 148 
these models is based on the simulated ocean carbon dynamics and the prescribed atmospheric 149 
CO2 mixing ratio. In this study, we analyzed the following 8 GOBMs in full: CESM-ETHZ (Yang 150 
& Gruber, 2016), CNRM-ESM2-1 (Séférian et al., 2019), EC-Earth3 (Döscher et al., 2022), 151 
FESOM REcoM LR (Hauck et al., 2020), MRI-ESM2-1 (Urakawa et al., 2020), NorESM-OC1.2 152 
(Schwinger et al., 2016), ORCA025-GEOMAR (Physics are described in (Madec et al., 2017), and 153 
biogeochemistry in (Chien et al., 2022)) and ORCA1-LIM3-PISCES (Aumont et al., 2015). Three 154 
GOBMs that submitted data to RECCAP2 were not or only partially included in our analyses: The 155 
MPI-OM-HAMOCC model (Mauritsen et al., 2019) was not used here as the separation into all 156 
individual flux components (see Section 2.2.3) was not possible because its different simulations 157 
were forced with different atmospheric forcing data sets.  Similarly, MOM6-Princeton (Stock et 158 
al., 2020) did not perform two of the RECCAP2-simulations, preventing us from diagnosing the 159 
individual CO2 flux components. Therefore, we do not consider MOM6-Princeton when 160 
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presenting values or plots for the GOBM-ensemble to conserve consistency between the different 161 
flux components. But we present its results separately when possible. Lastly, PlankTOM12 162 
(Wright et al., 2021) has strong salinity biases in all basins. These biases and associated biases in 163 
circulation lead to an anthropogenic carbon storage pattern that does not resemble any of the 164 
observation-based estimates. While we plot its results in the supplementary Figures of Section 165 
3.3.1 (Interior Ocean anthropogenic carbon storage) and also explain the reasons for its exclusion 166 
there, we exclude it from all GOBM results in terms of multi-model mean and standard deviation.  167 

The here-considered GOBMs were forced with atmospheric fields, such as atmospheric 168 
temperature and wind speeds, from different versions of either the Japanese Reanalysis JRA-55-169 
do (Tsujino et al., 2018) or of the reanalysis from NCEP/NCAR (Large & Yeager, 2009). Details 170 
of the respective model resolutions, forcings, and references are listed in an overview table in 171 
DeVries et al. (in review). As our study analyzed the influence of the simulated Atlantic Meridional 172 
Overturning Circulation (AMOC) on the simulated sea-air carbon fluxes, we additionally 173 
considered a second realization of the RECCAP2-simulations by the model CESM-ETHZ with a 174 
different sea surface salinity restoring. In the standard realization of the simulations, the salinity 175 
restoring timescale was two years everywhere at the ocean surface, whereas the second realization 176 
used a timescale of 300 days north of 45°S and of 60 days south of 45°S. The shortened timescale 177 
in the Southern Ocean better captures sea-ice related fluxes that are not well represented in the 178 
atmospheric forcing fields. This change in the salinity restoring led to an improvement of the 179 
modeled overturning circulation, not only in the Southern Ocean, but also in the North Atlantic, 180 
where the previously very weak Atlantic Meridional Overturning Circulation (AMOC) increased 181 
from 3.5 Sv to 14.4 Sv (years 2005 to 2018). 182 

 183 

2.2 Sea-air CO2 flux 184 

2.2.1 Sign convention 185 

Throughout this study, the CO2 flux between the atmosphere and ocean is defined as a sea-186 
to-air flux, thus with a negative flux indicating an uptake of CO2 by the ocean and a positive flux 187 
indicating an outgassing. Positive land-to-sea riverine fluxes indicate a flux into the ocean and 188 
positive sea-to-sediment burial fluxes indicate a flux from the ocean into the sediments. 189 

 190 

2.2.2 Components of the sea-air CO2 flux 191 

We followed the RECCAP2-ocean protocol and divided the total sea-air CO2 flux (Ftotal) 192 
into five components. Specifically, the anthropogenic sea-air CO2 flux from increasing 193 
atmospheric CO2 in the atmosphere (Fant) was divided into a steady-state component Fantss 194 
representing the anthropogenic uptake flux in the absence of climate change and climate 195 
variability, and into a non-steady state component Fantns reflecting the effect of climate change and 196 
climate variability on Fant. Like Fant, the natural sea-air flux of CO2 under pre-industrial 197 
atmospheric CO2 (Fnat) was divided into Fnat under a constant climate (steady-state Fnat or short 198 
Fnatss), and the modulation of the Fnat due to climate variability and climate change (non-steady 199 
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state Fnat or short Fnatns). The fifth flux component is the sea-air CO2 flux due to the difference 200 
between the input of carbon and alkalinity across the land-sea interfaces from rivers and coastal 201 
erosion and the burial of carbon and alkalinity components in sediments (Fnatriv-bur). While previous 202 
literature has often called this a riverine-induced flux, we decided to call it riverine-burial induced 203 
flux to emphasize that the flux depends on both, the carbon flux from rivers into the ocean and the 204 
carbon flux into the sediments. Some of the other papers of the AGU special issue “REgional 205 
Carbon Cycle Assessment and Processes - 2 (RECCAP2)'' consider Fnatriv-bur to be an integral part 206 
of Fnatss. We kept them separated to the degree that this is possible in order to analyze all flux 207 
components individually.  208 

The total flux across the sea-air interface (Ftotal) can thus be written as: 209 

Ftotal = Fantss + Fantns + Fnatss + Fnatns + Fnatriv-bur                                         (1) 210 

Throughout this paper, carbon inventories are referred to as “C” in analogy to the fluxes 211 
that are abbreviated with “F”. The same indices as for the fluxes were used to distinguish the 212 
respective components of carbon inventories and their change over time. 213 

 214 

2.2.3  RECCAP2 simulations and their relation to CO2 flux components 215 

The RECCAP2 database provides model output from 1980 to 2018 from four simulations (called 216 
simulations A, B, C and D) that aim to quantify the different components of the oceanic CO2 flux. 217 
The four simulations all start in preindustrial times and extend through 2018, however, the GOBMs 218 
used different definitions of “preindustrial” with simulations starting between 1765 and 1870, and 219 
the corresponding assumed pre-industrial CO2 mixing ratios varying between 278 ppm and 286 220 
ppm. Simulations A and C were forced with historically increasing CO2, whereas simulations B 221 
and D were forced with constant pre-industrial CO2. Furthermore, all four simulations were forced 222 
with a repeated (normal year) atmospheric forcing until historical atmospheric reanalysis fields 223 
became available in 1948 or 1958 (depending on the atmospheric reanalysis that was used to force 224 
the GOBM). Afterwards, simulations A and D were forced with these historical atmospheric 225 
reanalysis fields, whereas simulations B and C continued with the same constant atmospheric 226 



manuscript submitted to Global Biogeochemical Cycles 

 

reanalysis fields that were applied before 1948 or 1958. Thus, each simulations represents a 227 
different combination of the CO2 flux components: 228 

● Simulation A is forced with historical atmospheric reanalysis data and historically 229 
increasing CO2, yielding: 230 

FSimA ≈ Fantss + Fantns + Fnatss + Fnatns + Fnatriv-bur.           (2)  231 

● Simulation B is forced with the same repeated annual atmospheric forcing and constant 232 
pre-industrial CO2 levels, yielding: 233 

 FSimB ≈ Fnatss + Fnatriv-bur.              (3) 234 

● Simulation C is forced with a constant atmospheric forcing and historically increasing CO2, 235 
yielding:  236 

FSimC ≈ Fantss + Fnatss + Fnatriv-bur.             (4) 237 

● Simulation D is forced with historical atmospheric reanalysis data and constant pre-238 
industrial CO2 levels, yielding: 239 

FSimD ≈ Fnatss + Fnatns + Fnatriv-bur .             (5) 240 

Simulations with a constant atmospheric climate (B, C) represent steady-state processes, while 241 
simulations with a variable climate (A, D) represent both steady-state and non-steady state 242 
processes. Similarly, simulations with rising CO2 (A, C) represent both natural and anthropogenic 243 
CO2 fluxes, while simulations with pre-industrial CO2 (B, D) represent only natural CO2 fluxes.  244 

The ocean physical and biogeochemical fields of the GOBMs were initialized with gridded 245 
observation-based estimates of ocean physics and biogeochemistry averaged over the last decades. 246 
The observation-based ocean DIC concentrations were thereby adjusted to represent pre-industrial 247 
DIC by removing the historical anthropogenic carbon uptake.  248 

Four of the ten GOBMs considered here (FESOM-REcoM-LR, MOM6-Princeton, 249 
ORCA1-LIM3-PISCES, PlankTOM12) run the four simulations straight from these initial 250 
conditions without a pre-industrial spinup, while the remaining six (CESM-ETHZ, CNRM-ESM2-251 
1, EC-Earth3, MRI-ESM2-1, NorESM-OC1.2, and ORCA025-GEOMAR) performed a pre-252 
industrial spin-up that lasted between 137 and 1586 years (overview table in DeVries et al. (in 253 
review)) using a repeated year of climatological atmospheric forcing and each model’s assumed 254 
pre-industrial atmospheric CO2 with the goal to reach a near steady-state between the atmosphere 255 
and the ocean. Steady-state in this context refers to the state of a model under constant forcing, in 256 
which all multi-annual mean fluxes are time-invariant at the local scale and globally integrated 257 
zero. Few of the 6 models with spinup reach this objective, largely because of the spinup being too 258 
short compared to the century time-scale of global ocean overturning. This too short spin-up (or 259 
the complete lack thereof) leads to a model not reaching steady-state and can cause a substantial 260 
bias in the simulated air-sea CO2 fluxes (Griffies et al., 2016; Orr et al., 2017; Séférian et al., 2016). 261 
The models analyzed here have global CO2 flux biases ranging between -0.35 and 0.17 PgC yr-1, 262 
with a relatively small drift over time (Hauck et al., 2020). However, regionally, this effect can be 263 
more important. We call this bias in the sea-air CO2 flux due to insufficient spinup and its drift 264 
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over time Fdrift+bias. This Fdrift+bias does not include other biases in the sea-air CO2-flux stemming 265 
from errors in ocean circulation or biogeochemistry.   266 

 267 

2.2.4. Estimating the sea-air CO2 flux and its components from RECCAP2 simulations 268 

Three components of the sea-air CO2 flux can be estimated globally and regionally by subtracting 269 
the sea-air flux in one RECCAP2 simulation from the sea-air CO2 flux in another RECCAP2 270 
simulation, assuming that Fnatriv-bur and Fdrift+bias are not affected by increasing atmospheric CO2 or 271 
changing atmospheric forcing across the varying simulations and that the different flux 272 
components add up to the total flux without substantial non-linearities: 273 

Fantss ≈ FSimC - FSimB                (6) 274 

Fantns ≈ FSimA - FSimC + FSimB - FSimD              (7) 275 

Fnatns ≈ FSimD - FSimB                (8) 276 

The total air-sea CO2 flux (Ftotal) can hence be estimated as follows: 277 

Ftotal ≈ FSimA - FSimB + Fnatss + Fnatriv-bur             (9) 278 

Globally, Fnatss is by definition zero, so that only Fnatriv-bur has to be known for a GOBM-279 
based estimate of Ftotal. Unfortunately, Fnatriv-bur cannot be quantified from the here-used GOBM 280 
simulations because their set-ups were not designed to represent riverine input and/or sediment 281 
burial  (see Section 3.1.1.). For the estimation of Ftotal from GOBMs in RECCAP2, the observation-282 
based estimate from (Regnier et al., 2022) was used in equation (9) as an approximation of global 283 
Fnatriv-bur (i.e., 0.65±0.30 Pg C yr-1), henceforth called Fobsriv-bur. This approximation disregards that 284 
land-sea riverine and burial fluxes change over time (Regnier et al., 2013; Séférian et al., 2019; 285 
Terhaar et al., 2022) and that these changes affect the sea-air CO2 flux regionally (Gomez et al., 286 
2021; Terhaar, Orr, Ethé, et al., 2019), and globally (Regnier et al., 2013; Terhaar et al., 2022) as 287 
there is no observation-based estimate of the temporally-resolved riverine-burial-induced fluxes. 288 

