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Key Points: 18 

 Three different deep learning techniques are compared to perform 24 hs forecasting of 19 

global TEC 20 

 We show results for quiet and perturbed conditions in three longitudinal sectors of the 21 

globe covering  different environmental conditions. 22 

 We present a strategy to implement the best model in real time with the perspective of 23 

an operative Space Weather product. 24 

Plain Language Summary 25 

Operational space weather ionospheric forecasting requires real-time measurements, efficient 26 

computation and, fast and accurate models. In particular, data-driven models such as machine 27 

learning models can help train smart models able to catch most of the global ionospheric 28 

variability. Nevertheless, machine learning models struggle with generalization and with 29 

unbalanced datasets. Space weather is an intrinsically unbalanced problem with few extreme 30 

cases within a given solar cycle. We present a machine learning strategy to learn the changes 31 



in the ionosphere (e.g. during the evolution of a geomagnetic storm) as new data arrives 32 

while few computation resources are required. We also compared three deep learning 33 

techniques using global TEC as input plus a geomagnetic index (Kp) as the external forcing 34 

to forecast 24 hs in advance. The results showed that the best method is CNN so we 35 

implemented it using incremental training toward an operational version of the forecasting 36 

model. 37 

 38 

Abstract 39 

The aim of this work is to present a global ionospheric prediction model based on deep 40 

learning (DL) to forecast Total Electron Content 24 hours in advance under different space 41 

weather conditions. Three different DL techniques have been compared to select the most 42 

suitable for the purpose of an operational service: Long Short Term Memory (LSTM), Gated 43 

Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modeling approach 44 

inherits and extends what has been proposed by Cesaroni and co-authors (2020). We use TEC  45 

on 18 selected grid points of Global Ionospheric Maps (GIMs) as the target parameter and Kp 46 

index as the external input. We use a dataset from 2005-2016 for training and testing, we also 47 

analyze case studies from 2017 under different geomagnetic conditions. Results show that 48 

CNN models have better predictive capabilities than the other two DL models, even under 49 

geomagnetically disturbed conditions. Considering the first 24 hours of forecasting, CNN 50 

exhibits errors between 0.5 and 2 TECu, while LSTM and GRU errors can reach 3 TECu. We 51 

also show how all the proposed models outperform the two naive models: the so-called 52 

“frozen ionosphere” and a 27 days averaged model. 53 

Moreover, we implemented the models using incremental training to update them as new data 54 

arrives and thus the trained model is able to adapt to rapid changes within the previous 24 hs 55 

to the forecasting. Thus, the proposed model can be implemented in an operative manner for 56 

Space Weather applications and services. 57 

 58 

Introduction 59 

 60 

Space Weather is a complex domain composed of highly coupled subdomains involving very 61 

different time and spatial scales with events triggered within the Sun, evolving through the 62 

interplanetary medium that can reach the Earth's environment. These events may have a 63 

severe impact on the ionosphere because of the complex solar wind-magnetosphere-64 

ionosphere coupling with different consequences in different regions of the globe.   65 



Space Weather thrives on the increase of available data due to the new space mission 66 

launched in the last few years (e.g. Parker Solar Probe, Solar Orbiter, etc ), the enhancement 67 

of instruments deployment and networks (e.g. new Global Navigation Satellite System, 68 

GNSS, networks, magnetometers, etc).  69 

In the last decade, the need to move from research to forecast and mitigation services, like 70 

those supporting GNSS-based positioning and telecommunications, dramatically increased 71 

(see, e.g., Lilensten et al., 2021). Nowadays, the possibility to properly customize those 72 

services to the requirements of specific user communities and stakeholders resulted in several 73 

operational services, capable of providing decision tools to tackle the ionospheric 74 

disturbances in critical domains (Veettil, 2019). This is the case of the Space Weather Service 75 

provided to the International Civil Aviation Organization (ICAO), providing advisories 76 

according to its Standards and Recommended Practices based on scientific products covering 77 

HF communication and GNSS navigation domains (Kauristie et al., 2021). Reliable 78 

nowcasting and forecasting algorithms are the core tools of these services.  79 

Recently many efforts have been made to enhance Space Weather monitoring and forecasting 80 

capabilities of ionospheric effects due to Space Weather phenomena by using different 81 

approaches, models and instrumentations (Zolesi & Cander, 2014; Bilitza et al., 2017; 82 

