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Key Points: 13 

• The WetSpass model has estimated spatial distribution of groundwater recharge 14 
accounting by hydrometeorological and bio-geophysical factors.  15 

• The relationship between simulated recharge and climate strongly correlates with 16 
function derived from a global recharge data and climate.  17 

• The climate is the dominant factor influencing the fraction of recharge, causing 18 
groundwater recharge.  19 

• Baseflow can be a proxy for groundwater recharge excluding high terrain, small, and 20 
artificial surface water dividing catchments. 21 

• Vegetation is the second crucial controlling factor.   22 
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Abstract 23 
Groundwater Recharge (GR) is a crucial part of sustainability studies since it is one of the key 24 
factors responsible for making the groundwater resource renewable. An optimum strategy for 25 
responding to water level decline is artificial groundwater recharge. Artificial groundwater 26 
recharge projects are limited by cost, and the effective area is less. The role of natural factors for 27 
groundwater recharge is well defined and recognized in arid regions, whereas it's challenging for 28 
humid areas. The current study's main aim is to understand the contribution of the bio-29 
geophysical aspect to groundwater recharge in the subtropical monsoon state of Uttar Pradesh in 30 
the Gangetic Plain. However, recharging is also one of the least understood processes because it 31 
changes over time and space and is challenging to quantify directly for a larger area. This 32 
research applied the 'water and energy transfer among bare soil, vegetation, and atmosphere 33 
(WetSpass)' model to estimate direct natural GR for Uttar Pradesh. The model's output and its 34 
regression processes with climate, slope, soil type, and vegetation give a comprehensive 35 
understanding of natural controlling factors. Among the aforementioned controlling factors, 36 
though climate sharpens recharge dominantly, vegetation has shown a significant role in some 37 
areas of the state. In contrast to the prevailing view, vegetation cover can enhance groundwater 38 
recharge in the state. Thus, planting, and various tree management options, including 39 
groundwater-feeding species as a secondary plantation in cropland, can improve groundwater 40 
resources. 41 
Plain Language Summary 42 
Information on groundwater recharge is essential for groundwater modeling and management but 43 
is challenging to monitor and assess across broad areas. This study has shown that openly 44 
accessible data provides an important opportunity to examine the spatial distribution of 45 
groundwater recharge using the WetSpass model. Discussing the spatial distribution of 46 
groundwater recharge along with the natural controlling factors is vital for establishing policies 47 
and regulations on proper management for sustainable usage of aquifers. Further, the study has 48 
highlighted the contribution of vegetation to the up taking of recharge, which could deviate from 49 
the traditional view of artificial groundwater recharge to enhance the availability of supportive 50 
natural factors.   51 

1 Introduction 52 
Groundwater is the largest freshwater source in the world and is a nonrenewable source 53 

to meet agricultural, domestic, and industrial water requirements, especially for tropical and 54 
subtropical semi-arid regions(Owuor et al., 2016). GR is a crucial part of sustainability studies 55 
since it is one of the key factors responsible for making the groundwater resource renewable 56 
(Alley et al., 2002; Berghuijs et al., 2022; Gleeson et al., 2012)and sustainability of the 57 
groundwater-supportive ecological community and inland water (Gleeson et al., 2020). The entry 58 
of water into the saturated zone made available at the water table surface and the corresponding 59 
flow away from the water table within the saturated zone is referred to as recharge (O. Batelaan 60 
& De Smedt, 2007). Groundwater recharge rates vary by magnitude due to the diversity of 61 
Earth's landscapes and climates (MacDonald et al., 2021; Moeck et al., 2020; Scanlon et al., 62 
2006). However, recharging is one of the least understood processes because it changes over 63 
time and distance with surface properties, morphology, and vegetation (Crosbie et al., 2018; 64 
Moeck et al., 2020; de Vries & Simmers, 2002). In general, near-surface conditions greatly 65 
impact groundwater recharge in (semi-) arid regions than in more humid locations. Deep 66 
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percolation in humid environments is primarily governed by the potential surplus of precipitation 67 
(rainfall minus potential evapotranspiration), the soil's ability for infiltration, and the subsurface's 68 
capacity for storage and transit (de Vries & Simmers, 2002). Thus, it is challenging to quantify 69 
directly (Healy & Scanlon, 2010; Moeck et al., 2020; Scanlon et al., 2006; Zomlot et al., 2015), 70 
and validation of large-scale simulated recharge is remnant yet (Döll & Fiedler, 2008; de Graaf 71 
et al., 2019; Li et al., 2021; Müller Schmied et al., 2021). Though numerous studies/models exist 72 
to simulate the long-term behavior of aquifer systems, such outcomes cannot be incorporated 73 
into the development of management schemes excluding reliable estimation of spatiotemporal 74 
variation of recharge (Sophocleous, 2005). 75 

India ranks first among the world's largest groundwater exploiters, with 25% of the total 76 
global abstraction, about 230 km3 per year. Since the beginning of the Green Revolution in the 77 
1980s, many states have been over-pumping groundwater for cash crop cultivation, which is 78 
highly water-intensive (Sarkar et al., 2022). One of the world's largest alluvial expanses is the 79 
Ganga Plain (Pokharia et al., 2017; Singh, 1996), covering nearly two-thirds of Uttar Pradesh. 80 
Uttar Pradesh is the largest producer of cash crops, drawing out billions of liters of groundwater. 81 
Besides introducing high-yielding crops, increasing population and industrialism are adverse 82 
demands for groundwater in the state. Thus, estimating the groundwater recharge rate and 83 
assessing controlling factors is paramount for establishing new policies and regulations for 84 
proper aquifer management. 85 

Though various methods have been developed to estimate groundwater recharge (Scanlon 86 
et al., 2002; Zomlot et al., 2015), discrepancy and uncertainty are imperious factors in recharge 87 
simulations (Scanlon et al., 2002). According to regional scale analysis of Carbonate, landscapes 88 
represent the underestimation of GR from frequently applied hydrological models. Also, it is 89 
uncertain how common this model bias is, given that the increased recharge rates have been 90 
linked to high preferential flows in karst terrain (Hartmann et al., 2017a). Such disparities 91 
between models and observations are based on measurements of recharge and groundwater in 92 
specific landscapes, the physical properties of aquifers, and climate conditions (O. Batelaan & 93 
De Smedt, 2007; Berghuijs et al., 2022). As a result, over the last two decades, more approaches 94 
have been developed to assimilate the spatial-temporal variance of recharge in groundwater 95 
modeling (Berghuijs et al., 2022; Best & Lowry, 2014; Cooper et al., 2015; Eilers et al., 2007; 96 
Hemmings et al., 2015; Hughes et al., 2008; Jyrkama & Sykes, 2007; Markstrom et al., 2008; 97 
Minor et al., 2007; Zomlot et al., 2015). Instead of authentical GR estimation, other primary 98 
benefits of this advancement are that it will allow researchers to investigate the effects of climate 99 
and land-use change on groundwater resources at unprecedented degrees of temporal and 100 
geographical variability (Healy & Scanlon, 2010).   101 