Regionally, estimating Ftotal from these simulations is more difficult, because the regional 289 
Fnatss is not zero as the ocean takes up and releases natural carbon regionally. Therefore, Ftotal 290 
cannot be estimated as the difference between simulations A and B as this difference does not only 291 
remove Fnatdrift+bias and Fnatriv-bur, but also Fnatss. Hence, we estimate regional Ftotal from simulation 292 
A and accept the simulated regional Fnatdrift+bias and Fnatriv-bur as inherent uncertainties. To still 293 
estimate Ftotal, we added an observation-based estimate of the regional Fnatriv-bur (Fobsriv-bur) to the 294 
sea-air CO2 fluxes from simulation A. This regional observation-based estimate of Fobsriv-bur is 295 
derived from the estimated regional pattern of Fnatriv-bur (Lacroix et al., 2020), which is scaled with 296 
a constant factor for all grid cells such that the global integral matches the postulated global value 297 
of Fobsriv-bur of 0.65 Pg C yr-1. Overall, the impossibility to disentangle the regional values of Fnatss, 298 
Fdrift+bias, and Fnatriv-bur  in the models and the uncertainties of the regional observation-based Fobsriv-299 
bur hence add additional uncertainty to the regional estimates of Ftotal.  300 

 301 
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2.3 Observation-based estimates, their uncertainties and their usage for comparison with 302 

GOBMs 303 

To compare the total sea-air CO2 fluxes from the GOBMs with observation-based 304 
estimates, we utilize the RECCAP2 dataset of pCO2 products, including AOML_EXTRAT, 305 
CMEMS-LSCE-FFNN, CSIR-ML6, JenaMLS, JMA-MLR, MPI-SOMFFN, OceanSODA-ETHZ, 306 
UOEX_Wat20, and NIES-MLR3 (see table in DeVries et al. (in review)) for references and further 307 
details). These pCO2 products are a product of statistical models and sparse observations of surface 308 
ocean partial pressure of CO2. We calculate long-term averages and trends over these products for 309 
the period 1985 through 2018 only, i.e., for the period when all products provide estimates.  310 

The simulated regional Fnatss were compared to ocean inversion-based estimates (Mikaloff 311 
Fletcher et al., 2007). These rely on observations of interior ocean DIC, alkalinity, and nutrients 312 
to create a conservative  DIC tracer where the anthropogenic concentration in each grid cell is 313 
subtracted following Gruber et al. (1996) as well as changes in the ocean interior DIC due to 314 
biological processes. In a second step, 10 ocean circulation models were used to determine the 315 
circulation pattern by injecting a dye tracer at the ocean surface at a constant rate. Finally, the 316 
circulation pattern which results in the best fit with the observations of the adjusted DIC tracer is 317 
utilized to determine Fnatss. 318 

To constrain the simulated Fantss, we used the mapped anthropogenic carbon storage 319 
between the years 1800 and 2002 from the GLODAPv2.2016b-product (Lauvset et al., 2016). This 320 
data-product is based on the TTD-method (Matear et al., 2003; Waugh et al., 2006) and henceforth 321 
referred to as TTD-estimate. It includes estimates of a mapping error, but a comprehensive error 322 
estimate containing observational, methodological, and mapping errors is not provided with the 323 
dataset. In lack of such an estimate, we utilized the error-estimate of ±29% for the Cant-storage of 324 
the North Atlantic (Steinfeldt et al., 2009), which is a simplified and rather conservative error 325 
estimate (Khatiwala et al., 2013; Terhaar, Tanhua, et al., 2020). Additionally, the mapped Cantns+ss-326 
storage from the year 1800 to the year 1994 as well as that between the years 1994 and 2007 were 327 
quantified by Sabine et al. (2004) with the ocean tracer–based ΔC* method (henceforth referred to 328 
as ΔC*-estimate) and by Gruber, Clement, et al. (2019) with the eMLR(C*)-method (henceforth 329 
referred to as eMLR(C*)-estimate), respectively. Uncertainties of the globally integrated estimates 330 
of both Cantns+ss-storage estimates were provided when comparing these estimates to simulated 331 
values. We compared (changes of) anthropogenic carbon inventories between GOBMs and 332 
mapped TTD-, ΔC*- and eMLR(C*)-estimates (Section 3.3.1), respectively. As the mapped TTD-333 
, ΔC*- and eMLR(C*)-estimates do not cover all Ocean basins (e.g., the Arctic Ocean and the 334 
Marginal Seas are not covered by the mapped TTD-estimate), the GOBM estimate is only 335 
integrated over grid-points that the associated mapped observation-based estimate covers. When 336 
referring to a comparison between TTD-, ΔC*- and eMLR(C*)-estimates and GOBM-estimate of 337 
interior ocean Cant-storage then this excludes depth under 3000 m as well as the Arctic Ocean and 338 
the marginal Seas. 339 

For the AMOC (here defined as maximum of the Atlantic meridional overturning 340 
streamfunction at 26°N), data from the RAPID-Meridional Overturning Circulation and Heatflux 341 
Array-Western Boundary Time Series array at 26°N were used (Frajka-Williams et al., 2021) to 342 
calculate the mean AMOC strength from 2005 to 2018. The measurement uncertainty of the annual 343 
AMOC values is estimated to be ±0.57 Sv based on the rules of error propagation, where we 344 
assume the initial error of the first 10-day measurement to be 1.5 Sv 345 



manuscript submitted to Global Biogeochemical Cycles 

 

(https://rapid.ac.uk/rapidmoc/rapid_data/README_ERROR.pdf, accessed in October 2022 346 
(McCarthy et al., 2015)) and each year to be independent as the moorings of the observational 347 
array are exchanged every year.  348 

The interfrontal sea surface salinity is the average sea surface salinity in the region limited 349 
by the polar front and the subtropical front and approximately describes the region where the 350 
upwelled circumpolar deep water is transformed into mode and intermediate water. Mean 351 
estimates and uncertainties were derived as described in Terhaar, Frölicher, et al. (2021) using 352 
gridded monthly climatologies of sea surface salinity and of sea surface temperature from the 353 
World Ocean Atlas 2018 (Locarnini et al., 2018; Zweng et al., 2018).  354 

The volume of ventilated waters is defined as the volume of water south of 30°S with 355 
densities above the mean interfrontal sea surface density and below the mean interfrontal sea 356 
surface density plus 0.8 kg m-3. The value of 0.8 kg m-3 corresponds to approximately 2-3 times 357 
the area-weighted standard deviation of the monthly sea surface densities in the inter-frontal zone 358 
across the ensemble of ESMs used by Terhaar, Frölicher, et al. (2021). This density thus covers 359 
most of the denser water masses in the area that are relatively fast ventilated and excludes the small 360 
areas of very dense surface waters that very slowly ventilated a large amount of the deep ocean. 361 

For comparisons of surface DIC and alkalinity between observation-based estimates and 362 
GOBMs, the observation-based monthly and spatially resolved gridded estimates of DIC and 363 
alkalinity provided by OceanSODA-ETHZ (Gregor & Gruber, 2021), CMEMS-LSCE-FFNN 364 
(Chau et al., 2022), and JMA-MLR (Iida et al., 2021) were used. As the gridded estimates of these 365 
three products are based on observations of surface ocean pCO2 and alkalinity in space and time, 366 
we henceforth call them pCO2/alkalinity products. Furthermore, gridded GLODAPv2 estimates of 367 
the same variables were also used (Lauvset et al., 2016), where DIC is normalized to the 368 
atmospheric pCO2 of 2002. For comparison, output from the pCO2/alkalinity products and 369 
GOBMs were averaged over the years 1986 to 2018, the longest time period available with the 370 
year 2002 in its center.  371 

Additionally we compared the simulated and observation-based Revelle factor (Revelle 372 
and Suess, 1957), carbonate ion (CO32-) concentrations, and the chemical surface ocean uptake 373 
capacity. CO32- acts as a buffer for the ocean carbon uptake (Broecker et al., 1979), which declines 374 
with increasing CO2 uptake (Sarmiento & Gruber, 2006). The Revelle factor describes the overall 375 
uptake capacity of the ocean: 376 

 Revelle = (ΔDIC / DIC) / (Δ[pCO2] / [pCO2]).          (10) 377 

We re-arranged this equation to quantify the amount of additional carbon that the surface ocean 378 
can take up for a given increase in pCO2 (ΔDIC / Δ[pCO2]) and defined this to be the chemical 379 
uptake capacity: 380 

ΔDIC / Δ[pCO2] = DIC / (Revelle × [pCO2]).          (11) 381 

For consistency, the Revelle factor, CO32-, and the chemical uptake capacity were calculated based 382 
on the provided temperature, salinity, DIC, and alkalinity in GLODAPv2, the three 383 
pCO2/alkalinity products, and all GOBMs using mocsy2.0 (Orr & Epitalon, 2015), respectively, 384 
and the equilibrium constants recommended for best practice by Dickson et al. (2007) based on 385 
Lueker et al. (2000), Mehrbach et al. (1973), Millero (1995), and Weiss (1974).  386 

Several of the observation-based estimates described above have been used to constrain 387 
the GOBM ensemble within an emergent constraint framework (Boé et al., 2009; Eyring et al., 388 
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2019; Hall et al., 2019). To obtain the constrained variables and their uncertainties, we here 389 
followed the approach from Cox et al. (2013) that has been frequently used over the recent years 390 
in ocean biogeochemistry (Bourgeois et al., 2022; Goris et al., 2018, 2023; Kwiatkowski et al., 391 
2017; Terhaar, Kwiatkowski, et al., 2020; Terhaar, Frölicher, et al., 2021; Terhaar, Torres, et al., 392 
2021; Terhaar et al., 2022).  393 

 394 

2.4 Uncertainties and ensemble spread 395 

We utilized the 1-sigma standard-deviation either across the ensemble of GOBMs or pCO2 396 
products to describe the uncertainty related to varying methods, modules and parametrizations 397 
within the GOBMs or pCO2 products. When globally comparing the simulated Ftotal of the GOBMs 398 
to that of the pCO2 products, Fobsriv-bur has to be added to the GOBM estimate (see Section 2.2) and 399 
the relatively large 1-sigma uncertainty of Fobsriv-bur (±0.15 Pg C yr-1) substantially increases the 400 
uncertainty of the GOBM-derived estimate. For the global Ftotal estimates from GOBMs, we will 401 
therefore provide both a combined uncertainty (standard deviation of GOBM ensemble and of 402 
Fobsriv-bur) and a pure standard deviation that does not include the uncertainty of Fobsriv-bur and hence 403 
is a measure of model-based differences only. Excluding the uncertainty of Fobsriv-bur allows 404 
comparing the ensemble spread of estimates of GOBMs to that of the pCO2 products. Regionally, 405 
the uncertainty of Ftotal is only provided as the standard deviation across the GOBM ensemble, 406 
because regional uncertainties of Fobsriv-bur are not quantified so far.  407 

 408 

2.5 Definition of ocean basins and sub-basin biomes 409 

For our analysis, we applied the RECCAP2 biome-mask and the associated definition of 410 
ocean basins (Figure S1). The RECCAP2 biome-mask is a slightly modified version of the oceanic 411 
biomes of Fay & McKinley (2014), designed to capture large-scale biogeochemical functioning. 412 
In comparison to the original biomes, the RECCAP2 biome mask newly introduces the biomes of 413 
the Barents Sea as part of the Arctic and the Mediterranean Sea as part of the Atlantic. 414 

 415 

2.6 Quantifying the underestimation of the ocean carbon sink due to a late starting date 416 

To quantify the difference in the simulated anthropogenic carbon uptake from 1980 to 2018 417 
due to different starting dates (see Section 2.2.3), it would be ideal to re-run all simulations that 418 
started later than 1765 from 1765 onwards. However, spinning-up several GOBMs with another 419 
pre-industrial pCO2 and re-running the historical simulations from 1765 to 2018 is computationally 420 
too expensive to be achieved within the framework of RECCAP2. Therefore, we here approximate 421 
the magnitude of this underestimation by running two simulations, one starting in 1765 and one in 422 
1850, with an Earth System Model of Intermediate Complexity (EMIC) Bern3D-LPX (Lienert & 423 
Joos, 2018; Roth et al., 2014). The model was used with three different ocean mixing parameters 424 
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and hence AMOC-strengths to cover the wide range of ocean carbon sink strength across the 425 
GOBM ensemble (see Terhaar et al. (2023) for details). 426 

We compare this Bern3D-LPX estimate to an estimate of Bronselaer et al. (2017) based 427 
on two ‘offline’ approaches: the transport matrix method (Khatiwala et al., 2005) that simulates 428 
biogeochemical tracer propagation, and an impulse response function (Joos et al., 2013), which 429 
assumes each year’s emission as an impulse and quantifies the uptake of ESMs of such an 430 
impulse over time. Both approaches consider related changes of the oceanic buffer capacity. 431 