McGranaghan et al., 2018; Perez, 2019; Galkin et al., 2020, among many more).  83 

Concerning forecasting, currently, two different approaches have been developed: (i) physical 84 

or semi-empirical models with a data assimilation scheme (see., e.g, Galkin et al., 2012); (ii) 85 

completely data-driven models (Bilitza et al., 2022).  86 

The latter includes models based on the use of Artificial Intelligence (AI) that are becoming 87 

more and more important thanks to the development of more accurate and faster Machine 88 

Learning algorithms (Camporeale et al 2018, Camporeale 2019, among others). In the 89 

ionospheric forecasting domain, this class of models have been introduced since the end of 90 

the ’90s, mainly leveraging on the use of Neural Network (NN) approaches, and have been 91 

dedicated to forecasting ionospheric features on different spatial/temporal scales (e.g., Zolesi 92 

& Cander, 2014). After an AI winter in the first decade of this century, the ionospheric 93 

community started exploiting recently-introduced Deep Learning (DL) techniques. 94 

Yi Han et. al. 2021, devoted their time to investigate how to forecast ionospheric TEC values 95 

in three IGS GNSS monitoring stations at the low-latitude region in high solar activity and 96 

magnetic storm periods. In their work four different machine learning models including 97 

artificial neural network, long short-term memory networks, adaptive neuro-fuzzy inference 98 

system based on subtractive clustering, and gradient boosting decision tree (GBDT) were 99 



used during high solar activity and magnetic storm periods. The numerical results indicate 100 

that the ionosphere prediction accuracy in high solar activity is not as good as in the low solar 101 

activity period, but the machine learning based approach still significantly outperforms the 102 

GIM and IRI-2016 models.  103 

According to Zhou Chen et. al., 2022 several different LSTM-based algorithms were tested 104 

and a multi-step auxiliary algorithm was developed which performed best. The proposed 105 

algorithm predicted the global ionospheric IGS-TEC in the next 6 days (the MAD and RMSE 106 

are 2.485 and 3.511 TECU, respectively).  107 

In the works of Liu et. al., 2020 LSTM neural network (NN) was employed to forecast the 108 

256 spherical harmonic (SH) coefficients that are used to construct global ionospheric maps 109 

(GIM). In order to train the LSTM NN, multiple input data including historical time series of 110 

the SH coefficients, solar extreme ultraviolet (EUV) flux, disturbance storm time (Dst) index, 111 

and hour of the day are used. Then the best performing LSTM model is used to forecast the 112 

SH coefficients, and the global hourly TEC maps are reproduced using 113 

the 256 predicted SH coefficients. The results show that the first/second hour TEC root mean 114 

square error (RMSE) during storm time is 1.27/2.20 TECU and 0.86/1.51 TECU during quiet 115 

time, indicating that the developed model performs well during both quiet and storm times 116 

and common ionospheric structures such as equatorial ionization anomaly (EIA) and storm-117 

enhanced density (SED) are accurately represented in the anticipated TEC maps.  118 

In the devoted work of Zewdie et al. (2021), they presented a data-driven forecasting of 119 

ionospheric total electron content (TEC) using Long-Short Time Memory (LSTM)method. In 120 

the process of selecting the input parameters to train the algorithm, they made use of random 121 

forest to perform regression analysis and estimate the importance of input parameters. 122 

Relative importance of 34 different parameters including the solar flux, solar wind density, 123 

and speed the three components of interplanetary magnetic field, Lyman-alpha, the Kp, Dst 124 

and Polar Cap (PC) indices were analyzed. The LSTM method was applied to forecast the 125 