WetSpass was designed as a physically based methodology for estimating long-term 102 
average, spatial distribution, water balance components, surface runoff, evapotranspiration, and 103 
groundwater recharge (O. Batelaan & De Smedt, 2007; Okke Batelaan & De Smedt, 2001). The 104 
acronym for Water and Energy Transfer between Soil, Plants, and Atmosphere in a quasi-steady 105 
state is referred to as "WetSpa." It was constructed on the foundations of the "WetSpa" time-106 
dependent spatial distributed water balance model (O. Batelaan & De Smedt, 2007; Okke 107 
Batelaan & De Smedt, 2001; Zomlot et al., 2015). In recharge estimation, the WetSpass model 108 
functions along with the spatial distribution of soil texture, slope, the spatiotemporal distribution 109 
of land use, and climatic variables. WetSpass can be iteratively linked to a groundwater model, 110 
MODFLOW, which provides the water table location, and WetSpass returns recharge estimates 111 
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correspondingly (Zomlot et al., 2015). The WetSpass model has been applied for different 112 
watersheds in the world with the heeding significance of estimation of the long-term behavior of 113 
water balance components and impact of land use land cover changes on recharge such as Nile 114 
delta aquifer, Egypt (Armanuos et al., 2016), Beijing China (Zhang et al., 2017), Bilate basin 115 
Ethiopia (Dereje & Nedaw, 2019), Birki watershed of Geba river basin Ethiopia (Meresa et al., 116 
2019), Poznan Upland Poland (Graf & Przybyłek, 2018), Flanders region of Northern Belgium 117 
(Zomlot et al., 2015), Moulouya basin, Morocco (Amiri et al., 2022), and Southern hill region 118 
Bangladesh (Sadeak & Khan, 2021).   119 

Several publications advise estimating recharge using various techniques and contrasting 120 
the results (Risser et al., n.d.; Scanlon et al., 2002) due to the challenge of recharge estimations 121 
for a larger area. Base flow from stream gauging stations has been utilized in numerous studies 122 
to estimate groundwater recharge as a measure of comparison (Arnold et al., 2000; O. Batelaan 123 
& De Smedt, 2007; Eckhardt, 2008; Risser et al., n.d.; Zomlot et al., 2015). Base flow is the 124 
gradually changing portion of streamflow that results from groundwater storage and other 125 
delayed sources, including lakes, wetlands, melting snow, ice, and channel bank storage (Beck, 126 
Van Dijk, et al., 2013). Base flow can be defined as the groundwater reservoir's discharge into 127 
the rivers related to the subtropical state of Uttar Pradesh (Zomlot et al., 2015). Base flow 128 
estimates recharge under the primary presumption that groundwater discharge and recharge are 129 
roughly equal. That base flow equals the entire groundwater discharge of a watershed (Piggott et 130 
al., 2005). Different watershed characteristics and the reciprocal action of groundwater-surface 131 
water drive the relationship between recharge and baseflow. Hence, except for some minor 132 
catchments and catchments with silty soil, the base flow might thus be regarded as a proxy for 133 
recharge (Zomlot et al., 2015). However, due to the difficulty in directly comparing base flow 134 
and recharge because most base flow methodologies find some proxy for groundwater discharge 135 
and, thus, for actual recharge, the scientific community does not fully embrace these hypotheses 136 
(Rutledge, 2005). Thus, this study has compared the simulated recharge values from WetSpass 137 
with simulated recharge values from global groundwater recharge region models. The state of 138 
Uttar Pradesh is humid and subtropical; hence, the WetPass results have been compared with 139 
model outputs based on climate aridity (Berghuijs et al., 2022). The model based on climate 140 
aridity has been compared with scientifically accepted global models such as PCR-GLOB (de 141 
Graaf et al., 2019), WATER-GAP (Müller Schmied et al., 2021), and machine learning models 142 
(Mohan et al., 2018)based on observed versus model predicted at 5237 sites (Berghuijs et al., 143 
2022) and proved that compared to the aridity based model other models underestimating 144 
recharge 50% than actual recharge measurements (Berghuijs et al., 2022).  145 

In WetSpass simulation, accounting wide range of spatial variability of 146 
hydrometeorological and bio-geophysical factors are caused for susceptibility to discuss the 147 
behavior of controlling factors individually and combinedly. Statistical regression approaches are 148 
generally used in hydrologic studies, such as estimating recharge and base flow based on the 149 
watershed (Delin et al., 2007; Gebert et al., 2007; Jing et al., 2019; Longobardi & Villani, 2008; 150 
Mazvimavi et al., 2005)The previous studies have successfully performed a potential statistical 151 
correlation between WetSpass simulated groundwater recharge and base flow for understanding 152 
the reliability of functions of WetSpass and assessment of controlling factors for recharge (O. 153 
Batelaan & De Smedt, 2007; Okke Batelaan & De Smedt, 2001; Zomlot et al., 2015).  154 

However, the regression approach might encounter significant challenges when the 155 
independent variables are associated with one another (Jasim Mohammed Rajab et al., 2012). 156 



manuscript submitted to Water Resources Research 

 

Principal Component Analysis (PCA) is hence helpful in reducing the multicollinearity issue 157 
(Jasim M. Rajab et al., 2013). Precipitation, evapotranspiration, saturated hydraulic conductivity 158 
of soil (Ks), and land-use type are the key watershed features that affect the recharge of the state 159 
of Uttar Pradesh. PCA has encountered the significance of controlling factors among those for 160 
variation of the spatial distribution of GR.  161 

 162 
Figure 1. (a) Recharge mechanisms modified after (Healy, 2010), and (b) Diffused groundwater 163 
recharging process flow diagram based on the hydrological cycle.  164 

2 Materials and Methods 165 

2.1 Study Area 166 
The study area covers the humid subtropical Central Ganga Plain, which expanded over 167 

the state of Uttar Pradesh. The state covers an area of approximately 2,40,928 km2 and is 168 
bordered by latitudes 23°52 to 31°25 N and longitudes 84°39 to 77°03 E. Water stress has been 169 
present throughout the state for several decades as a result of the alarming population expansion 170 
as the highest populated state of the highly populated nation of the world, rapid urbanization, and 171 
quick industrialization (Ansari et al., 2000; Umar, 2006). Agriculture is the mainstay of living, 172 
strongly reliant on groundwater(Umar, 2006). The Southwest monsoon significantly impacts the 173 
region's climate, which is generally humid. Spring, which lasts from the middle of February to 174 
the middle of March, is one of the distinct seasons. Summer is the period from the middle of 175 
March to the middle of June when temperatures are high (the mean maximum temperature is 176 
roughly 47 0C), and the wind is strong, hot, and dry. The rainy season begins from the end of 177 
June through the end of September. 1020-1140 mm of rain has been recorded as falling in the 178 
area annually. The average minimum and maximum temperatures during winter, lasting from 179 
November to mid-February, are 7.6 0C and 21 0C, respectively. It rarely gets below 0 0C, and 180 
although it occasionally rains in January, the air is generally quite dry (Chauhan et al., 2015; 181 
Umar, 2006). 182 
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 183 
Figure 2. The central Ganga basin covers the state of Uttar Pradesh. 184 