 432 

 433 

3 Results 434 

For the period 1985 to 2018, the ensemble of eight GOBMs simulates a mean annual 435 
globally integrated Ftotal (-1.41±0.24 Pg C yr-1; here excluding uncertainties of Fobsriv-bur) that is 436 
statistically indistinguishable from that estimated by the pCO2-products (-1.71±0.26 Pg C yr-1) 437 
(Table 1, Figure 1). In addition, the overall increasing trend is similarly represented by the two 438 
classes of estimates. Still, the difference of the long-term means of 0.30±35 Pg C yr-1 (18±20% of 439 
the mean pCO2-product estimate) is substantial. Moreover, the difference of annual mean fluxes 440 
between GOBMs and pCO2-products varies with time, exceeding 20% of the average value of the 441 
pCO2-products from 1985 to 1990, in 2009 and 2010, and from 2016 to 2018. Furthermore, the 442 
individual GOBM estimates within the model ensemble also differ substantially with an inter-443 
model range of all GOBMs of 0.24 Pg C yr-1 representing ~17% of their average CO2-flux. Even 444 
larger differences are found on the regional scale (Figure 1b-f). 445 

 446 
 447 

Table 1: Ensemble mean estimate of global and regional CO2-fluxes (Pg C yr-1) by GOBMs 448 

and pCO2 products. The GOBM uncertainty excludes the uncertainty of Fobsriv-bur. 449 

 Global Atlantic  Pacific Indian Arctic Southern 

   GOBMs -1.41±0.24 -0.23±0.15 -0.34±0.12 -0.10±0.06 -0.06±0.03 -0.73±0.31 

   pCO2 
products 

-1.71±0.26 -0.37±0.06 -0.39±0.14 -0.13±0.04 -0.08±0.05 -0.74±0.07 

 450 

Regionally, the time-averaged Ftotal from 1985 to 2018 based on GOBMs and pCO2-451 
products agree well in the Pacific Ocean, the Indian, the Arctic Ocean, and the Southern Ocean 452 
(Table 1, Figure 1). However, in the Atlantic Ocean the GOBMs indicate a substantially smaller 453 
uptake than the pCO2 products (Table 1, Figure 1b). The difference in the Atlantic Ocean starts to 454 
increase around the year 2000, the same time when the Ftotal estimates in the Arctic Ocean also 455 
start to diverge (Figure 1e). Furthermore, the GOBMs and the pCO2 products do not show the 456 



manuscript submitted to Global Biogeochemical Cycles 

 

same decadal variability of Ftotal in the Southern Ocean (Figure 1f). The inter-model ensemble 457 
spread of simulated Ftotal is largest in the Southern Ocean (~42% of the average CO2-flux for 1985 458 
to 2018), directly followed by the Atlantic Ocean (~67% of the average CO2-flux offor 1985 to 459 
2018). A separation of Ftotal into its different flux components (see Section 2.2.3) allows us to 460 
identify the fluxes that are causing the inter-model differences. Globally, the largest contribution 461 
to the spread of Ftotal in GOBMs stems from Fantss (Figure 2a, Table S1). Regionally, the spread of 462 
Ftotal is dominated by the spread of the sum of Fnatss, Fnatriv-bur, and Fdrift+bias in all basins but the 463 
Arctic Ocean (Figure 2b-d, Table S1). The second largest contributions to the model spread are 464 
Fantss and Fnatns. In the Arctic Ocean, the spread of the sum of Fnatss, Fnatriv-bur, and Fdrift+bias and the 465 
spread of Fnatns are of similar size (Figure 2e, Table S1). The relatively large importance of Fnatns 466 
in the Arctic Ocean is mostly caused by sea ice decline, which is well represented in GOBMs, 467 
while the model spread in Fnatns is caused by the inter-model differences in simulated pCO2 under 468 
the melting sea ice (Yasunaka et al., in review).  469 

In the following sections, we will present and discuss the different flux components one by 470 
one across the GOBMs ensemble, assess how well they can be quantified by each of the hindcast 471 
simulations, identify reasons for mismatches between individual models and between GOBMs and 472 
pCO2 products estimates, and propose adjustments to the GOBM results. A special focus will lie 473 
on the Atlantic Ocean, where the long-term mean difference between GOBMs and pCO2 products 474 
estimates is largest, and on the Southern Ocean, where the various GOBM estimates differ the 475 
most and where the decadal variability of the difference between GOBMs and pCO2 products is 476 
largest. 477 

 478 
  479 
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 480 

Figure 1. Time series of global and regional sea-air CO2 fluxes from 1980 to 2018 based on 481 
GOBMs and pCO2 products. The average sea-air CO2 flux from the GOBMs adjusted for the 482 
riverine-burial induced sea-air CO2 flux (green) and pCO2 products estimates (blue) for the a) 483 
global ocean , and regionally for b) the Atlantic Ocean, c) the Pacific Ocean, d) the Indian Ocean, 484 
e) the Arctic Ocean, and f) the Southern Ocean are shown. The shading indicates the uncertainty 485 
estimated as the respective standard deviation across all GOBMs and pCO2 products. The 486 
uncertainty of the GOBM-estimate does not include the uncertainty of the riverine adjustment.  487 
  488 
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 489 

Figure 2. Time series of sea-air CO2 flux components globally and regionally from 1980 to 2018 490 
based on GOBMs. The total sea-air CO2 flux (Ftotal) integrated over each basin adjusted for the 491 
riverine-burial induced sea-air CO2 flux (green) and the individual flux components from the 492 
GOBMs (Fantss in red, Fantns in orange, Fnatns in purple, and the sum of Fnatss, Fnatriv-bur and Fdrift+bias 493 
in brown) are shown for a) the global ocean and regionally for b) the Atlantic Ocean, c) the Pacific 494 
Ocean, d) the Indian Ocean, e) the Arctic Ocean, and f) the Southern Ocean. The shading indicates 495 
the respective standard deviation across all GOBMs. The uncertainty of Ftotal does not include the 496 
uncertainty of the riverine adjustment.  497 

 498 

 499 

  500 
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3.1 Sea-air CO2 fluxes in the steady state control simulation 501 

3.1.1 Carbon fluxes from rivers and into sediments 502 

The input of riverine carbon Fnatriv and the sedimentation of carbon Fnatbur is treated in 503 
various ways across the ensemble of GOBMs and varies from 0.00 Pg C yr-1 to 0.61 PgC yr-1 and 504 
from 0.00 Pg C yr-1 to 0.74 Pg C yr-1, respectively (Table 2). The difference between Fnatriv and 505 
Fnatbur varies between -0.14 Pg C yr-1 and -0.54 Pg C yr-1  and is 0.10±0.23 Pg C yr-1 when averaged 506 
over the 8 GOBMs that provide all four simulations. 507 

 508 

Table 2. Global ocean carbon fluxes (Pg C yr-1) averaged from 1980 to 2018. Positive fluxes 509 
indicate fluxes out of the ocean, except for the land-sea river carbon fluxes. Fnatriv-bur was estimated 510 
as the difference between the land-sea river carbon flux and the burial in sediments, except for 511 
NorESM-OC1.2. Fdrift+bias was derived as the difference between FSimB and Fnatriv-bur. The GOBM-512 
ensemble values exclude MOM6-Princeton (see Section 2.1). 513 

  Land-sea river 
carbon flux 

Burial in 
sediments 

Fnatriv-bur FSimB Fdrift+bias 

CESM-ETHZ 0.33 0.25 0.08 0.00 -0.08 

CNRM-ESM2-1 0.61 0.74 -0.13 -0.14 -0.01 

EC-Earth3 0.61 0.47 0.14 0.25 0.11 

FESOM-REcoM-LR 0.00 0.00 0.00 -0.35 -0.35 

MOM6-Princeton 0.18 0.10 0.08 -0.23 -0.31 

MRI-ESM2-0 0.00 0.00 0.00 0.17 0.17 

NorESM-OC1.2 0.00 0.54 0.00 0.00 0.00 

ORCA025-
GEOMAR 

0.00 0.34 -0.34 -0.36 -0.02 

ORCA1-LIM3-
PISCES 

0.61 0.59 0.02 -0.26 -0.28 

GOBM-ensemble 0.27±0.30 0.37±0.27 -0.03±0.15 -0.09±0.23 -0.06±0.18 

 514 

To estimate Fnatriv-bur, we use the first-order assumption that Fnatriv-bur= Fnatriv-Fnatbur for all 515 
GOBMs except NorESM-OC1.2 (Table 2). This assumption ignores the potential influence of 516 
alkalinity and nutrient fluxes from riverine and sedimentation (Gao et al., 2023; Terhaar, Orr, Ethé, 517 
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et al., 2019) as we only have this information for NorESM-OC1.2. In that model, the carbon burial 518 
flux that is larger than the carbon riverine flux does not lead to an uptake of carbon from the 519 
atmosphere because the burial of carbon is accompanied by a burial of alkalinity of similar size, 520 
which reduces the DIC storage capacity of the ocean. Overall, the alkalinity and carbon burial 521 
fluxes in NorESM-OC1.2 influence the sea-air CO2 flux in similar magnitude but with opposite 522 
signs so that Fnatriv-bur is almost zero (Table 2). With the adjusted Fnatriv-bur for NorESM-OC1.2, the 523 
multi-model mean Fnatriv-bur is -0.03±0.15 Pg C yr-1. In comparison, the model spread associated 524 
with Ftotal is 0.24 Pg C yr-1. Although Fnatriv-bur does not directly affect the global estimation of Ftotal, 525 
it may substantially affect the regional estimates of Ftotal and Fssnat.   526 

 527 

3.1.2 Bias and drift in the sea-air CO2 flux due to incomplete spin-up  528 

Across the ensemble of GOBMs, the approximated global Fdrift+bias, quantified as the 529 
difference of FSimB and Fnatriv-bur (equation 3, Table 2), varies from -0.35 to 0.17 Pg C yr-1, with an 530 
ensemble mean of -0.06±0.18 Pg C yr-1. The model spread around Fdrift+bias is of similar order as 531 
the model spread associated with the global Ftotal (0.24 Pg C yr-1). We assume that this is mostly a 532 
consequence of a too short spinup and hence of models not being in a steady state, since the drift 533 
component in the sea-air CO2 flux from 1980 to 2018 (calculated as the trend of the global air-sea 534 
CO2 flux in simulation B) is less than ±0.002 Pg C yr-2 for all GOBMs (Hauck et al., 2020). 535 
Although our estimation of Fdrift+bias is uncertain due to several approximations in our 536 
methodology, it gives a first indication of the importance of the non-steady-state for the model 537 
spread. A sufficiently long spin-up in each model to reach steady state may thus narrow down 538 
inter-model differences of regional Fnatss and Ftotal.  539 

 540 

3.1.3 Steady state natural sea-air CO2 flux 541 

The mean FSimB estimates of the GOBMs from 1980 to 2018 (Figure 2) are -0.11±0.14 Pg 542 
C yr-1 for the Atlantic Ocean, 0.21±0.13 Pg C yr-1 for the Pacific Ocean, -0.06±0.06 Pg C yr-1 for 543 
the Indian Ocean, and -0.06±0.01 Pg C yr-1 for the Arctic Ocean. In the Southern Ocean, the FSimB 544 
estimate of -0.04±0.27 Pg C yr-1 of the GOBMs is twice as uncertain as in the other basins. The 545 
relatively large uncertainty in the Southern Ocean may partly be the result of large inter-model 546 
differences in the simulated Fnatss fluxes, as dynamically complex regions like the Southern Ocean 547 
are difficult to simulate (Sallée et al., 2013). Inter-model differences in Fdrift+bias likely also play a 548 
role for the uncertain FSimB estimate as the Southern Ocean is the region where most of the oldest 549 
water masses are upwelled to the ocean surface (Caldeira & Duffy, 2000), which have not been in 550 
contact with the atmosphere during the spin up and would hence presumably cause a larger 551 
disequilibrium and Fdrift+bias than in other ocean basins with less upwelling. The Southern 552 
hemisphere and especially the Southern Ocean are also the locations where the Fdrift+bias tends to 553 
be largest in Earth System Models (Séférian et al., 2016).  554 