TEC up to 5 h ahead, with 30-min cadence.  126 

Mallika, L. et al in 2020, devoted their time to build ML algorithm to forecast ionospheric 127 

time delays using GNSS observations. The implement Gaussian Process Regression (GPR) 128 

utilizing its kernel based-approach and Bayesian rules. This GPR model performed better 129 

than univariate linear model (ARMA) and the non-linear ANN during both geomagnetic quiet 130 

and geomagnetic disturbed days. 131 

Our work aims to compare different ML techniques for global ionospheric forecasting from a 132 

space weather perspective. The main focus is on tree DL techniques namely Long-short term 133 



memory (LSTM), Gated Recurrent Unit (GRU) and Convolutional Neural Networks (CNN), 134 

having in mind a Neural Networks Non-Autoregressive with Exogenous values (NNARX) 135 

scheme (Cesaroni et al, 2020 and references within). Several specific domain characteristics 136 

are considered to implement loose physics-informed DL forecasting.  The forecasting horizon 137 

is 24 hours and the external input is given by the Kp index, which is able to depict different 138 

conditions of the geomagnetic disturbance at the global level.  As a future operative AI-based 139 

tool, we propose a method to  update the models as new data arrives bearing in mind the 140 

computational time to run the model  in a real-time scenario. 141 

This work also aims at improving the TEC forecasting approach introduced by Cesaroni et al. 142 

(2020), which works in two main stages: 1) single-point forecasting based on ML, and 2) 143 

extending the forecasting for any point in the globe. Thus, the objective is to improve the first 144 

stage of the proposed technique by Cesaroni et al. (2020) and the best-performing DL 145 

technique will be used later in the second stage. 146 

The paper is structured as follows: after the introduction, the section “Data and Methods” 147 

presents a data science-based methodology (including details of each stage), and describes 148 

the datasets used for the modelling and the software tools. The section “Modeling using deep 149 

learning” describes the proposed DL architectures or models. Then the “results” section 150 

includes results for the training process, the validation using actual data in the test set and in 151 

cases of study, and the results using incremental training. Finally, there is a discussion and 152 

conclusion section.   153 

 154 

Data and Methods 155 

 156 

Due to the ubiquity of GNSS receivers, GNSS-derived vertical Total Electron Content 157 

(vTEC) (hereafter referred  simply as TEC), is used as the parameter to monitor the 158 

ionosphere on a global scale, by assuming the ionosphere as a single shell located at the peak 159 

of the F2-layer (see e.g. Ciraolo et al., 2007). The Kp index is assumed as the geomagnetic 160 

index driving the external forcing (Menvielle and Berthelier, 1991). These two features will 161 

be the input to the DL models. 162 

 163 
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 279 

Regarding the models, we performed 18 separate models using three different DL techniques 280 

at each grid point: Long short term memory (LSTM), Gated recurrent unit (GRU) and 281 

Convolutional Neural Networks (CNN). Both LSTM and GRU neural networks are Recurrent 282 

Neural Networks (RNNs). In the following section, we discuss and explain the used 283 

architectures. Concerning the metrics for both the learning process and the performance 284 

evaluation of the models, we use the basic matrics Root Mean Square Error (RMSE) or Mean 285 

Absolute Error (MAE), as suggested for fit performance by Liemohn et al. (2018) 286 

 287 

We also compare the performance against the so-called “frozen ionosphere” which is 288 

considered a naif forecasting model, also referred as “recurrence test”. It is based on the 289 

assumption that the forecasted ionospheric condition is equal to the actual measured value 290 

one day before at the same hour (Cesaroni et. al., 2020). Additionally, we considered another 291 

naive method based on the last averaged 27 days which often is used as a reference curve in 292 

ionospheric studies (Forbes et al., 2000).   293 

A final remark on the general data pipeline is related to hyperparameter tuning. The 294 

parameters within the ML model that are not trained but need to be selected (e.g. number of 295 

layers, number of cells, activation function, etc.) are referred to as hyperparameters. Their 296 

selection can be done by simple trial/error procedure (sometimes aided by the domain 297 

knowledge) or by different techniques.  In this work, we report only the best architectures 298 

resulting from the hyperparameter tuning by doing a grid search. The hyperparameters 299 

selected for the grid search are the number of cells, number of layers, number of epochs and 300 

batch size. The reason behind this choice is a trade-off between the tuning computational 301 

time and the accuracy obtained. In future developments, we will consider other 302 

hyperparameter tuning strategies (e.g. evolutive algorithms, memetic algorithms, among 303 

others).  304 

The datasets do not have significant outliers and  have not  values either. This is due to the 305 

fact that TEC obtained from GIM and Kp index are values resulting from modelling and not 306 

actual measurements (Orus et al.,2003;Matzka et al., 2021n). 307 

It is worth mentioning that the TEC and Kp data sets are intrinsically unbalanced due to the 308 

low probabilities of extreme space weather events within a solar cycle (see, e.g., Nikitina et 309 

al., 2022).  310 

Nevertheless, we have almost a complete solar cycle of data to train our models with a good 311 

overall performance as it will be shown in the following sections 312 



Data and code used in this work is publicly available in  313 

https://doi.org/10.5281/zenodo.7817642 and https://github.com/Laboratorio-Computacion-314 