The state comprises many rock types, ranging from the oldest Archean metamorphoses to 185 
the most recent Quaternary alluvium. An extensive area of the state is covered by Gangetic Plain 186 
alluvium, which is separated from Himalayas and Peninsula India. Archean to Mesozoic period 187 
rocks is being exposed in the Southern peninsular portion of Uttar Pradesh. Due to the above-188 
explained geological framework, the state's hydrogeological structure comprises porous and 189 
fractured rocks. The primary rivers that represent the drainage of Uttar Pradesh include the 190 
Ganga, Yamuna, Ramganga, Gomti, Ken, and Betwa and Ghaghra (Kumar Dinkar et al., 2019).  191 
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 192 
Figure 3. Spatial coverage of (a) Soil texture, (b) change in elevation as slope percentage, and 193 
(c) land use of Uttar Pradesh. 194 

2.2 Data for WetSpass Model 195 
The WetSpass model requires spatial distribution of precipitation (mm), potential 196 

evapotranspiration (mm), temperature (degree Celsius (0C)), Wind speed (m/s), groundwater 197 
depth (m), topography (m), slope (%), and LULC data and spatial resolution should be ideal for 198 
all the raster layers. The study is carried out with 1km × 1km spatial resolution, and this fine-199 
scale climatic data has been downloaded from Climatologies at High Resolution for the Earth's 200 
Land Surface Areas (CHELSA) (Karger et al., 2017). For winter and summer, two sets of raster 201 
data are needed to run a year simulation (Park et al., 2014). Winter is the first simulated using 202 
WetSpass as a dry season and summer as a wet season. In current study have averaged monthly 203 
precipitation, potential evapotranspiration, temperature, and wind speed data to estimate seasonal 204 
data. Groundwater depth data has been acquired seasonally as pre-monsoon for winter and post-205 
monsoon for summer. LULC data has been obtained yearly. Instead of raster layers, necessary 206 
coefficient values related to LULC type and soil texture, runoff coefficient values, and individual 207 
aerial fractions for each land use type have been provided as pre-defined attribute tables based on 208 
the literature references.  209 
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2.3 Base Flow Index Data 210 
The base flow index (BFI) measures the base flow's contribution to the overall stream 211 

flow (Bloomfield et al., 2009; Zomlot et al., 2015). The study has chosen BFI because it has been 212 
frequently used in recent literature and proved crucial in identifying how watershed 213 
characteristics affect base flow (Jasim M. Rajab et al., 2013; Zomlot et al., 2015). The study has 214 
acquired base flow index data of 5km × 5km spatial resolution from the Global Patterns of Base 215 
Flow Index by (Beck, van Dijk, et al., 2013). The study of (Beck, van Dijk, et al., 2013)s defined 216 
as the ratio between long-term mean base flow and stream flow. The study has used streamflow 217 
data from a highly diverse set of 3394 catchments covering over 10,000 km2 globally and widely 218 
applicable models for climatic and physiographic data. The BFI of (Beck, van Dijk, et al., 2013) 219 
has shown an R square value of 0.82 by performing with watershed characteristics of 220 
catchments. In the present study, recharge simulation resolution is 1km ×1km, and due to the 221 
level to gentle slope variation of the state of Uttar Pradesh, base flow estimation should be more 222 
associated with climate and other physiographic characteristics, including LULC, geology, and 223 
soil. 224 

2.4 WetSpass Model 225 
The WetSpass model simulated water and energy transfer between soil, plants, and the 226 

atmosphere in a quasi-steady state and was the first novel developed by (Okke Batelaan & De 227 
Smedt, 2001)and modified by (O. Batelaan & De Smedt, 2007). On a regional scale, this 228 
numerical forecast of the long-term (seasonal or monthly) spatial patterns of surface runoff, 229 
evapotranspiration, and groundwater recharge (O. Batelaan & De Smedt, 2007; Zomlot et al., 230 
2015). The model views a basin or area as an arrangement of raster cells. Each raster cell is 231 
further separated into four surface models impermeable surface, open water, bare soil, and 232 
vegetation. Each grid cell's seasonal water balance is determined (Zomlot et al., 2015). The 233 
model uses a general equation for the water balance (Park et al., 2014),  234 𝑃 = 𝑆 + 𝐸𝑇 + 𝑅                   (1)                         235 

where P is precipitation (mm), S is surface runoff (mm), ET is evapotranspiration (mm), and R is 236 
recharge (mm).  237 𝑆௝ = 𝑓ଵೕ. 𝑃௡                       (2)                         238 

where f1 is the runoff factor for the surface model j that depends on land use type (as vegetated 239 
area (v), bare soil area (s), open water area (o), and impervious surface (i)), vegetation 240 
characteristics, soil texture, and slope. Pn is net precipitation recharging the subsurface (total 241 
precipitation minus interception by the plant canopy) (Yenehun et al., 2021).  242 𝐸𝑇௝ = 𝑓ଶೕ. 𝑃𝐸𝑇                    (3)                         243 

where f2 is the evapotranspiration factor for the surface model j that depends on land use type, 244 
vegetation characteristics, soil texture, and slope. PET is the potential evapotranspiration of open 245 
water (mm) (Yenehun et al., 2021).  246 𝑇௥௩ = 𝑐. 𝑃𝐸𝑇                     (4) 247 

where Trv is transpiration, and c is the vegetation coefficient. The Penman-Monteith equation can 248 
be used to calculate the vegetation coefficient (Park et al., 2014). 249 
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The WetSpass model has calculated c as the ratio of reference vegetation transpiration from the 250 
Penman-Monteith equation.  251 𝑐 = ଵାఊ ∆ൗଵାఊ ∆(ଵାఊ ∆ൗ )൘                   (5) 252 

where γ/ Δ is the Penman coefficient, rc is canopy resistance (s/m), and ra is aerodynamic 253 
resistance (s/m). 254 
ra is a function of plant height and wind speed (Amer & Hatfield, 2004).  255 𝑟௔ = ଵ௞మ௨ೌ ቂln ቀ௭ೌିௗ௭೚ ቁቃଶ                 (6) 256 

Where k is Von Karman constant (0.4), ua is wind speed (m/s), at za measurement level (2m), zo is 257 
zero-plane displacement length (m), and d is roughness length for the vegetation or soil (m).  258 𝐼 = 𝐶௜௣. 𝑃                       (7) 259 

where Cip is the constant percentage of interception by vegetation type.  260 
The interception, transpiration, and evaporation from the bare soil in a grid cell are added to 261 
determine the total actual evapotranspiration (Zomlot et al., 2015) 262 
Calculations of surface runoff consider the capacity of the soil for infiltration as well as the 263 
quantity and intensity of the precipitation. The surface runoff is calculated in two levels. At the 264 
first level, it has been calculated potential surface runoff.  265 𝑆௩ି௣௢௧ = 𝐶ௌ௩. (𝑃 − 𝐼)                    (8)                         266 

where CSv is the runoff coefficient that is derived as a function based on slope, soil texture, and 267 
vegetation type.  268 
The actual surface runoff, Sv, is estimated for recharge areas in the second stage by considering 269 
variations in precipitation intensities connected to soil infiltration capabilities because Sv-pot 270 
simulates only groundwater-saturated areas. 271 𝑆௩ = 𝐶ு௢௥. 𝑆௩ି௣௢௧                      (9)                         272 

where CHor is the parameterization coefficient for the seasonal precipitation component of the 273 
Hortonian surface runoff. It can be calculated by determining the proportion of seasonal 274 
precipitation with an intensity greater than a specific soil type's capacity for infiltration. 275 
Equation (1) has been rearranged based on the four different surface models based on the four 276 
surface environments where a raster cell has been subdivided.  277 
For vegetated areas,  278 𝑃 = 𝐼 + 𝑆௩ + 𝑇௩ + 𝑅௩                     (10)    279 