When comparing FSimB in the Southern Ocean to FSimB globally, a significant relationship 555 
(r2 = 0.62, p = 0.01) with a slope of 1.03 can be identified (Figure 3a). This relationship suggests 556 
that global inter-model differences related to the sum of Fdrift+bias (-0.06±0.18 Pg C yr-1) and Fnatriv-557 
bur (-0.03±0.15 Pg C yr-1) are indeed primarily stemming from the Southern Ocean, especially as 558 
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such a relationship occurs in no other ocean basin (Figure 3b and Figure S2). Based this 559 
assumption, we subtract the sum of global ocean Fdrift+bias and Fnatriv-bur (-0.09±0.22 Pg C yr-1 for 560 
the GOBM-ensemble without MOM6-Princeton) from the Southern Ocean FSimB for each GOBM 561 
separately. This adjustment leads to an estimate of Southern Ocean Fnatss of 0.05 ± 0.18 Pg C yr-1, 562 
0.10 Pg C yr-1 larger and of opposite sign than the non-bias adjusted average FSimB across all 563 
GOBMs and with a 33% smaller spread. The major part (>80%) of this adjustment is due to 564 
Fdrift+bias. In the other basins, the regional FSimB does not seem to be significantly impacted by the 565 
sum of Fdrift+bias and Fnatriv-bur across the GOBM ensemble or these fluxes cancel each other out. In 566 
these basins, we assume FSimB to be approximately equal to Fnatss. 567 

 568 

 569 

 570 

Figure 3. Relationship between global and regional sea-air CO2 fluxes of simulation B for 9 571 
GOBMs. The relationship between sea-air CO2 fluxes (averaged for 1980-2018, negative: into the 572 
ocean) of the global ocean and a) Southern Ocean and b) Atlantic Ocean is shown. Represented 573 
is the natural sea-air CO2 flux plus a potential sea-air CO2 flux bias due to an interior ocean drift 574 
and a sea-air CO2 flux related to carbon fluxes from rivers and into sediments (simulation B). The 575 
dashed line indicates a linear fit and the shading the projection uncertainty with a 68% uncertainty 576 
interval. The same relationship for the other ocean basins is shown in Figure S2. 577 

 578 

 579 

Our estimates of Fnatss can be compared to inverse estimates of Fnatss (Mikaloff Fletcher et 580 
al., 2007) (see also Section 2.3). These inverse estimates of Fnatss show larger uptake in the Atlantic 581 
(-0.24±0.08 Pg C yr-1) and Pacific Ocean (-0.07±0.14 Pg C yr-1), more outgassing in the Southern 582 
Ocean (0.44±0.11 Pg C yr-1), and similar uptake in the Arctic (-0.02±0.01 Pg C yr-1) and Indian 583 
Ocean (-0.12±0.04 Pg C yr-1). The differences between our estimates and that of (Mikaloff Fletcher 584 
et al., 2007) are partly due to different basin-definitions. Most prominently, the inverse estimate 585 
considers all areas south of 44°S as the Southern Ocean, which is different from our definition of 586 
the Southern Ocean (Figure S1). When changing the northern boundary of the Southern Ocean to 587 
44°S, the adjusted regional Fnatss of the GOBMs changes to 0.27±0.19 Pg C yr-1, still 0.18 Pg C yr-588 
1 smaller than the mean inverse-based estimate but within its uncertainties. Without the adjustment 589 
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for Fdrift+bias and Fnatriv-bur, the difference between the simulated and inverse-based estimate of Fnatss 590 
in the Southern Ocean are larger. 591 

 592 

3.2 Non-steady state natural sea-air CO2 flux 593 

Averaged between 1980 and 2018, the GOBMs simulate an outgassing global Fnatns of 594 
0.05±0.05 Pg C yr-1. Here, we separated the inter-annual and decadal variability from the long-595 
term signal by removing its linear trend (see e.g., DeVries (2022)). The simulated long-term signal 596 
shows a global Fnatns increase from 1980 to 2018 at a rate of 0.07±0.02 Pg C yr-1 decade-1 (Figure 597 
2, Figure 4a). The tropical Pacific and the Indian section of the Southern Ocean are the main 598 
contributors to the trend towards stronger Fnatns carbon outgassing (Figure 4a, Figure 2). The 599 
average trend towards stronger outgassing of Fnatns is to a small part compensated by a trend 600 
towards non-steady uptake of natural CO2 in the Northern Pacific and the Arctic Ocean (Figure 601 
4a; Figure 2e; Yasunaka et al. (in review)). Across the model ensemble, large inter-model 602 
differences in the mean Fnatns flux exist in the tropical Southern Ocean, the sea ice edge in the North 603 
Atlantic and Arctic Ocean, and the eastern coastal upwelling systems (Figure 4b). 604 

The globally simulated  inter-annual and decadal variability in Fnatns of 0.16±0.03 Pg C yr-605 
1 is similar across the GOBMs (Figure 2a), likely because many models use the same atmospheric 606 
reanalysis products for their forcing. Most of the inter-annual variability in Fnatns occurs in the 607 
tropical Pacific Ocean and the high-latitude oceans (Figure 4c). Though the pattern of variability 608 
is similar across the GOBMs, relatively large inter-model differences are found in the Southern 609 
Ocean, north-western Pacific Ocean, the North Atlantic subpolar gyre, and the Peruvian upwelling 610 
system (Figure 4d). The inter-annual and decadal variability in Fnatns is the dominant contributor 611 
to the inter-annual and decadal variability of Ftotal in GOBMs and is globally 6 times larger than 612 
the variability in the climate-driven variability in the anthropogenic sea-air CO2 fluxes (Fantns) and 613 
regionally 2 to 6 times larger (Figure 2). The simulated temporal variability of Ftotal in the Pacific 614 
Ocean is driven by Fnatns (Figure 2c) and resembles the variability of Ftotal in the pCO2 products 615 
(Figure 1). This good agreement indicates that the GOBMs represent the dominant source of 616 
Pacific sea-air CO2 flux variability, El-Niño and La-Niña (Feely et al., 1999), well.  617 

 618 
  619 
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 620 

Figure 4. Non-steady state natural sea-air CO2 fluxes for 8 GOBMs. Maps of the a) the multi-621 
model trend and b) the multi-model standard deviation of the trend of the natural non-steady state 622 
sea-air CO2 flux from 1980 to 2018, as well as maps of c) the multi-model mean and d) the multi-623 
model standard deviation of the inter-annual variability of the natural non-steady state sea-air 624 
CO2 flux (linear trend is removed).  625 
 626 

3.3 Anthropogenic carbon fluxes and storage 627 

3.3.1 Interior Ocean anthropogenic carbon storage 628 

The spatial distribution of the interior ocean Cant-storage since the beginning of the 629 
industrial period simulated by the here analyzed 8 GOBM ensemble resembles that of the TTD- 630 
and ΔC*-estimate (Figure 5, Figure S3) and other observation- and model-based studies (e.g., 631 
Davila et al. (2022); Khatiwala et al. (2013)). The salinity biases of PlankTOM12 led to an 632 
anthropogenic carbon storage pattern that does not resemble any of the observation-based 633 
estimates and led to its exclusion from all GOBM results in terms of multi-model mean and 634 
standard deviation (Text S1). While the TTD- and ΔC*-based estimates and the here analyzed 8 635 
GOBMs agree that the largest accumulation of Cant per surface area is located in the North Atlantic 636 
and at the northern limit of the Southern Ocean around 45°S, the inter-model spread is high in 637 
these regions.  638 

When only integrating over cells where estimates from associated observation-based 639 
products exist (see Section 2.3), the GOBM ensemble underestimates the integrated interior Cant 640 
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from surface to 3000 m depth that accumulated since preindustrial times. The simulated multi-641 
model mean GOBM interior ocean Cant is 83±15 Pg C in 1994 , 22% (23 Pg C) lower than the 642 
ΔC*-estimate, and 102±12 Pg C in 2002, 30% (44 Pg C) lower than the TTD-estimate. Most 643 
prominent differences are in the North Atlantic and Southern Ocean (Figure 5). These differences 644 
may be caused by the starting dates of the GOBM simulations that vary from 1765 and 1870 (see 645 
Section 3.4.1) and biases in GOBM dynamics and biogeochemistry (see Section 3.4.5). In addition, 646 
the TTD-estimate might be biased high in the Southern Ocean and the North Atlantic due to its 647 
methodology (DeVries, 2014; Matear et al., 2003; Terhaar, Tanhua, et al., 2020; Waugh et al., 648 
2006) and the DC*-methodology might lead to an overestimation of Cant in the upper water column 649 
and a negative bias in deeper waters (Matsumoto & Gruber, 2005). 650 

As for the Cant-storage since 1800, the spatial pattern of the simulated interior ocean Cant-651 
storage changes from 1994 to 2007 of the GOBMs resembles that of the eMLR(C*)-estimate 652 
(Figure 5, Figure S4). Over this recent period, the GOBM global model mean Cant-storage change 653 
of 25±3 Pg C (only integrating over cells where Cant estimates from the eMLR(C*) method exist) 654 
is also smaller than the eMLR(C*)-estimate, but only by approximately 20% (6 Pg C). The 655 
underestimation of the contemporary Cant-storage change by GOBMs is likely smaller than the 656 
underestimation of Cant-storage changes since 1800 because the late starting date of several 657 
GOBMs (Section 3.3.2) has a smaller effect on contemporary Cant-storage changes. Regionally, 658 
differences between the GOBM mean and the eMLR(C*)-estimate (Figure 5) are most prominent 659 
in the Atlantic (Perez et al., to be submitted) and Southern Ocean (Hauck et al., to be submitted). 660 
The eMLR(C*)-estimate indicates an anomalously high rate of Cant-change in the South Atlantic 661 
for the period 1994 to 2007 and an anomalously low rate of Cant-change in the subpolar North 662 
Atlantic and the Indian and Pacific sectors of the Southern Ocean (Gruber, Clement, et al., 2019), 663 
which was attributed to a temporary slow-down and reorganization of the North Atlantic 664 
overturning circulation (Fröb et al., 2016; Pérez et al., 2013; Steinfeldt et al., 2009) and changes 665 
in the Southern Ocean meridional overturning circulation and ventilation of water masses (Tanhua 666 
et al., 2017; Waugh et al., 2013). The GOBMs do not exhibit the regionally anomalous 667 
accumulation of Cant that is apparent in the eMLR(C*)-estimate so that the GOBM ensemble mean 668 
is smaller than the eMLR(C*)-estimate in the South Atlantic and subtropical North Atlantic and 669 
larger than the eMLR(C*)-estimate in the subpolar North Atlantic and the Indian and Pacific 670 
sectors of the Southern Ocean (Hauck et al., to be submitted). However, the eMLR(C*)-estimate 671 
might also overestimate the strength of these anomalies, due to structural biases in the 672 
reconstructed changes of Cant (Clement & Gruber, 2018; Gruber, Clement, et al., 2019). 673 

Overall, the comparison of simulated and observation-based Cant confirms that the GOBMs 674 
underestimate the oceanic storage of anthropogenic carbon and hence Fantss by 20-30% as 675 
suggested by the Global Carbon Budget (Friedlingstein et al., 2022). Moreover, across the GOBM 676 
ensemble there exists a strong relationship between the simulated Cant storage in 1994 since the 677 
beginning of the industrialization and the simulated change in Cant storage from 1994 to 2007 678 
across the model ensemble (Figure S5) suggesting a bias in the model mean state that persists over 679 
centuries. In the following sections, we will analyze the model set-ups, and simulated circulation 680 
and biogeochemistry to identify reasons for the underestimation of Fantss by the GOBM ensemble.  681 
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682 
Figure 5: Column inventories of historic and contemporary anthropogenic carbon storage 683 
changes, integrated from surface to 3000m depth. Visualised are a) e) i) observation-based 684 
estimates and related model-estimates based on 8 GOBMS, shown as b) f) j) model mean, c) g) k) 685 
difference between model-mean and observation-based estimates and d) h) l) multi-model 686 
standard deviation. Panels a) b) c) d) show results for Cantns+ss from the ΔC*-estimate for the period 687 
1800-1994 and GOBM estimates from start date of each simulation to 1994, d) e) f) g) show results 688 
for Cantss from the TTD-estimate for the period 1800-2002 and GOBM estimates from start date of 689 
each simulation to 2002, while panels i) j) k) l) show results for Cantns+ss from 1994 to 2007, 690 
contrasting the eMLR(C*)-estimate with the GOBM estimates. Individual results for each of the 691 
considered GOBMs and PlankTOM12 are presented in Figures S3 and S4.  692 