Cientifica/Global-TEC-forecasting-for-space-weather-application-based-on-deep-learning-315 

techniques  316 

 317 

Modeling using deep learning 318 

 319 

Our models for global ionospheric forecasting are based on three different deep learning 320 

networks (LSTM, GRU and CNN). We use 24 hours TEC samples as input and 24 hours Kp 321 

values (as the external forcing) for each of the 18 selected grid points. Thus for each 322 

technique, we obtain 18 independent models .  323 

RNNs are a class of artificial neural networks that enables the passing and sharing of 324 

information along a temporal sequence. RNNs can learn temporal dynamic behaviour and 325 

thus they are one of the most used DL techniques for forecasting time series. RNNs use a 326 

state or memory (ht) that is updated at each time as a sequence is processed using the same 327 

parameters each time step (see Figure 6). RNNs can manage variable-length sequences as 328 

input, track long-term dependencies (especially in some architectures such as LSTM), and 329 

maintain information about the order. The main drawback of RNNs is the vanishing and 330 

exploding gradient problems caused by the long-term dependencies within the network. Both 331 

LSTM and GRU are RNNs 332 

The LSTM (Hochreiter and Schmidhuber,1997)  more significant characteristic is its ability 333 

to decide which is the most relevant information from the past that should be propagating 334 

ahead in the sequence. This is done by maintaining a state cell and a group of gates to control 335 

the flow of the information, they are: (a) forget gate in charge of getting rid of irrelevant 336 

information, (b) input gate, where the current relevant information is stored, (c) the update 337 

gate that selectively performs the update of the cell state, and (d) the output gate that returns a 338 

filtered version of the cell state. Each gate output is passing through different activation 339 

functions. The capability of maintaining and selecting significant long-term memory (and 340 

short-term dependencies) makes LSTM one of the most used DL techniques in forecasting 341 

time series. However, LSTM may exhibit some disadvantages or pitfalls in certain cases such 342 

as the tendency to overfit. Also, LSTM, typically, is able to catch (learn) smooth variations 343 

within the time series and may experience some difficulties to learn fast changes and reach 344 

maximum or minimum time series values (peaks). As with any deep learning technique, its 345 

performance can be diminished when using small datasets, less complex problems or 346 



347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

imbalan8 

GRU (C8 

gates to9 

flow of0 

gates: (1 

the past2 

passed t3 

which i4 

detail o5 

gradien6 

Chung e7 

The thir1 

artificia2 

in comp3 

(a) conv4 

feature 5 

(b) a po6 

invarian7 

be repe8 

layer is 9 

the spat0 

principl1 

CNN 12 

scheme3 

 2 

 3 

4 

nced dataset

Cho et.al, 2

o pass inform

f informatio

a) the reset 

t;  and (b) t

to future sta

its state is ex

on how LS

nt problem i

et.al., 2014.

rd DL techn

al neural net

puter vision

volutional o

map, follow

ooling laye

nce (spatial 

eated depen

in charge, f

tial informa

le) to learn 

D version 

e on the CNN

ts.  