For bare soil areas,  280 𝑃 = 𝑆௦ + 𝐸௦ + 𝑅௦                    (11)                         281 

For open water areas 282 𝑃 = 𝑆௢ + 𝐸௢ + 𝑅௢                     (12)                         283 

For impervious surfaces  284 𝑃 = 𝑆௜ + 𝐸௜ + 𝑅௜                                                                                                                       (13)  285 

where Tv is actual transpiration (mm), and I is interception (mm). 286 
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The residual term from the water balance calculates groundwater recharge (Zomlot et al., 2015). 287 
The independent water balances for the various fractions per raster cell are then added to 288 
determine each grid cell's water balance.  289 𝐸𝑇௖ = 𝑎௩. 𝐸𝑇௩ + 𝑎௦. 𝐸௦ + 𝑎௢. 𝐸௢ + 𝑎௜. 𝐸௜                                                                                    (14) 290 𝑆௖ = 𝑎௩. 𝑆௩ + 𝑎௦. 𝑆௦ + 𝑎௢. 𝑆௢ + 𝑎௜. 𝑆௜                   (13)                         291 𝑅௖ = 𝑎௩. 𝑅௩ + 𝑎௦. 𝑅௦ + 𝑎௜. 𝐸௜                 (14)                         292 

where c and a indexes represent cell and aerial fraction of different surface models, respectively.  293 
(O. Batelaan & De Smedt, 2007) provide a more detailed explanation, calibration, and validation 294 
based on a case study of the WetSpass model for a region of Flanders. 295 
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 296 
Figure 4. Illustration of workflow and data processing. 297 

2.6 Primarily Identification of Controlling Factors 298 
The study has considered precipitation, potential evapotranspiration, groundwater depth, 299 

NDVI, and saturated hydraulic conductivity of soil to be the most significant parameters for 300 
recharge in the state after employing the Pearson correlation test. Pearson's correlation 301 
coefficients can be used to determine the significance of potential relationships between recharge 302 
and different climatic and bio-geophysical watershed characteristics (Zomlot et al., 2015). 303 
Understanding the connection between soil texture and recharge is crucial for water resource 304 



manuscript submitted to Water Resources Research 

 

management because soil texture can affect the water balance and groundwater storage at 305 
different scales of inter-annual variability (Keese et al., 2005; Wang et al., 2009). Timing and 306 
recharge rates are influenced by land use and land cover. Previous studies have shown the 307 
influence of geology and landforms on recharge rates (Moeck et al., 2020). But the state's 308 
geology is dominantly unconsolidated sediments and a flat plain in landform, excluding the 309 
smaller area peninsular area in the extreme south. According to a global synthesis of recharge 310 
estimates, the vegetation type is the second most significant element influencing recharge rates, 311 
behind precipitation (Ajami, 2021; Kim & Jackson, 2012). Thus, vegetated type and soil texture 312 
are taken into account as the qualitative parameters responsible for the state's spatial distribution 313 
of direct natural groundwater recharge variation in the state. Regression analysis is used to find a 314 
relationship between the values of two or more variables, at least one of which is subject to 315 
random variation, and to determine the statistical significance of such a relationship, whether 316 
assumed or calculated (Oosterbaan, 1994). The linear regression analysis has been performed 317 
between recharge and precipitation, soil texture (saturated hydraulic conductivity), and 318 
vegetation type (NDVI). A statistical relation has not been obtained between recharge and 319 
saturated hydraulic conductivity or between recharge and NDVI. Thus, 2D frequency diagrams 320 
have been generated to identify the number of grid cells with a higher correlation with recharge, 321 
saturated hydraulic conductivity, and NDVI.  322 

2.5 Principal Component Analysis 323 
To compress a huge set of variables into "artificial" variables, known as "principal 324 

components," which account for the majority of the variance in the original variables, principal 325 
components analysis uncovers hidden structure in the dataset. The high correlation between 326 
variables clearly indicates high redundancy in the data. Therefore, the study has employed PCA 327 
to reduce redundancy and identify significant variables that account for the majority of the 328 
variation in recharge. Since the principal components (PCs) are not independent of the scales in 329 
which the original variables are measured, the derivation of the PCs was based on the correlation 330 
matrix of standardized data (Jolliffe, 2002; Zomlot et al., 2015). PCA has been conducted in two 331 
levels. In the first approach, PCA has been employed separately for different vegetated areas 332 
such as agriculture, forest, sparsely vegetated, and orchard areas associating data of P, PET, 333 
Normalized Difference Vegetation Index (NDVI) and Ks to identify significant GR controlling 334 
factors for each vegetated area. The second PC analysis was carried out with R square values 335 
between GR, P, PET, NDVI, and Ks of each grid cell. Based on the PC 1 and PC 2 score values, 336 
it has classified extreme positive influence grids for PC 1 and PC 2 to identify areas (raster grids) 337 
where GR is controlled by dominantly either precipitation or vegetation type.  338 

3 Results and Discussion 339 

3.1 Spatial Distribution of Water Balance Components 340 
The WetSpass simulation has generated water balance components seasonally and 341 

annually. These raster outputs represent the spatial distribution of the water balance components 342 
and grided quantification.  343 
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 344 
Figure 5. Spatial distribution of the simulated long-term average of (a) groundwater recharge, 345 
(b) evapotranspiration, and (c) surface runoff.  346 

The long-term average of simulated recharge over the state shows a wide range of 347 
recharge variations between -3.5 to 222 mm. The annual average value per grid is 16.87 mm, and 348 
the standard deviation is 21.74 mm. The total aquifer recharge is significantly contributed by the 349 
summer season due to associating with the rainy season. The long-term seasonal average 350 
recharge values per grid are 16.83 mm and 0.04 mm for summer and winter, respectively. 351 
Negative recharge happens when the overall evapotranspiration exceeds the infiltration (Net 352 
Precipitation- Runoff). Only areas with shallow groundwater experience this. Plant roots can 353 
enter the saturated zone when the water table is close to the Earth's surface, such as valleys, 354 
polders, and regions close to lakes and rivers. This enables the plants to transpire water straight 355 
from the groundwater system. 356 
The annual average of evapotranspiration spatially varies from 70 to 318 mm and is dominant 357 
over the state due to the more extensive coverage of croplands. The average evapotranspiration 358 
and standard deviation per grid cell are 150.08 mm and 21.37 mm, respectively. Land usage and 359 
vegetation can have significant effects on the recharge processes. Types and densities of 360 
vegetation influence evapotranspiration patterns. A land surface covered in vegetation often 361 
evaporates at a higher rate, leaving less water available for recharging. The annual mean of 362 
surface runoff distribution variation is insignificant compared to recharge and evapotranspiration 363 
over the state. The higher and moderate surface runoff is only bounded to extreme southern and 364 
northern regions due to higher elevation changes over the areas. The spatial variation of surface 365 
runoff varies between 0.75 to 94 mm.  366 