 693 

3.3.2 Influence of pre-industrial atmospheric CO2 mixing ratio on anthropogenic carbon 694 
uptake 695 
 The difference in the simulated sea-air CO2 flux from 1980 to 2018 between the 696 
simulations starting in 1765 and those starting in 1850 is simulated by the EMIC Bern3D-LPX to 697 
be 0.04-0.06 Pg C yr-1, depending on the ocean mixing strength (see Section 2.6 for details of this 698 
set-up). Regionally, most differences occur in regions of strong upwelling, such as the Southern 699 
Ocean (Figure 6b). From 1765 to 1995, the difference in the simulated cumulative sea-air CO2 flux 700 
due to the late starting date is 18.2-22.7 Pg C and more than 50% of this difference (9.8-13.7 Pg 701 
C) occurs after 1850.   702 
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 703 

Figure 6: Difference in anthropogenic sea-air CO2 fluxes due to different starting dates in 704 
Bern3D-LPX. Maps of a) the anthropogenic sea-air CO2 flux (steady-state and non-steady state) 705 
averaged from 1980 to 2018 and averaged over 3 Bern3D-LPX simulations with varying ocean 706 
mixing that start in 1850 and b) the difference of the same flux between the simulations that start 707 
in 1765 and in 1850. Time series of c) the anthropogenic sea-air CO2 flux the from simulations 708 
starting in 1850 with weak (blue), medium (orange), and strong (green) ocean mixing, and time 709 
series d) of the difference in the anthropogenic sea-air CO2 flux the between simulations starting 710 
in 1850 and 1765 for the same ocean mixing strengths. 711 

 712 

In comparison, the two offline approaches by Bronselaer et al. (2017) estimate an 713 
underestimation of the ocean carbon sink of 28.7±4.6 Pg C for the period from 1765 to 1995 when 714 
starting simulations in 1850 instead of 1765. More than 50% of this underestimation (~17 Pg C) 715 
is estimated to occur after 1850. Hence, Bronselaer et al. (2017) suggest a similar division of the 716 
adjustment before and after 1850, but their estimate for the entire period is around 40% larger than 717 
the estimate by Bern3D-LPX. A possible reason for the lower adjustment estimates by Bern3D-718 
LPX may be the coarse resolution (40x41 horizontal cells and only 3 cells in the upper 126 m) 719 
leading likely to a more diffusive transport than in models with a higher horizontal resolution. A 720 
more diffusivity-driven tracer transport reduces the transport contribution from upwelling of older 721 
water masses to the surface and hence reduces the adjustment term for these water masses.  722 

Thus, the adjustment simulated by Bern3D-LPX for the air-sea CO2 flux from 1980 to 2018 723 
of 0.04-0.06 Pg C yr-1 might be underestimated by around 40%. Eventually, only GOBM 724 
simulations starting in 1765 allow quantifying the underestimation with certainty.  725 

3.3.3 Steady-state anthropogenic sea-air CO2 fluxes 726 
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The large-scale pattern of the steady-state anthropogenic sea-air CO2 flux (Fantss) averaged 727 
from 1980 to 2018 is similar across all GOBMs with the largest regional uptake rates in the high 728 
latitude North Atlantic and the Southern Ocean (Figure 7). The various numerical representations 729 
of the ocean circulation in the GOBMs result in a large model spread of Fantss and Cant in both 730 
North Atlantic and Southern Ocean (Figure 5, Section 3.3.1), similar to previous GOBMs (Orr et 731 
al., 2001) and ESMs (Frölicher et al., 2015; Goris et al., 2018; Terhaar, Frölicher, et al., 2021).  732 

 733 

 734 

Figure 7: Simulated mean and intermodel spread of the steady-state anthropogenic CO2 flux. 735 
Maps of a) the multi-model mean and b) multi-model standard deviation of the steady state 736 
anthropogenic sea-air CO2 flux averaged from 1980 to 2018 for 8 GOBMs.  737 

 738 

3.3.3.1 Role of ocean circulation on steady state anthropogenic sea-air CO2-fluxes in the 739 

Atlantic and the Southern Ocean 740 

In the Atlantic Ocean, the AMOC is the underlying driver of the uptake and storage of Cant. 741 
It transports surface waters with high Cant (Pérez et al., 2013) and subsurface waters with low Cant 742 
(Ridge & McKinley, 2020) northwards. The subsurface waters outcrop in the subpolar gyre and 743 
are hence a sink of Cant (Ridge & McKinley, 2020). Both water masses are eventually transformed 744 
into deep water and transported southward. The AMOC is also the main driver of Fantss differences 745 
in the Atlantic across ensembles of ESMs from CMIP5 and CMIP6 (Goris et al., 2023; Terhaar et 746 
al., 2022), linking Fantss and the amount of Cant that was transported below 1000 m across these 747 
model ensembles (Goris et al., 2018, 2023). 748 

Correlations between Fantss and (i) the AMOC at 26.5°N or (ii) the storage of Cant between 749 
1000 m and 3000 m in the high latitude North Atlantic also occur across this ensemble of GOBMs 750 
and can be used to identify emergent constraints (Figure 8a,b). In combination with the respective 751 
observation-based estimates, the average annual Atlantic Fantss from 1980 to 2018 can be 752 
constrained from -0.39 ± 0.05 Pg C yr-1 to -0.43 ± 0.06 Pg C yr-1 when using the Cantss storage and 753 
to -0.42 ± 0.05 Pg C yr-1 when using the AMOC. The constraints identify a common bias in the 754 
GOBMs towards too small AMOC strengths (mean underestimation of 18%) and Cantss storage 755 
below 1000m (mean underestimation of 22%), and hence Atlantic Fantss (mean underestimation of 756 

Steady-state anthropogenic sea-air CO2 fluxes
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8-10%, depending on the used constraint). Nevertheless, the uncertainties around the Atlantic Fantss 757 
estimate cannot be reduced due to the relatively large uncertainty of the observation-based estimate 758 
in case of the Cantss storage as well as the relatively weak but significant correlation between the 759 
AMOC and the Atlantic Fantss (r2 = 0.54, p = 0.04). This weak correlation may partly be driven by 760 
the varying starting dates as GOBMs with a later or earlier starting date tend to have smaller or 761 
higher Fantss than expected from the fit, respectively (Figure 8b). The correlation of the Cantss 762 
storage and Fantss is stronger (r2 =0.84, p = 0.001) because both variables are more directly related 763 
to each other and coherently affected by the late starting date. The relationships between Atlantic 764 
Fantss and (i) AMOC and (ii) Cantss storage between 1000 m and 3000 m in the high latitude North 765 
Atlantic stem from the North Atlantic, where the associated correlations are higher (r2 = 0.69 for 766 
AMOC and r2 = 0.88 for Cantss storage).  767 

In the Southern Ocean, the magnitude of Fantss also depends sensitively on the overturning 768 
circulation (Caldeira & Duffy, 2000; Mignone et al., 2006; Sarmiento et al., 1992), consisting here 769 
of the upwelling of circumpolar deep water close to the polar front, which is mainly transported 770 
northward, transferred to mode and intermediate waters, and eventually subducted at the 771 
subtropical front below the light subtropical surface waters into the ocean interior (Marshall & 772 
Speer, 2012; Talley, 2013). Across two ensembles of ESMs, it could be demonstrated that the 773 
volume of ventilated mode and intermediate waters in the Southern Ocean is highly correlated 774 
with the sea surface density between the polar front and the subtropical front, i.e., a higher sea 775 
surface density in the region of mode and intermediate water formation allows for more and deeper 776 
penetration of these water masses into the ocean interior and hence more Fantss uptake (Terhaar, 777 
Frölicher, et al., 2021). As the density in the region of interest is almost entirely driven by the 778 
salinity (Supplement of Terhaar, Frölicher, et al. (2021)), the sea surface salinity can be used as a 779 
proxy for sea surface density.  780 

Our ensemble of GOBMs contains a similar range of inter-frontal sea surface salinities 781 
(~0.4) as the ESM ensemble and confirms the Southern Ocean relationships between Fantss and (i) 782 
the inter-frontal sea surface salinity, i.e., the mean surface salinity in the subtropical-polar frontal 783 
zone (r2=0.57, p=0.03), and (ii) the volume of ventilated waters (r2=0.63, p=0.03) (Figure 8c,d). 784 
As all GOBMs are forced with historical reanalysis data, the location of the fronts does not vary 785 
as much across the GOBM ensemble as it does for the ESM ensembles (Terhaar, Frölicher, et al., 786 
2021). Moreover, the biomes are partly defined based on the location of these fronts, so that biome-787 
averaged sea surface salinity in the two Southern Ocean biomes north of the sea ice edge can also 788 
be used as a constraint for GOBMs (Hauck et al., to be submitted). The constraint with the sea 789 
surface salinity as predictor reduces the magnitude of Fantss in the Southern Ocean slightly from -790 
0.74±0.09 Pg C yr-1 to -0.72±0.08 Pg C yr-1 (less uptake, 11% smaller uncertainty, Figure 8c). The 791 
relatively weak but significant correlation (compared to a correlation of r2 = 0.74 for ESMs when 792 
considering the oceanic CO2-uptake until 2005 (Terhaar, Frölicher, et al., 2021) between the sea 793 
surface salinity and Fantss can partly be explained by different starting dates as GOBMs with a late 794 
or early starting date have a smaller or larger absolute Fantss than expected from the linear fit 795 
between the mean surface salinity in the subtropical-polar frontal zone, respectively (Figure 8c). 796 
A common starting date of 1765 for all GOBMs, would likely have tightened the relationship of 797 
the emergent constraints using the AMOC and the interfrontal salinity, and decreased the 798 
uncertainty of the constrained estimate. We do not use the volume of ventilated waters to constrain 799 
Fantss because the scarcity of subsurface observations would have resulted in large uncertainties of 800 
the observational constraint. 801 
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While the here considered emergent constraints change the average annual Fantss from 1980 802 
to 2018 in Atlantic and Southern Ocean only slightly, the influence of circulation biases on Fantss 803 
increases in magnitude with increasing atmospheric Fantss. Therefore, the difference between 804 
constrained and unconstrained Fantss increases over time (Figure S6) and a GOBM ensemble with 805 
circulation biases will have smaller trends in Fantss  and deviate from the true Fantss with time.  806 

 807 

 808 

 809 

Figure 8. Constrained steady-state anthropogenic carbon uptake in the Atlantic and Southern 810 
Ocean. Steady-state anthropogenic carbon uptake averaged from 1980 to 2018 of a)b) the Atlantic 811 
and c)d) the Southern Ocean, plotted against a) the Atlantic steady-state anthropogenic carbon 812 
storage between 1000 m and 3000 m depth for the year 2002, b) the Atlantic Meridional 813 
Overturning Circulation at 26°N averaged from 2005 to 2018, c) the inter-frontal sea surface 814 
salinity and d) the volume of ventilated waters in the Southern Ocean. Linear fits (green dashed 815 
line) with 68% projection intervals (green shaded area) across GOBMs (green dots). The colors 816 
of the dots indicate the pre-industrial atmospheric pCO2 for each GOBM. Observation-based 817 
estimates and their uncertainties are marked with dashed black lines and black shaded areas (see 818 
Section 2.4 for a description of utilized observation-based estimates and their uncertainties). The 819 
cross in b) indicates an additional simulation with CESM-ETHZ (see Section 2.1). 820 

 821 

3.3.5.2 Surface ocean carbonate chemistry 822 

The pCO2/alkalinity products suggest that the largest chemical surface ocean uptake 823 
capacity (defined here as ΔDIC / Δ[pCO2], see Section 2.3) is found in the subtropical gyres, while 824 
the smallest chemical uptake capacities are in the polar oceans and the eastern tropical Pacific 825 

Southern Ocean

Atlantic Ocean
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(Figure 9a). The GOBMs reproduce this pattern on average (Figure 9b) but show larger chemical 826 
uptake capacities in the tropical and subtropical oceans, and smaller chemical uptake capacities in 827 
the subpolar gyres, most of the Southern Ocean, the Labrador Sea, and the Arctic Ocean (Figure 828 
9c). The inter-model variability is small in most places apart from sea ice regions in the Arctic 829 
Ocean and in eastern upwelling systems west of South America and Africa (Figure 9d), suggesting 830 
common biases in the chemical uptake capacities across the GOBM ensemble. 831 