2014) can b

mation thro

on inside the

gate, which

the update g

ates. GRU, 

xposed (as 

STM and G

is out of the

.  

nique used i

tworks able

n problems.

operations 

wed by a n

er is applied

informatio

ding on the

finally, of th

ation is imp

time depen

is used in 

N 1 D appli

be seen as a

ough the seq

e unit, howe

h provides a

gate, to deci

however, d

it is in LST

GRU intern

e scope of 

in this work

e to learn fro

 CNNs wor

( filters tra

non-linearity

d to the fea

n) while red

e problem a

he predictio

portant to be

ndencies. Ne

this work 

ied for TEC

a simplified

quence. GRU

ever, withou

a mechanism

ide how mu

does not hav

TM) but exp

ally manag

this work b

k is CNN in

om spatial i

rk by apply

ained using 

y operation

ature map t

ducing the 

and dataset;

on. Typicall

e transmitte

evertheless, 

(Kiranyaz 

C forecasting

d variant of 

U also uses

ut having s

m to forget 

uch informa

ve any mech

poses the wh

ge time dep

but for mor

 one dimen

information

ying a casca

the train se

n (often usin

to downsam

dimensiona

; (d) after t

ly, CNN inp

ed through t

CNN can b

et. al., 202

g. 

LSTM. Th

 gating unit

eparate mem

less relevan

ation from t

hanism to co

hole state ea

pendencies 

e details on

sion (1D). C

n and thus th

ade of oper

et) that gen

ng ReLU ac

mple it but 

ality; (c) sta

the last poo

puts are ima

the CNN, th

be adapted t

21). Figure 

he network 

ts that modu

mory cells. 

nt informati

the past nee

ontrol the d

ach time. C

and the va

n this topic 

CNNs are a 

hey are wide

ations that 

nerate the s

ctivation fu

keeping the

ages (a) and

oling layer, 

ages and thi

hey are not 

to time seri

7 shows a

also has 

ulate the 

It has 2 

ion from 

eds to be 

degree to 

Complete 

anishing 

see e.g. 

class of 

ely used 

include: 

so-called 

unction); 

e spatial 

d (b) can 

a dense 

s is why 

able (in 

es and a 

a simple 

 



374

375

376

377

378

379
380

381

382

383

384

385

386

387

388

 5 

Figure 66 

 7 

 8 

 9 

0 
Figure 73 

forcing 4 

forecast5 

 4 

In summ8 

as inpu9 

points i0 

table 1. 1 

 9 

6. Simple sc

7. A simple

(Kp) also 

ted 24 TEC

mary, we pr

ut and Kp a

n the globe

The presen

cheme of R

e scheme of 

for 24 hs

C. 

ropose thre

as external 

. The propo

nted architec

RNN, LSTM

f CNN 1D. T

, while the

e different 

forcing) to

osed archite

cture corres

M and GRU

The input is

e output is 

DL techniq

forecast T

ctures for L

sponds to th

s a 24 hs TE

a 1D time

ques applied

EC 24 hs i

LSTM, GRU

he best perfo

EC time seri

e series co

d in an NNA

in advance 

U and CNN 

ormance aft

ies plus the 

rresponding

ARX schem

at each of 

1D, are rep

ter the grid s

 
external 

g to the 

me (TEC 

18 grid 

ported in 

search.  



 LSTM and GRU CNN 

complete dataset 52560 samples 52560 samples 

train set (99%) 52035 samples (4336 days) 52035 samples (4336 

days) 

test set (1%) 525 samples (43 days / 0.01) 525 samples (43 days / 

0.01) 

details activation 1 = tanh 

activation 2 = tanh 

Kernel size =2 

conv layer = 1 

pooling layer = 1 

flatten layer = 1 

dense =1 

filters = 32 

activation = ReLU 

 

step in (24 hs) 12 12 

step out (24 hs) 12 12 

optimizer adam adam 

cells 5 - 

loss MSE MSE 

epochs  20 20 

batch 32 32 

 389 

Table 1. Architectures for the LSTM, GRU and CNN models 390 

 391 

Results 392 

 393 

In this section we show the results obtained for the three methods for the test set, selected 394 



cases of study, and we also analyze the training process. 395 

 396 

Training 397 

Figures 8a, 8b and 9 show the training process for each of the used methods (LSTM, GRU, 398 