The mean spatial variation of surface runoff per grid is 8.27 mm, and the standard 367 
deviation over the area is 9.15 mm. Land surface topography is crucial for both diffuse and focus 368 
recharge. High runoff rates and low infiltration rates are typical of steep slopes. Diffuse recharge 369 
is dominant in flat terrain environments with low surface drainage and causes floods. 370 
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 371 
Figure 6. Building footprints (Data source;) (a) and inland hydrology (b) over the state. 372 

The state has shown significantly low groundwater recharge over the East and central 373 
part of the state. This can be explained by prominent agricultural lands and urbanization. In 374 
comparison to an unvegetated land surface under similar conditions, a vegetated land surface 375 
often has a higher rate of evapotranspiration (and, consequently, less water available for 376 
recharging) (Healy & Scanlon, 2010). Uttar Pradesh is the highest populated state in India. Many 377 
alterations to the land surface that urbanization causes can significantly impact recharging 378 
processes due to artificial treatment on the surface and subsurface (Healy & Scanlon, 2010; 379 
Price, 2011). Impervious places like parking lots, buildings, and roads can all prevent recharge. 380 
Diversions for runoff are typical elements of urban settings. Diversions may lead to infiltration 381 
galleries or surface-water bodies. Under the first scenario, the region's overall recharge is 382 
decreased. The latter scenario could change the source of recharge from a diffuse to focused 383 
recharge. However, it may not necessarily result in a reduction in recharge. The state is dominant 384 
with natural rivers and artificial canals. This may be caused by focused recharge. The WetSpass 385 
simulation has not been associated with indirect or localized recharge. Thus, net recharge value 386 
can be uplifted with the focused recharge process.   387 
 388 



manuscript submitted to Water Resources Research 

 

3.2 Parameterized Relationship between Climate and Recharge 389 

 390 
Figure 7. (a) and (b) represent the spatial distribution of hydrometeorological components as 391 
mean annual precipitation and potential evapotranspiration, respectively, whereas (c) and (d) 392 
shows the response of climatic and hydrogeological components for quantity and distribution of 393 
hydrometeorological factors such as climate aridity, and recharge fraction. (d) is the graphical 394 
output of the statistical relationship between climate aridity and recharge fraction for 1km ×1km 395 
grids over the state. The red line represents the calibrated sigmoidal function. 396 

Systematic and random variations in diffuse and focused recharge rates can be observed 397 
in space. Climate patterns are frequently linked to systematic trends, although geology and land 398 
use are also significant (Healy & Scanlon, 2010; Moeck et al., 2020). Often, the most significant 399 
factor influencing variation in recharge rates is climate fluctuation in humid regions. The primary 400 
factor in the water budget for the majority of watersheds is precipitation, which is the source of 401 
natural recharge. In Figure 7), it was proved that spatial changes in recharge fraction have been 402 
strongly influenced by climate aridity. Generally, larger portions of precipitation recharge 403 
groundwater in humid areas. With increasing aridity, this recharge proportion decreases until it 404 
frequently drops to virtually zero in highly arid locations. The simulated recharge values of each 405 
pixel show substantial variation with the aridity of the same particular pixels, and it is non-linear. 406 
The same relationship has been derived from the global scale study of (Berghuijs et al., 407 
2022)using empirical recharge values and the given aridity of the particular location. The pattern 408 
is sufficiently monotonous to derive a highly significant correlation between the amount of 409 
precipitation that recharges groundwater and the aridity of the climate. 410 𝑅𝑃 = 2.6𝑒(−∅/𝛽) + 2𝑒(−∅/𝛽) − 0.002              (15) 411 𝑅 = 𝑃. ൣ2.6𝑒(ି∅/ఉ) + 2𝑒(ି∅/ఉ) − 0.002൧             (16) 412 

where R is the mean annual recharge, P is the mean annual precipitation, ∅ is aridity (ratio 413 
between mean annual potential evapotranspiration and precipitation), and β is the characteristic 414 
subtractor of the aridity.  415 
Equation (15) represents the exponential decrease of recharge fraction due to increased aridity. 416 
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3.3 Impact on Hydroclimatic Variation 417 
The most crucial element influencing variation in recharge rates is frequent climate 418 

fluctuation. The primary factor in the water budget for most watersheds is precipitation, which is 419 
the source of natural recharge. Temporal fluctuation of precipitation is also significant. The 420 
frequency, duration, and intensity of specific precipitation events and seasonal, annual, and 421 
longer-term precipitation patterns all impact the recharging processes. In some circumstances, 422 
the length and intensity of a single precipitation event can significantly impact recharging. When 423 
precipitation rates in Uttar Pradesh surpass evapotranspiration rates, the circumstances are best 424 
for water to drain through the unsaturated zone to the water table (Figure 8).  425 

 426 
Figure 8. Average annual diffuse recharge, precipitation, and evapotranspiration, for the 12 427 
years from 2005 to 2016 in Uttar Pradesh.  428 

Thus, we have estimated the spatial distribution of the annual SPI and annual 429 
groundwater recharge index (GRI). In (Figure 9), Annual SPI and annual GRI follow the same 430 
pattern spatially and quantificationally. 2005, 2006, 2009, 2014, and 2016 are drought years, and 431 
GRI varies between moderate and low. Similarly, GRI is higher in wet years such as 2008 and 432 
2013. The drought years have been followed by wet years in the state. Thus, an extreme 433 
reduction in groundwater recharge has not been shown. 434 
 435 
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Figure 9. Spatial distribution of annual SPI along with annual GRI. 437 

3.4 Comparison with a Recent Global Model of Recharge 438 

 439 
Figure 10. Comparison between simulated recharge from WetSpass and global recharge 440 
prediction model of (Berghuijs et al., 2022).  441 

The global recharge prediction model of (Berghuijs et al., 2022)has been derived from 442 
the parameterized relationship between empirical recharge observations from 5237 observation 443 
sites around the globe and the given global climate aridity (Berghuijs et al., 2022).  444 ோ௉ = 𝛼 ቀ1 − ୪୬(∅ഁାଵ)ଵା୪୬( ∅ഁାଵ)ቁ                 (17) 445 

where R/P is recharge fraction, ∅ is aridity, α is an equating constant for the fraction of 446 
precipitation, which is equal to recharge when ∅ →0.  447 

The R square value 0.415 has been obtained for linear regression analysis between the 448 
global model simulated recharge and observed recharge. The widely used global models such as 449 
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WATER-GAP, PCR-GLOB, and machine learning have underestimated recharge by 50% 450 
compared to absolute values. Compared to such models, the recent global model of (Berghuijs et 451 
al., 2022)has shown similar magnitudes for both the simulated and actual recharge estimation 452 
due to the sigmoidal relationship (Equation 19) between recharge fraction, and aridity has 453 
removed biasing effect.  454 