Globally, the chemical uptake capacity of the eight GOBMs is similar to that of the 832 
pCO2/alkalinity products and of GLODAPv2 (Figure 9e). This capacity is directly linked to the 833 
surface alkalinity (Figure 9h) as GOBMs with a high buffer capacity have also high surface ocean 834 
CO32- concentrations (Figure 9f), a high difference in surface ocean alkalinity and DIC (Sarmiento 835 
& Gruber, 2006) (Figure 9g) and high surface ocean alkalinity (Figure 9h). A similar relationship 836 
was also found across an ensemble of ESMs (Terhaar et al., 2022) and underlines the importance 837 
of alkalinity (Middelburg et al., 2020; Planchat et al., 2023).   838 

We find that GOBMs represent surface ocean alkalinity better (range of ~2300-2425 mmol 839 
m-3) than ESMs (range of 2225-2415 mmol m-3, Terhaar et al. (2022)), potentially due to their 840 
atmospheric forcing from historical reanalysis and the use of salinity restoring toward 841 
observations, and hence a more realistic upwelling of circumpolar deep water with high alkalinity 842 
(Millero et al., 1998; Takahashi et al., 1981). Indeed, the GOBMs with the highest ventilation of 843 
surface waters in the Southern Ocean and hence also with the strongest upwelling of circumpolar 844 
deep waters with high alkalinity (MRI-ESM-2.0 and NorESM-OC1.2), are the GOBMs that show 845 
the highest chemical uptake capacity in the Southern Ocean (Figures S7 and S8).  846 

For the GOBMs, their globally different chemical uptake capacities do not explain their 847 
global differences in Fantss (Figure 9e), although studies with ESMs found such a relationship 848 
(Terhaar et al., 2022). Possible reasons for no emerging relationship between Fantss  and the 849 
chemical uptake capacity, CO32-, or the alkalinity across the GOBM ensemble are differences in 850 
Fantss due to different starting dates of the simulations (Section 3.3.2) and ongoing Fdrift+bias. If a 851 
GOBM has a large negative or positive Fdrift+bias, its upwelling waters have too low or high DIC, 852 
too high or low CO32-, and hence a chemical uptake capacity that is too high or low, respectively. 853 
With time, the additional surface ocean DIC from Fdrift+bias reduces the chemical uptake capacity 854 
so that it is effectively smaller than the one expected from the theoretical chemical uptake capacity. 855 
Thus, Fdrift+bias adds considerable noise so that a potential relationship between the chemical uptake 856 
capacity and Fantss may not be identifiable. When considering only the four GOBMs with a longer 857 
spin-up than 1000 years, a relationship indeed emerges (Figure 9e-h).  858 

 859 

 860 
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 861 

Figure 9: Surface ocean chemical uptake capacity and its relationship to the steady-state 862 
anthropogenic sea-air CO2 flux. Maps of the increase in DIC per increase in pCO2 averaged from 863 
1986 to 2018 based on a) 3 pCO2/alkalinity products (average of OceanSODA-ETHZ, CMEMS-864 
LSCE-FFNN, and JMA-MLR) ) and b) 8 GOBMs (multi-model mean), as well as of c) the 865 
difference between the pCO2/alkalinity products mean and the GOBM multi-model mean and d) 866 
the multi-model standard deviation. Scatterplots of temporal averages (1982 to 2018) of the 867 
accumulated global anthropogenic sea-air CO2 flux against the global mean area-weighted e) 868 



manuscript submitted to Global Biogeochemical Cycles 

 

increase in DIC per increase in pCO2, f) surface ocean CO32- concentration,  g) difference between 869 
surface ocean alkalinity and DIC, and h) the global surface ocean alkalinity. The colors of each 870 
dot that represents a GOBM indicate the number of simulated years before the start of the analyzed 871 
period in 1980, and the dashed lines indicate each pCO2/alkalinity product and GLODAPv2 for 872 
the variables on the respective x-axis. 873 

 874 

3.4 Non-steady state anthropogenic sea-air CO2 flux 875 

Globally, the GOBMs show an average Fantns from 1980 to 2018 of -0.03±0.04 Pg C yr-1 876 
(Figure 10). As for Fnatns, we separate Fantns into an interannual variability component and a long-877 
term linear trend component. On average, GOBMs simulate that the long-term trend increases the 878 
uptake of Cant in the Southern Ocean and decreases the uptake in the North Atlantic (Figure 10a). 879 
In both regions, inter-model differences are large (Figure 10b) and underline the uncertainty of 880 
Fantns. The long-term trends in Fantns are superimposed by an interannual-variability that is mainly 881 
located in the North Atlantic subpolar gyre and in the Southern Ocean (Figure 10c) and not in the 882 
Pacific Ocean as for Fnatns (Figure 4b,d). The interannual-variability is similar across the entire 883 
model ensemble (Figure 10d). 884 

Regionally, Fantns is substantially smaller than regional Fnatns underlining the relatively 885 
minor importance of anthropogenic non-steady state fluxes compared to natural steady state fluxes. 886 
In the Southern Ocean, a strong negative trend in Fantns co-occurs in regions with strong positive 887 
trends in Fnatns (Figure 4a). This suggests that both signals are related to stronger upwelling of 888 
circumpolar deep waters in most of the Southern Ocean with recent trends in climate as also 889 
discussed by Lovenduski et al. (2008) and Hauck et al. (to be submitted). This increased upwelling 890 
brings more old waters containing higher concentrations of Cnat to the surface, enhancing the 891 
outgassing of Cnat. At the same time this exposes more waters to the surface with low 892 
concentrations of Cant, causing an increase in Fantns. In the North Atlantic subpolar gyre, the strong 893 
positive Fantns has a large model uncertainty associated with it, with some GOBMs showing a 894 
negative trend in Fantns, while others show no significant trend. An independent model-study with 895 
one ESM (Goris et al., 2015) showed that the climate signal in the North Atlantic subpolar gyre is 896 
driven by counteracting processes (the influence of reduced biology and reduced circulation 897 
strength on DIC) and that relatively small differences in these contributions can shift this signal 898 
from a reduced pCO2 to an increased pCO2. Yet, their study considered an ESM with a large 899 
AMOC decline with climate-change and hence less warming in the subpolar gyre region, whereas 900 
the influence of warming can be of first order for models with a small AMOC decline (Bellomo et 901 
al., 2021). For RECCAP2, the timescale with climate change is not yet long-enough to separate 902 
the climate change signal from the strong decadal variability in the subpolar gyre and hence to 903 
attribute causes.  904 

 905 



manuscript submitted to Global Biogeochemical Cycles 

 

 906 

Figure 10. Non-steady state anthropogenic sea-air CO2 fluxes for 8 GOBMs. Maps of the a) the 907 
multi-model mean and b) the multi-model standard deviation of the linear trend in anthropogenic 908 
non-steady state sea-air CO2 flux without the inter-annual variability (calculated by fitting a linear 909 
trend) averaged from 1980 to 2018, as well as maps of c) the multi-model mean and d) the multi-910 
model standard deviation of the inter-annual variability (linear trend is removed). 911 

 912 

4 Discussion and resulting recommendations 913 

4.1 Spin-up and associated biases in the sea-air CO2 flux  914 

As not all GOBMs have been fully spun-up, globally integrated Fdrift+bias varies from -0.35 915 
Pg C yr-1 to 0.17 Pg C yr-1 across the GOBM ensemble (-0.06±0.18 Pg C yr-1 on average). Fdrift+bias 916 
does not directly affect our estimate of the global Ftotal (based on equation (9)) as Fdrift+bias is 917 
removed when subtracting FSimB from FSimA. In addition, other effects from a GOBM not being in 918 
steady-state owing to an insufficient spinup, such as biases in temperature, salinity, DIC, or 919 
alkalinity, and consequent biases in the circulation or chemical uptake capacity may still affect 920 
Ftotal. Regionally, Fdrift+bias directly affects Ftotal because subtracting FSimB from FSimA removes not 921 
only Fdrift+bias but also Fnatss, which is regionally not zero. To regionally estimate Ftotal from a 922 
GOBM, one could hence rely either on FSimA - FSimB and add an independent estimate of Fnatss (e.g., 923 
the inverse model estimate from Mikaloff Fletcher et al. (2007)), which comes with its own 924 
uncertainties, or rely on FSimA and treat the regional Fdrift+bias as an inherent uncertainty (as done 925 
here). Most of Fdrift+bias is likely located in the Southern Ocean and hence mostly affects the regional 926 
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estimate of Ftotal in that ocean region. When assuming that Fdrift+bias is almost entirely located in the 927 
Southern Ocean (Section 3.3.1), Fdrift+bias could offset the total flux there (-0.7-0.8 Pg C yr-1) by up 928 
to 50% in individual models and would increase the multi-model mean by ~13%.  929 

A model-by-model analysis would be necessary to determine the extent of the spinup 930 
related bias and drift in each GOBM and the necessary length of the spinup for a GOBM to reach 931 
steady state. Depending on the difference between the model’s steady-state and the initialization, 932 
the necessary length of the spinup may vary between individual GOBMs (Gürses et al., 2023) (see 933 
also Figure 11). Such a model-by-model assessment of the necessary spinup length would include 934 
the assessment of different variables in different regions and depth-ranges and exceeds the scope 935 
of this study. A comparison between the number of simulated years before the start of the analysis 936 
period of each GOBM and the Fdrift+bias (Figure 11) suggests that a short spin-up is often insufficient 937 
to reduce Fdrift+bias (Griffies et al., 2016; Orr et al., 2017; Séférian et al., 2016). While a longer spin-938 
up increases the computational costs, it provides a relatively simple way to reduce the uncertainty 939 
of the simulated Ftotal in relation to model drift and allows to pinpoint weaknesses of the GOBMs 940 
which are more apparent in steady-state. This paves the way for more complex adjustments related 941 
to the model’s physics, biology, and carbonate chemistry. 942 

 943 

 944 

Figure 11. Estimated global sea-air CO2 bias fluxes related to the models not being in steady-945 
state for 9 GOBMs against the length of their spin-up. The length of the spin-up is defined as the 946 
number of simulated years at that resolution before the start of the analyzed period in 1980, while 947 
the bias-flux (Fbias) is determined as specified in Section 3.2, Table 2. The spin-up ORCA025-948 
GEOMAR was branched from a previous spin-up from the same model but with a coarser 949 
resolution. 950 
 951 

4.2 Riverine and sediment fluxes 952 

The GOBMs differ strongly in their representation of the riverine and sediment fluxes of 953 
carbon, nutrients and alkalinity, ranging from models without such fluxes to models with that 954 
attempt to resolve these fluxes explicitly. According to our approximation, none of the GOBMs 955 
simulates a resulting riverine and sediment flux-driven Fnatriv-bur comparable to the observation-956 
based Fobsriv-bur of -0.65±0.30 Pg C yr-1 (Regnier et al., 2022). The different representation of the 957 
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riverine and sediment fluxes in the GOBMs thus represent an important inherent uncertainty of the 958 
model-simulated regional sea-air CO2 fluxes and the global natural sea-air CO2 fluxes. Global 959 
GOBM-estimates of Ftotal are however unaffected by Fnatriv-bur if equation (9) is used as the 960 
simulated Fnatriv-bur is removed when subtracting FSimB from FSimA and replaced by the observation-961 
based estimate of riverine and sediment fluxes. Apart from riverine carbon and alkalinity fluxes, 962 
an inadequate representation of riverine nutrient fluxes can also affect all components of the sea-963 
air CO2 fluxes via changes in primary production and carbon export (Gao et al., 2023; Lacroix et 964 
al., 2020, 2021), especially in coastal oceans (Louchard et al., 2021) or the Arctic Ocean (Terhaar, 965 
Lauerwald, et al., 2021; Terhaar, Orr, Ethé, et al., 2019). However, estimates of the impact of 966 
changing riverine carbon, alkalinity and nutrient fluxes depends in size and location on the 967 
prescribed riverine input and the model, as seen for CNRM-ESM2-1 (Séférian et al., 2019; Terhaar 968 
et al., 2022) and NorESM1-ME (Gao et al., 2023). More research and model development is 969 
urgently needed to better represent the riverine and sediment fluxes in GOBMs to allow for a less 970 
uncertain quantification of global and regional sea-air CO2 fluxes. An accurate observation-based 971 
estimate of the global riverine and burial derived sea-air CO2 flux is necessary to estimate global 972 
Ftotal for GOBMs without these fluxes. Despite large efforts over the last years (Lacroix et al., 973 
2021; Regnier et al., 2022; Resplandy et al., 2018), the most recent observation-based estimate of 974 
the global Fobsriv-bur of -0.65±0.30 Pg C yr-1 (Regnier et al., 2022) still has large uncertainties 975 
(~45%) that even exceed the simulated inter-model standard deviation of Ftotal before accounting 976 
for Fobsriv-bur (±0.24 Pg C yr-1).   977 

Regionally, the uncertainties of Fobsriv-bur are even larger than globally. Across RECCAP2 978 
chapters, the local distribution of Fobsriv-bur is derived from Lacroix et al. (2021) (see Section 2.3.3), 979 
suggesting a strong riverine-burial-induced carbon outgassing in the Atlantic Ocean (0.27 Pg C yr-980 
1) and a relatively weak riverine-burial-induced carbon outgassing in the Southern Ocean (0.04 Pg 981 
C yr-1). Contrarily, an older estimate by Aumont et al. (2001) suggests a smaller Fobsriv-bur in the 982 
Atlantic Ocean and a larger Fobsriv-bur in the Southern Ocean. One reason for this difference might 983 
be that Lacroix et al. (2021) quantify Fobsriv-bur as the difference between a simulation with 984 
observation-based riverine fluxes of carbon and nutrients and a reference simulation in which 985 
carbon and nutrients were artificially added to each surface ocean grid cell, at the coast and in the 986 
open ocean, to equilibrate carbon and nutrient losses to the sediments. As a result, the signal of the 987 
removal of the artificial surface ocean carbon and nutrient input may override the riverine signal, 988 
especially in regions far away from river deltas such as the Southern Ocean. The artificial carbon 989 
input in the reference simulation would also explain why the global estimate of Fobsriv-bur of Lacroix 990 
et al. (2021) is smaller than other existing estimates (Aumont et al., 2001; Regnier et al., 2022; 991 
Resplandy et al., 2018). Another reason for the difference of the spatial distribution of Fobsriv-bur 992 
between Lacroix et al. (2021) and Aumont et al. (2001) is the assumption of the lability of riverine 993 
organic matter, which is lower in Lacroix et al. (2021). Less labile riverine organic matter can be 994 
transported far away from the river mouths in the Atlantic Ocean before it is remineralized and 995 
outgassed to the atmosphere. If only around a third of the estimated riverine-induced outgassing 996 
in the Atlantic Ocean by Lacroix et al. (2021) would instead occur in the Southern Ocean, Ftotal in 997 
the Atlantic Ocean would double. Hence, more refined estimates of the lability of organic matter 998 
and its effect on Fobsriv-bur are crucial to better constrain the total sea-air CO2 flux and regional 999 
anthropogenic carbon sink estimates.  1000 

 1001 

4.3. Starting date and pre-industrial CO2 1002 
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The different pre-industrial atmospheric CO2 in each GOBM introduces a difference in the 1003 
simulated anthropogenic carbon flux between the GOBMs (Section 3.3.2). We compared two 1004 
estimates for the impact of a later starting date on the anthropogenic carbon fluxes, which suggest 1005 
that a later starting date leads to a global underestimation of 0.04-0.06 Pg C yr-1 (3-5% of Ftotal) 1006 
for the period 1980-2018. However, this underestimation of 0.04-0.06 Pg C yr-1 is highly uncertain 1007 
and possibly underestimated by about 40%.  1008 

To avoid the need of an estimate of the underestimation and the uncertainties that come 1009 
with it, our recommendation would be to start all simulations in 1765 where atmospheric CO2 1010 
levels started to increase due to changes in land use (Khatiwala et al., 2009) and as this year has 1011 
been established in many studies about Cant and Fant (e.g., Khatiwala et al. (2009, 2013), 1012 
Matsumoto & Gruber (2005), and Mikaloff Fletcher et al. (2006)). While this necessitates to 1013 
perform up to 85 more years per simulation, the cost of running GOBMs in hindcast mode is much 1014 
smaller than the cost of fully-coupled Earth System Models and computational constraints should 1015 
thus not represent a major bottleneck.  1016 

 1017 

4.4 Circulation biases 1018 

Previously identified relationships in ESMs between the AMOC and the North Atlantic 1019 
Fantss (Goris et al., 2018) and the inter-frontal sea surface salinity and the Southern Ocean Fantss 1020 
(Terhaar, Frölicher, et al., 2021) could also be identified in this GOBM ensemble. Overall, the 1021 
considered GOBMs underestimate the strength of the AMOC (on average by 3.1±5.2 Sv at 26.5°N) 1022 
and hence Fantss in the Atlantic and slightly overestimate the inter-frontal sea surface salinity (on 1023 
average by 0.05±0.12) and hence Fantss in the Southern Ocean, though the resulting improvements 1024 
of both constrained Fantss estimates are small for the ensemble average.  1025 

The on average relatively good agreement of the simulated and observed sea surface 1026 
salinity between the polar and subtropical fronts in the Southern Ocean is a direct consequence of 1027 
the forcing with atmospheric observation-based temperatures from reanalysis products such that 1028 
the location of the fronts is well presented by the models. In addition, some of the GOBMs also 1029 
restore the salinity at the ocean surface towards observed salinities. Despite this, some GOBMs 1030 
still overestimate the salinity substantially. 1031 

The AMOC strength at 26°N, however, differs significantly across our considered GOBMs 1032 
with its multi-model mean being negatively biased. In comparison, the CMIP6 ESMs also simulate 1033 
a wide range of AMOCs but their multi-model mean is close to the observed values (Terhaar et 1034 
al., 2022). Among the RECCAP2 GOBMs, only CESM-ETHZ has an extraordinarily small 1035 
AMOC, which was improved in a later simulation set-up version. This led to larger Fantss uptake 1036 
in the Atlantic (see Figure 8b). The substantial change in the AMOC from 3.5 to 14.8 Sv in CESM-1037 
ETHZ due to a different sea surface salinity restoring timescale, i.e., a different artificial salinity 1038 
flux across the air-sea interface, highlights the strong sensitivity of the ocean circulation to 1039 
atmospheric fluxes.  1040 

The here used emergent constraints provide relatively robust relationships between 1041 
circulation features and carbon fluxes, which were tested across the CMIP5 and CMIP6 ensembles 1042 
and the here used GOBM ensemble. In the short term, these constraints can be applied to account 1043 
for model biases in circulation when estimating the ocean carbon sink from model ensembles, such 1044 
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as in the Global Carbon Budget (Friedlingstein et al., 2022). While the best estimates of Fantss in 1045 
the Atlantic and Southern Oceans have changed the original estimate by less than 10% here, other 1046 
model ensembles might have larger biases and changes in Fantss might hence be different. The 1047 
relatively small reduced uncertainty in both regions (<11%) is likely due to weaker correlations 1048 
due to different pre-industrial pCO2 in the ensemble of GOBMs, which can relatively easily be 1049 
improved following our recommendation of starting all simulations in 1765. In the long-term, we 1050 
recommend improving the representations of key ocean circulation metrics in the GOBMs.  1051 

 1052 

4.5 Ocean biogeochemistry 1053 

The globally averaged chemical uptake capacity does not show a strong relationship with 1054 
globally integrated Fantss across the GOBM ensemble (Figure 9e) although such a relationship was 1055 
found across an ensemble of ESMs (Terhaar et al., 2022). Here, the relationship might be blurred 1056 
by other processes that are influencing the simulated Fantss, namely circulation biases, different 1057 
starting dates and bias due to different spin-up length. Accounting for the influence of the bias in 1058 
circulation on Fantss (Section 3.4.5.1), i.e., increasing Fantss in the North Atlantic for GOBMs with 1059 
a too small AMOC, supports the relationship, but does not lead to a tighter relationship. If only 1060 
GOBMs with a spin-up above 1000 years were considered, a linear relationship between Fantss and 1061 
the chemical uptake capacity emerges (Figure 9e) that resembles the same relationship across 1062 
ESMs (Terhaar et al., 2022). However, the small number of considered GOBMs and the range of 1063 
observation-based estimates of the chemical uptake capacity does not allow to exploit such a 1064 
potential relationship yet. Eventually, only a GOBM ensemble with all models being spun-up to 1065 
steady-state and better constrained observation-based estimates would allow drawing such 1066 
conclusions more robustly. 1067 

 1068 

4.6 Gap between observation-based estimates and GOBMs  1069 

For the period 1985-2018, our analysis identifies a gap in Ftotal of 0.30 Pg C yr-1 between 1070 
surface pCO2 products (-1.71±0.26 Pg C yr-1) and GOBMs (-1.41±0.28 Pg C yr-1; uncertainty 1071 
includes the ±0.15 Pg C yr-1 1-sigma uncertainty of the Fobsriv-bur estimate). The GOBM 1072 
underestimation of 0.30±0.38 Pg C yr-1 (~18% of the Ftotal of the pCO2 products) can partially be 1073 
explained by the late starting date of the GOBM simulations, circulation biases, and potential 1074 
biogeochemical biases in the GOBMs. In addition, comparisons of the simulated Cant storage since 1075 
the beginning of the industrialization and over recent years from 1994 to 2007 to observation-1076 
based estimates also suggests that the GOBMs underestimate Fantss by 20-30%. Apart from our 1077 
identified average gap between GOBM and pCO2 product estimates of the ocean carbon sink, we 1078 
confirm that the trends in the ocean sink since 2000 also differ globally and regionally 1079 
(Friedlingstein et al., 2022; Hauck et al., 2020). Although these different trends suggest a 1080 
divergence between GOBM estimates and pCO2 products in recent years (Figure 1a), an increase 1081 
in Ftotal by around ~20% in each year accounting for an underestimation of the anthropogenic 1082 
steady-state flux would change this perception. The difference in Ftotal would not appear as a 1083 
divergence of both estimates since 2000 but as a change from an underestimation of Ftotal by the 1084 
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pCO2 products to an overestimation. Nevertheless, the growth rates of Ftotal are different between 1085 
GOBMs and pCO2 products and uncertainties remain of how the ocean sink evolves.  1086 

Regionally, different trends in Ftotal between GOBMs and pCO2 products seem to be driven 1087 
by a mismatch in the temporal evolution of the Southern Ocean carbon sink, and an increasing gap 1088 
between both estimates in the Atlantic (Figure 1). In the Southern Ocean, the pCO2 product 1089 
estimate of the Southern Ocean carbon sink suggested that the variability before 2000 is mainly 1090 
due to decadal variations (Gruber, Landschützer, et al., 2019; Keppler & Landschützer, 2019; 1091 
Landschützer et al., 2015; McKinley et al., 2017). Since 2000, the estimate of the pCO2 products 1092 
of the Southern Ocean carbon flux has been moving toward more uptake. While this ongoing 1093 
increase in uptake based on the  pCO2 products of the Southern Ocean may just be a longer 1094 
variability cycle, it could also indicate a disagreement on the trend of the ocean carbon sink 1095 
between pCO2-based and GOBM-based estimates for unknown reasons. Moreover, it remains an 1096 
open question if differences between both estimates are due to the erroneous models or the 1097 
extrapolation of sparse observations with temporal aliasing.   1098 

The increasing gap in the Atlantic after 2000, however, appears to result from a smaller 1099 
Ftotal trend in GOBMs than in pCO2 products. This smaller-than-observed trend in GOBMs can 1100 
partly be explained by the negatively biased chemical uptake capacity of the GOBMs (Section 1101 
3.3.3.2). Related to this, Lebehot et al. (2019) showed for a suite of ESMs that the North Atlantic 1102 
surface ocean fugacity of CO2 increased at a significantly faster rate than observed and related this 1103 
to substantial biases in alkalinity and its impact on the buffer capacity. The GOBMs also show a 1104 
biased-small AMOC, whose influence on Fantss increases with increasing atmospheric CO2 1105 
(Section 3.3.3.1; Figure S6). Perez et al. (to be submitted) show that the disagreement in Atlantic 1106 
Ftotal trends between GOBMs and pCO2 products is especially large in the subpolar North Atlantic. 1107 
This relates well to our finding about AMOC-biases as the influence of AMOC-biases on Fantss is 1108 
potentially highest in the subpolar gyre where subsurface waters low in Cant outcrop. Furthermore, 1109 
a study with ESMs has shown that AMOC-biases are strongly correlated to SST-biases in the 1110 
North Atlantic (Wang et al., 2014). While we did not analyze SST biases in the North Atlantic, 1111 
Rodgers et al. (in review) found that the seasonal cycle of pCO2 in the subpolar Atlantic is 1112 
thermally driven in the GOBMs while that of the pCO2-products is non-thermally driven. This 1113 
might lead to the Ftotal of the GOBMs being more sensitive to warming (Goris et al., 2018), which 1114 
may contribute to the increasing gap between GOBMs and pCO2-products with time. However, 1115 
the magnitude of these contributions is unclear and remains to be identified. 1116 