The global recharge model has been applied to the current study area, and the simulated 455 
recharge values have shown a strong correlation as R square 0.93 with simulated recharge values 456 
of the WetSpass model. The global model estimated mean annual recharge per 1km2 over Uttar 457 
Pradesh is 13.55 mm/yr, while by WetSpass model is 16.87 mm/yr. The WetSpass and the global 458 
model have shown a 1:1 relation for moderate recharge associated with the mean annual 459 
precipitation of 130-150mm/yr per 1 km2 area. For higher and lower recharge, the WetSpass has 460 
shown higher estimation than the global model. According to (Berghuijs et al., 2022), the 461 
hydrological models underestimate recharge at lower and higher recharge due to biasing. The 462 
recharge and discharge zones are both covered by global hydrological models, which mimic 463 
hydrological dynamics at several km2 per grid cell scale (Moeck et al., 2020).  464 

Conversely, most observations will occur in recharge zones, whereas discharge zones 465 
typically only cover a small portion of the Earth's surface (Berghuijs et al., 2022; O'Loughlin, 466 
1981). But the WetSpass simulation doesn't associate with discharge estimation. The WetSpass 467 
simulation considers the amount of precipitation and the effect of other physiographic and 468 
biophysical factors involving infiltration. Therefore, the comparison between the global model 469 
and WetSpass has shown that recharge fraction is not a function of the amount of precipitation.     470 

3.5 Correlation between Recharge and Base Flow Index 471 
As aforementioned, though groundwater recharge is necessary for water balance, it is 472 

challenging to quantify the magnitude and spatial and temporal variation directly. Large-scale 473 
models frequently generalize correlations between the climate and hydrological fluxes and tend 474 
to oversimplify processes (Hartmann et al., 2017b). Moreover, the validity of the simulated 475 
recharge rates is frequently weak. For instance, despite few recharge measurements for 476 
validation, the runoff was categorized into quick surface runoff, slow subsurface runoff, and 477 
recharge using a heuristic approach in global modeling research of  (Döll & Fiedler, 2008). In 478 
previous studies, the estimation of recharge from available streamflow records at gauged basins 479 
and the development of a regression equation linking those recharge estimates to the physical 480 
and climatic parameters of the gauged basins are two commonly used methods for mapping 481 
recharge rates on a statewide scale (Risser et al., n.d.). Hence, the present study has used the 482 
Pearson correlation test using the global grided base flow index data of (Beck, Van Dijk, et al., 483 
2013) to test the statistical correlation between simulated recharge and BFI. The strength of the 484 
correlation between the two variables is shown by Pearson's correlation coefficient (r). Based on 485 
the comparison, base flow and recharge have a strong, substantial Pearson correlation as r is 486 
0.73. 487 
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 488 
Figure 11. (a) has shown the delineated sub-catchment areas, distribution of BFI over the state, 489 
and elevation of selected locations for correlation test between WetSpass estimated recharge and 490 
BFI, and the scatter plot (b) shows the relationship between recharge estimates by the WetSpass 491 
and BFI. The location and elevation of the cluster (blue) below the 45-degree line (red) have 492 
been represented in the same color (blue) in the map (a).  493 

The study has selected 87 locations related to 33 delineated sub-catchments for 494 
correlating with BFI. The association between recharge and BFI is correlated for many sub-495 
catchments, as shown in Figure 11(b). However, a significant group (blue points) below the 45-496 
degree line shows higher recharge than BFI. This cluster allows us to study the biased 497 
circumstances while comparing WetSpass and BFI. According to the prominent cluster (green) 498 
of the scatter plot (Figure 11(b)) has shown significantly moderate to low BFI. The land use of 499 
the sub-catchments is dominantly agriculture. Agricultural land use may positively or negatively 500 
affect recharge and base flow depending on management practices. In Uttar Pradesh, 501 
groundwater irrigation is significant, and this can cause minimal base flow.  502 

The locations of the biased cluster belong to smaller upstream sub-catchments with high 503 
topography, thus characterizing deeper groundwater table regions. These characteristics increase 504 
the likelihood of surface water dividing into smaller sub-catchments and do not coincide with the 505 
deviation of groundwater. Therefore, these sub-catchments have higher recharge than base flow, 506 
which indicates that they are net exporters of groundwater. This has been agreed that baseflow is 507 
influenced by watershed topography, geomorphology, and climate, according to earlier research 508 
(Price, 2011; Zomlot et al., 2015). 509 

3.6 Vegetation and Recharge 510 
Vegetation and Land usage can have a significant impact on recharge processes. Types 511 

and densities of vegetation influence evapotranspiration patterns. Plants' efficiency in extracting 512 
water from the subsurface depends on how far their roots penetrate the soil. For instance, trees 513 
may extract moisture from depths up to several meters (Healy & Scanlon, 2010). In contrast, in 514 
Cerrado, Brazil, depending on the extent of the plant roots cause for taking up water from the 515 
aquifers during the dry season and similar causing for making way to water back to the aquifer 516 
during the rainy season (Tonello & Bramorski, 2021).  517 
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Due to the increased surface storage component, vegetation can intercept rainfall with its 518 
leaves and branches, which affects evapotranspiration and lengthens the time it takes for the soil 519 
to recharge (Jyrkama et al., 2002). The growth cycle of crops is frequently described using long-520 
term variations of vegetation indices (Gorelick et al., 2017), such as the NDVI. The NDVI is an 521 
index that measures how green the vegetation (Peng et al., 2011)is and is a good indicator of how 522 
the vegetation in one zone has changed over time (Fu & Burgher, 2015). This indicator is 523 
generated using the difference between the near-infrared and visible (red) bands (Bulcock & 524 
Jewitt, 2010; Otto et al., 2011)and is based on the reflectance of differential that trees, shrubs, 525 
and plants exhibit for various sections of the solar radiation spectrum (Mohajane et al., 2018). 526 

 527 
Figure 12. 2D frequency diagram between NDVI and groundwater recharge (GWRE). (a), (b), 528 
(c), and (d) are agricultural, forest, grass, and orchard areas, respectively. Annual NDVI and 529 
annual GWRE have been considered for (a), (b), and (c), whereas seasonal NDVI and seasonal 530 
GWRE has been plotted for (a) due to summer being the rainwater irrigation season of the state.  531 

Agriculture, forest (including intermediate tree cover), and grass areas have shown 532 
significant relation between NDVI and GWRE. But orchard areas have shown scattered 533 
distribution and not shown significant clusters related to NDVI vs. GWRE. Agricultural lands 534 
have shown GWRE varying only from 25-50 mm/km2 during variation of NDVI. This represents 535 
the same crop type that spreads over a large area, such as Paddy in the summer (Karif season). 536 
But in the forest (including intermediate tree cover) and grass areas, GWRE has varied over an 537 
extended range from 25 to 150 mm/km2 while the variation of NDVI. Though, in agricultural 538 
areas, GWRE has been constant over the increasing of NDVI (<0.4), in forest and grass areas, 539 
GWRE is lowering while increasing of NDVI (<0.4). In grass areas is shown a cluster NDVI≥0.6 540 
where GWRE increases. This cluster vegetation can correlate with grasses which have shallow-541 
rooted and cannot access soil water from higher depths. This is typical of semi-arid regions 542 
where GWRE rates have been enhanced by vegetation with shallow-root systems (Healy & 543 
Scanlon, 2010).  544 