  1117 

4.7 Inter-annual and decadal variability of the sea-air CO2 flux 1118 

The here-used GOBM simulations suggest that, for the time-period 1980-2018, the largest 1119 
share of the inter-annual and decadal variability of Ftotal results from Fnatns, i.e., the sea-air flux of 1120 
natural carbon due to climate variability and climate change. Globally, Fnatns is also an important 1121 
flux component as it allows comparing the estimated ocean carbon sink from surface ocean pCO2 1122 
products, which quantify Fantss, Fantns, Fnatns, and Fobsriv-bur (Friedlingstein et al., 2022) to 1123 
observation-based estimates of the interior ocean change of Cant (Gruber, Clement, et al., 2019), 1124 
which quantifies only changes in  Fantss, and Fantns.  1125 
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Previous approximations estimated the global Fnatns from 1994 to 2007 to be 5±3 Pg C 1126 
(Gruber, Clement, et al. (2019); based on observation-based estimates of anthropogenic carbon 1127 
fluxes storage changes and surface ocean fluxes), to be 1.3 Pg C (Friedlingstein et al. (2022), based 1128 
on GOBMs) and to be 1.6±0.8 Pg C (Terhaar et al. (2022), based on ESM simulations). The 1129 
GOBMs here estimate a Fnatns of 1.6±0.8 Pg C over the same period, which is similar to both 1130 
previous model-based estimates, although the ESM-based estimate accounts only for the effect of 1131 
climate change and externally forced variability (volcanoes, variability in atmospheric CO2) and 1132 
not for the unforced variability of the climate system (e.g. winds, atmospheric temperature etc).  1133 

Regionally, the variability of the sea-air CO2 flux is similar between GOBMs and pCO2 1134 
products in the Pacific Ocean, where most of the inter-annual variability is located, and differs in 1135 
the Southern Ocean, where pCO2 products suggest a strong decadal variability before 2000 and a 1136 
different trend after 2000 (Gloege et al., 2021; Gruber, Landschützer, et al., 2019; Landschützer et 1137 
al., 2015) (Figure 1). However, the sparse observations in the Southern Ocean pose a challenge for 1138 
the observation-based estimates. For example, Gloege et al. (2021) showed that the SOM-FFN 1139 
method used by one of these methods (Landschützer et al., 2015) may overestimate the decadal 1140 
variability in the Southern Ocean by 30%. Potential reasons for these differences in variability 1141 
between between GOBMs and pCO2 products in the Southern Ocean might be uncertainties in the 1142 
atmospheric reanalysis data, non-representation of freshwater fluxes, or a too low internal ocean 1143 
variability in the GOBMs, causing too little variability in the upwelling of circumpolar deep water 1144 
or variability in the extent of Antarctic sea ice. It remains an open question how strong the decadal 1145 
variability of the ocean carbon sink in the Southern Ocean is and how it is driven. 1146 

In comparison to Fnatns, the largest Fantns are simulated in the subpolar North Atlantic with 1147 
yet unidentified drivers and in the Southern Ocean where sea ice retreats with global warming and 1148 
westerly winds strengthen and shift southwards (Purich et al., 2016). The strengthening of Fantns in 1149 
the Southern Ocean could be explained by additional free ocean surface due to climate change, 1150 
which can thus take up more Cant or by more upwelling of old water with low Cant content (Le 1151 
Quéré et al., 2007), which can also take up more Cant. Both processes would lead to partial 1152 
compensation by Fnatns fluxes (Hauck et al., to be submitted; Lovenduski et al., 2008), with either 1153 
more natural carbon being upwelled to the surface or more Cnat being released with reduced ice 1154 
cover.  1155 

 1156 

4.8 Comparison to previous evaluations of GOBMs 1157 

Previous studies have assessed GOBMs and their fidelity to simulate the ocean carbon 1158 
sink globally and regionally when forced with atmospheric reanalysis (e.g., Fay & McKinley 1159 
(2021) and Hauck et al. (2020)). Hauck et al. (2020) found that GOBMs on average overestimate 1160 
the observed pCO2 from SOCAT (Bakker et al., 2016), which suggests an underestimation of the 1161 
ocean carbon uptake by GOBMs. This is consistent with our assessment that suggests an 1162 
underestimation of the simulated ocean carbon sink primarily because of circulation biases. The 1163 
late-starting date and biases in the chemical uptake capacity in models also tend to enhance this 1164 
underestimation. Fay & McKinley (2021) tested how well GOBMs resemble the pCO2 products 1165 
flux estimates regionally, thereby repeating an analysis from the RECCAP1 project by Séférian 1166 
et al. (2014). By selecting the GOBMs that perform best, they suggest that the simulated global 1167 
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ocean carbon sink is smaller than previously estimated, opposite to what this study and Hauck et 1168 
al. (2020) suggest. Several assumptions are made by Fay & McKinley (2021), such as the 1169 
application of the local riverine adjustment by Lacroix et al. (2021), not accounting for each 1170 
models’ simulated regional Fnatriv-bur, and that an area-weighted repartitioning Fdrift+bias over the 1171 
entire ocean surface is valid. However, the local riverine adjustments come with large 1172 
uncertainties (Section 4.2) and our analysis suggests that Fdrift+bias and Fnatriv-bur are not evenly 1173 
distributed. These adjustments affect the regional Ftotal and don’t allow for robust simulated 1174 
estimates of the regional Ftotal. Therefore, constraining the global Ftotal with regional Ftotal appears 1175 
to be prone to large uncertainties and we recommend rather using underlying physical and 1176 
biogeochemical processes for such constraints. 1177 

 1178 

5 Conclusions 1179 

Our analysis of GOBMs helps to explain inter-model differences and differences between 1180 
pCO2-products and ocean biogeochemistry models estimates of the ocean carbon sink (DeVries et 1181 
al., in review; Friedlingstein et al., 2022). These differences can be divided into (i) differences in 1182 
the simulation set-ups, i.e., starting year and model spin-up, (ii) dynamical differences, i.e., model 1183 
physics and biogeochemistry, and (iii) differences in boundary fluxes across the land-sea and sea-1184 
sediment interfaces. 1185 

The differences in the simulation set-ups can be resolved relatively easily by (a) using the 1186 
CO2 mixing ratio from 1765 as pre-industrial value and branching the historical simulation from 1187 
the pre-industrial control simulation in 1765 and (b) increasing the spin-up period to reduce the 1188 
uncertainty of the simulated Ftotal in relation to model drift and allows to pinpoint weaknesses of 1189 
the GOBMs and relationships across the GOBMs which are more apparent in steady-state.  1190 

Although one might suspect that an increasing spin-up would cause models to diverge from 1191 
observations, we have found no evidence for this in this GOBM ensemble (Figure 8 and 9). Starting 1192 
simulations in 1765 is an attractive option as 85 years of simulation may remove a global bias that 1193 
is at least 0.04-0.06 Pg C yr-1 in simulations that started in 1850 (underestimation of the sink). We 1194 
here recommend using 1765 and not 1800 as in the TTD and ΔC* estimates as the difference 1195 
between atmospheric pCO2 in 1765 and 1800 already has a substantial effect on the ocean carbon 1196 
sink until today (Bronselaer et al., 2017). The bias due to a too short spin-up is already accounted 1197 
for on a global level through subtraction of the flux of the control simulation and hence does not 1198 
affect estimates of the global carbon sink, such as the Global Carbon Budget estimate 1199 
(Friedlingstein et al., 2022). However, a too short spin-up does impact regional flux estimates, 1200 
particularly in the Southern Ocean. Moreover, where the models not being in steady-state also 1201 
influences the surface ocean carbonate chemistry. Such spin-up related biases in the surface ocean 1202 
carbonate chemistry can influence sea-air CO2 fluxes directly and also limit the identification of 1203 
ensemble wide biases via emergent constraints. 1204 

Improving the dynamical representation of the ocean circulation and biogeochemistry is 1205 
more difficult. However, two ESM-derived relationships between the anthropogenic carbon flux 1206 
into the ocean and key parameters of associated model dynamics (AMOC, Southern Ocean inter-1207 
frontal sea surface salinity) provide robust relationships to adjust simulated anthropogenic carbon 1208 
fluxes for these two key processes while these presentations are not improved yet. Our results show 1209 
that the GOBMs have especially large offsets in the AMOC (3.1±5.2 Sv) and slightly overestimate 1210 
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the inter-frontal sea surface salinity in the Southern Ocean (0.03±0.13). Both relationships would 1211 
likely have been stronger and helped to reduce uncertainties more if all simulations had used the 1212 
same starting dates and pre-industrial pCO2. As opposed to biases in the ocean circulation, biases 1213 
in the ocean biogeochemistry could not be directly linked to sea-air CO2 fluxes. Our 1214 
recommendations for model set-up will likely improve the robustness of these relationships and 1215 
allow us to infer the influence of ocean circulation and biogeochemistry biases on anthropogenic 1216 
carbon fluxes more clearly. In the long-term, we recommend more complex adjustments within 1217 
the set-ups of the GOBMs to reduce these biases. 1218 

The relatively poor representation of riverine and burial fluxes introduces another 1219 
uncertainty to the simulated sea-air CO2 fluxes. Although the representation of these fluxes and 1220 
the resulting sea-air CO2 fluxes do not directly influence the GOBM-based global ocean carbon 1221 
sink estimated in the Global Carbon Budget (Friedlingstein et al., 2022), they make a model 1222 
quantification of natural sea-air CO2 fluxes almost impossible due to their regionally large size 1223 
and introduce large uncertainties for the estimation of regional total sea-air CO2 fluxes. Improving 1224 
the representation of these fluxes and their underlying processes is thus of importance to better 1225 
understand the regional ocean carbon sink. 1226 

As simulated sea-air CO2 fluxes caused by riverine and burial fluxes do not or poorly 1227 
represent the observation-based estimate of this flux (Regnier et al., 2022), it remains challenging 1228 
to compare the modeled estimates to the observation-based estimates of the ocean carbon sink. 1229 
Until these sea-air CO2 fluxes caused by riverine and burial fluxes are better simulated, an 1230 
observation-based estimate of the pre-industrial sea-air CO2 flux from riverine carbon, alkalinity, 1231 
and nutrient input and its large uncertainty has to be added to the simulated flux by GOBMs to 1232 
estimate Ftotal or has to be subtracted from the pCO2 products to be able to compare these estimate 1233 
the global carbon sink. While improvements in the global estimate of these pre-industrial sea-air 1234 
CO2 fluxes from riverine carbon and nutrient input have been recently made (e.g., Gao et al. (2023) 1235 
and Lacroix et al. (2020)), the regional distribution and temporal variability of these fluxes still 1236 
remains highly uncertain and renders a comparison between simulated and observation-based 1237 
estimates of the ocean carbon sink complicated. 1238 

The work here contributes to understanding the apparent gap between the growth rates of 1239 
the carbon sink in model-based and pCO2 product estimates. A number of different factors (late 1240 
starting date, circulation biases, biogeochemical biases, biases in Cant storage) suggest that the 1241 
GOBMs underestimate the ocean carbon sink on average. If the global ocean carbon sink estimate 1242 
from GOBMs was on average higher, the different trends since 2000 in the GOBM estimate and 1243 
pCO2 products would not lead to a divergence of both estimates, but to a crossing from a weaker 1244 
estimate from pCO2 products to a stronger estimate from pCO2 products. Although explanations 1245 
exist for the difference in the long-term mean carbon sink, the difference between the growth rates 1246 
of the ocean carbon sink since 2000 globally, and in the Southern and Atlantic Oceans remains 1247 
unresolved. 1248 

Overall, the model evaluation has helped to give recommendations for the set-up not only 1249 
of RECCAP2-simulations but also of other simulations and provides possible explanations for the 1250 
offset between estimates of the mean ocean carbon sink. In the short term, the most important steps 1251 
would be to start simulations in 1765, and increase the spin-up to bring the pre-industrial 1252 
simulations as close as possible to a steady state and to make key output metrics relating to ocean 1253 
circulation, biogeochemistry and the land-ocean interface available. In the long-term, a better 1254 
representation of riverine and burial boundary fluxes and of ocean circulation and biogeochemistry 1255 
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is of importance. Possible avenues to achieve a better representation of ocean dynamics are, for 1256 
example, simulations with different atmospheric reanalysis sets to quantify the influence of the 1257 
prescribed atmospheric boundary conditions as well as testing the influence of higher resolution 1258 
for the GOBMs.  1259 
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