3.7 Identification of Controlling Factors 545 
The 2D frequency analysis followed by the Pearson correlation test between recharge and 546 

selected watershed characteristics, including precipitation, potential evapotranspiration, 547 
groundwater level, NDVI of agriculture, forest, grass, orchard areas, and saturated Ks. Then it 548 
has extended to the PCA due to the single value of the correlation coefficient cannot identify the 549 
hidden structure of the spatial correlation between recharge and watershed characteristics.  550 
Table 1. Pearson correlation coefficients between recharge and selected variables involved in 551 
controlling recharge. 552 

Variables  Pearson correlation coefficients between recharge and variable 
Precipitation 0.79 
Potential evapotranspiration 0.56 
Groundwater Level -0.16 
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Agriculture 0.18 
Forest 0.45 
Grass 0.34 
Orchard -0.14 
Soil -0.07 

In general, we discovered strong correlations across variables, leading us to believe they 553 
are redundant.  More variables correlating significantly with hydrometeorological factors can be 554 
seen in groundwater recharge. The relationship between precipitation and groundwater recharge 555 
is strong and positive. This conclusion is a general norm demonstrated in numerous groundwater 556 
recharge investigations (Edmunds & Gaye, 1994; Jan et al., 2007; Zomlot et al., 2015). Due to a 557 
correlation between the temperature gradient and potential evapotranspiration, recharging was 558 
positively associated with potential evapotranspiration (determining PET significantly). In the 559 
state, after precipitation, the second significant controlling factor for recharge is vegetation, 560 
whereas agriculture, forest, and grass areas have shown contrasting correlations with recharge. 561 
As confirmed by the 2D frequency analysis, Orchard areas have not shown a prominent 562 
correlation with recharge.  563 

As aforementioned, PCA decreases the redundancy of the data and identifies the 564 
significant controlling factors of variance of groundwater recharge by reducing the 565 
multidimensional distribution of the data set into a few "artificial variables" such as PC1, PC2, 566 
PC3, and PC4, etc. (Zomlot et al., 2015).   567 

The PCA analysis between the R square value between recharge, precipitation, potential 568 
evapotranspiration, NDVI, and Ks has shown that the second most important controlling factor 569 
for groundwater recharge is vegetation in agriculture, forest, and grass, but not in orchard areas.  570 

 571 
Figure 13. PC1 vs. PC 2 in (a) agriculture, (b) forest, (c) grass, and (d) orchard areas. 572 

3.8 Soil and Recharge 573 
Processes for recharge can be significantly impacted by the permeabilities of surface and 574 

subsurface materials. In contrast to places with fine-grained, low-permeability soils, recharge is 575 
more likely to occur in areas with coarse-grained, high-permeability soils. The permeability of 576 
coarse-grained soils is generally high and may flow water quickly. Hence, water can quickly 577 
permeate and drain through the root zone before being extracted by plant roots, the presence of 578 
these soils encourages recharge. Even though they are less porous, finer-grained sediments can 579 
store more water. Therefore, compared to an area with coarser-grained sediments, one might 580 
anticipate less infiltration, improved surface runoff, increased plant extraction of water from the 581 
unsaturated zone, and decreased recharge. Permeability is crucial for focused recharge as well. 582 
Streambeds with high permeability make it easier for groundwater and surface water to 583 
exchange. 584 
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 585 
Figure 14. PC 2 vs. PC 3 in (a) agriculture, (b) forest, (c) grass, and (d) orchard areas. 586 

The state is situated on the Central Ganga plain, where drainage conditions and climatic 587 
characteristics govern the characteristics of alluvial soil. The typical soil cover texture of the 588 
state is Sandy loam and Loam which have a typical permeability range of 300-1800 mm/day and 589 
200-500 mm/day, respectively. Though moderate permeability of soil is involved in easing 590 
recharge due to less soil texture variation, the influence on the spatial distribution of recharge is 591 
less significant than the effect of vegetation types. This is a recognition that vegetation cover can 592 
enhance hydraulic conductivity and minimize the overland flow (Bruijnzeel, 2004; Ilstedt et al., 593 
2016).  594 

3.9 Hidden Clusters in PCA 595 

 596 
Figure 15. Loading value plots between PC1 vs. PC2 for (a) forest and (b) grass areas. Maps 597 
show the selected vegetated contributed areas, (c) and (d) is the distribution of heterogeneous 598 
grids, including 74 grids, and homogenous grids, including 28 grids, respectively. 599 
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The PCA tries to find a meaningful way to flatten the data by focusing on the parameters 600 
with different qualities or influences. PC1 is the axis that spans the most variation, PC2 is the 601 
axis that spans the second most variation, and so on. Eigenvectors express the contribution of 602 
different parameters to PCs. All the vegetated areas, such as agriculture, forest, grass, and 603 
orchard, have significantly span R square values between recharge and precipitation  (P-GR) 604 
along PC1. The extracted eigenvectors of PC1 for (P-GR) are 0.67, 0.68, 0.66, and 0.7 for 605 
agriculture, forest, grass, and vegetated areas, respectively. Excluding orchard areas, agriculture, 606 
forest, and grass areas have obtained the high extracted eigenvectors for PC 2 from R square 607 
values between recharge and NDVI (NDVI-GR), such as 0.94, 0.80, and 0.99, respectively. We 608 
have plotted PC1 versus PC2 accounting for the loading values (x) for each grid in forest and 609 
grass areas to identify different clusters with different influences for groundwater recharge. We 610 
have excluded agricultural areas from this analysis because WetSpass models have not been 611 
simulated with consideration of irrigation water and different crop types in agricultural lands. 612 
From the loading value plots of PC1 versus PC2, we have clusters positively influencing clusters 613 
for PC1 and PC2. The selected clusters were further refined as vegetation-contributed areas 614 
satisfying the conditions of loading value for PC1 is less than 1(x<PC1), loading value for PC2 is 615 
higher than 1 (x>PC2), and NDVI-GR is equal or more than 0.5 (R2>0.5). Seventy-four grids 616 
from forest and grass areas that satisfy the aforementioned condition have been selected. Among 617 
the selected grids, including heterogenous and homogenous grids, dominant vegetated grids, 618 
called homogenous grids, have been selected for water budget estimation.  619 

3.10 Simulated Water Budget 620 
The water balance components precipitation, recharge, and evaporation in selected 621 

homogenous grids have been extracted from simulated results. Compared to forest areas, 622 
intermediate tree cover areas have significantly contributed to groundwater recharge by 623 
exceeding evapotranspiration.   624 
 625 

 626 
Figure 16. Fractionation of precipitation to recharge and evaporation in different vegetative 627 
areas. Satellite images have been acquired from Google Earth Imagery.  628 
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This can be explained based on the "optimum tree cover theory," where recharge is 629 
enhanced by intermediated tree cover density. Below this optimum tree density, any additional 630 
trees' water-percolation benefits outweigh their additional water use, increasing groundwater 631 
recharge. In contrast, the opposite happens above the optimum (forest, including dominant and 632 
co-dominant)(Ilstedt et al., 2016). The detailed water budget of homogenous grids in forest and 633 
intermediate tree cover areas have been considered.  634 

 635 
Figure 17. Simulated water budget in (a) Forest areas and (b) intermediate tree cover. 636 

Forest and intermediate tree cover areas typically have less soil evaporation and surface 637 
runoff. Without trees, considerable soil and surface runoff causes limited groundwater recharge 638 
despite low transpiration. In closed productive forests, overall transpiration and interception are 639 
high despite limited surface runoff and soil evaporation, which again results in low groundwater 640 
recharge. Low surface runoff, evaporation, and intermediate transpiration rates at an intermediate 641 
canopy cover maximize groundwater recharge. 642 

4 Conclusions 643 
Based on the work accomplished in this thesis, it can be concluded that the parameters 644 

such as geology, hydrology, climate, soils, slope, vegetation, and land usage in any region play a 645 
significant role in controlling the recharge processes in that region. The WetSpass model is a 646 
reliable model as it can incorporate the aforementioned hydrological, physiographic, and 647 
biophysical factors into long-term direct natural groundwater recharge estimation. Although, the 648 
availability of the essentially required inputs (P, PET, GWL, etc.) influencing the groundwater 649 
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data in the WetSpass model is challenging, the Remote Sensing data, could very well be used 650 
with high reliability for prediction of groundwater recharge, and with validation of the same 651 
predictions available from Global Model Data. This approach to apply the modelled output in the 652 
data-scarce regions and concerning larger areas, and minimize the research gap, has turned out to 653 
be highly encouraging. Our analysis of the correlations between the above-mentioned principal 654 
components demonstrates that the most significant predictors of groundwater recharge rates are 655 
climatic forcing factors, namely, the 'annual precipitation' and the 'potential evapotranspiration'. 656 
The magnitude of recharging rates is very well understood to be strongly influenced by the 657 
quantity of precipitation or substantial cyclicity in the climatic driving functions. Therefore, the 658 
strong correlation and dependence of recharge rates on the above-mentioned climatic forcing 659 
factors indicate that groundwater recharge would be highly susceptible to the anticipated change 660 
in climate, limited to the exposure from the variation in physiographic and biophysical factors. 661 
Vegetation, in general, is showing up as the second most significant parameter for the spatial 662 
distribution of groundwater recharge in Uttar Pradesh. However, in some smaller patches, soil 663 
texture has become the second most significant controlling factor for groundwater recharge. 664 
Hence, the impact of climatic forcing factors on groundwater recharge can vary greatly, 665 
depending on the site and therefore, the correlation coefficient between recharge estimations and 666 
precipitation, as used in Global Models for one geological setting, may lead to inaccurate 667 
prediction in new settings. Our study helps to identify the order of significance of the controlling 668 
parameters for groundwater recharge and their overall influence on the spatial distribution of 669 
water balance components. In this work, we highlighted the areas with a scarcity of data on 670 
groundwater recharge and lacking understanding of the processes influencing groundwater 671 
recharge due to knowledge gaps. We hope that some future work will focus on the open-access 672 
models and data to close these gaps, improve the global models, share knowledge, and release 673 
new recharge data. Also, this study suggests promoting natural recharge-controlling factors, such 674 
as establishing particular vegetation species in suitable locations, which can benefit larger 675 
communities whose lives depend upon groundwater footprints. 676 

Data Availability Statement 677 
The listed sources provide access to all the data utilized in this study. Precipitation, temperature, 678 
potential evapotranspiration, and wind speed data are available at https://chelsa-climate.org/. Soil 679 
data is available at https://daac.ornl.gov/. Land use land cover and NDVI data are available at 680 
https://ladsweb.modaps.eosdis.nasa.gov/. Global base flow data is downloaded from Global 681 
Streamflow Characteristics Dataset (GSDC), available at http://www.gloh2o.org/gscd/. Digital 682 
Elevation Model (DEM) is downloaded from https://asf.alaska.edu/. Central Groundwater Board 683 
(CGWB), India https://cgwb.gov.in/ is acknowledged for providing groundwater level data. 684 
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S-1. Climatic and physiographic data requirements for WetSpass model. 

Dataset Units 
(SI) 

Data Source Data 
Model/Version 

Initial Spatial 
Resolution 

Spatial 
Resolution for 
WetSpass Model 

Initial 
Temporal 
Resolution 

Temporal Resolution 
for WetSpass Model 

Precipitation mm Climatologies at High 
Resolution for the Earth’s 
Land Surface Areas 
(CHELSA-Climate)  

CHELSA V2.1 830m×830m 1km × 1km Monthly Seasonal; Winter & 
Summer 

Potential 
evapotranspiration 

mm Climatologies at High 
Resolution for the Earth’s 
Land Surface Areas 
(CHELSA-Climate) 

CHELSA V2.1 830m×830m 1km × 1km Monthly Seasonal; Winter & 
Summer 

Temperature C0 Climatologies at High 
Resolution for the Earth’s 
Land Surface Areas 
(CHELSA-Climate) 

CHELSA V2.1 830m×830m 1km × 1km Monthly Seasonal; Winter & 
Summer 

Wind Speed m/s Climatologies at High 
Resolution for the Earth’s 
Land Surface Areas 
(CHELSA-Climate) 

CHELSA V2.1 830m×830m 1km × 1km Monthly Seasonal; Winter & 
Summer 

Groundwater depth m Central Groundwater 
Board 

NA NA (Point 
data) 

1km × 1km Seasonal  Seasonal; Winter & 
Summer 

Topography m Alaska Satellite Facility ALOS World 
3D - 30m 
(AW3D30) 

27m×27m 1km × 1km NA NA 

Slope % Alaska Satellite Facility ALOS World 
3D - 30m 
(AW3D30) 

27m×27m 1km × 1km NA NA 

Soil texture NA NASA Distributed Active 
Archive Centre for 
Biochemical Dynamics 
(ORNL DAAC) 

NA 1km × 1km 1km × 1km NA NA 

Land use land cover NA Level-1 and Atmosphere 
Archive & Distribution 
system Distributed Active 
Archive Centre (LAADS 
DAAC)   

Level-1 500m×500m 1km × 1km Yearly Yearly 

 

S-2. Attribute data required for the WetSpass model. 

Table Name Data Columns 
Soil attributes Field capacity 

Wilting point 
Plant-available water content 
Residual water content 
Bare soil evaporation depth 
Tension saturated height 
Fraction of summer precipitation contributing to Hortonian runoff 
Fraction of winter precipitation contributing to Hortonian runoff 

Land use land cover attributes Aerial fractions for each land use type Vegetated area 
Bare soil area 
Open water area
Impervious surface 

Root depth 
Leaf area index 
Minimum stomatal opening 
Interception percentage 
Vegetation height 

Runoff coefficient attributes Bare soil runoff coefficient 
Runoff coefficient for impervious land use type 



S-3. γ/ Δ is a function of temperature, as given in the table below. 

T (0C) -20 -10 0 5 10 15 20 25 30 35 40 
γ/ Δ 5.86 2.83 1.46 1.07 0.76 0.59 0.45 0.35 0.27 0.25 0.17 
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