CNN) and for every single virtual station (St 01, St 02, …, St 18). This grid of figures shows 399 

the loss function for the validation (orange line) and training (blue line) over 20 epochs for 400 

each of the 18 virtual stations. The panels are placed from west to east (left to right), and 401 

north to south (up to down) in such a manner that each station is placed in agreement with the 402 

map of virtual stations (Figure 2) 403 

Typically, when the loss function for the validation curve is approaching or is close to the 404 

loss function for the training curve, it means that the training is successful. Here this 405 

behaviour can be observed for up to 20 epochs or iterations (Fig 8a, 8b, and 9). If at some 406 

point the validation curve starts to grow and turning away from the training curve (that keeps 407 

decreasing) is an indication of overfitting (not happening here).  408 

 409 
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 429 

 430 

 431 

 432 

Figure 8 . Loss function during training over 20 epochs for (a)LSTM and (b) GRU models 433 

and for each virtual station.  Those stations are plotted according to their position within the 434 

globe, e. g. the first upper row corresponds to North high latitude virtual stations. While plots 435 

in the same column correspond to the same longitude virtual station  436 

 437 

When comparing Figures 8 (a) and (b) it can be observed that training results for LSTM and 438 

GRU are very similar which is an expected result (as mentioned before GRU can be seen as a 439 

simplified version of LSTM). The training process is similar but with slight differences in 440 

favor of GRU. See as an example the loss function for St 09, using LSTM the errors start 441 

around 10-2 while in GRU it is better with 8x10-3. Similar behaviour is observed over virtual 442 

station St 05. Only in virtual station St 10, the opposite behaviour is observed, LSTM error is 443 

~8x10-3 and GRU is ~10-2. Nevertheless, none of these two methods can be considered better 444 

than the other in terms of the training process. As mentioned before this is an expected result. 445 



 446 
 447 

Figure 9. Loss function during training over 20 epochs for CNN models and for each of the 448 

virtual stations. 449 

 450 

On the other hand, the training in CNN  (Figure 9) shows, at every virtual station, a more 451 

oscillating behaviour of the validation curve around the training curve. This is considered a 452 

really good training process. Another important characteristic observed for the CNN training 453 

at St 04, St 07 and St 09 (in particular), the validation curve is oscillation over the training 454 

curve which is considered as an underfitting of the model. There are several strategies that, 455 

potentially, can be followed to improve the training at these stations. However, when the 456 

errors are compared against LSTM or GRU, it can be seen that CNN has better performance 457 

(less error in the worst case) in each of the stations (even at St 04, St 07 and St 09 ). Thus, we 458 

considered sufficient accuracy for our models. 459 

 460 

Validation using the test set 461 



 462 

When analyzing the performance of each method using the test set (data not used during the 463 

training), we carried out two analyses: (a) the performance of the next day (18th November 464 

2016), which means the analysis of the 24 hours after the last day in the training set. It should 465 

be mentioned that this corresponds to a geomagnetically quiet day (maximum Kp = 2), and 466 

(b) the performance of the next 43 days corresponding to the complete test set.  467 

The main difference between (a) and (b) is that in the case of (b) we can analyse how robust 468 

the method is without re-training the model while in (a) we may expect a better performance. 469 

For the purpose of giving a qualitative assessment of the performance, Figure 10a shows the 470 

results for the LSTM models at each grid point for the TEC forecasted (orange lines) for the 471 

first 24 hours in terms of absolute TEC comparison against the actual TEC values (blue 472 

lines). Overall, the predictions follow the tendencies and the actual values almost in 473 

concordance.  474 

GRU method has similar results as LSTM as expected (Figure 10b). Nevertheless, some 475 

differences can be observed. For example, St13 has better accuracy using GRU than LSTM, 476 

LSTM forecasting slightly overestimated TEC between 0 and 8 UT. In contrast for St 14, 477 

LSTM has better performance than GRU. 478 
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 516 

 517 

Figure 10. LSTM (a) and GRU (b) 24 hours forecast (orange line) at each virtual station 518 

compared with the actual value (blue line).  519 

 520 

 521 

On the other hand, Figure 11 and Figure 12 shows that the CNN models outperform both  522 

LSTM and GRU. In the CNN models, even at high latitudes, the predictions are quite 523 

accurate showing an overall better performance than LSTM and GRU. 524 

 525 
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 574 

In order to analyze the behavior of the proposed models in terms of robustness when there is 575 

no retraining, online or incremental training, we calculated the RMSE for each virtual station 576 

and each method (LSTM, GRU, CNN, naive frozen ionosphere and naive 27-avg) for the 577 

complete test set (43 days). We used 24 hs forecasting steps to walk through the test set. 578 

After the first forecasted 24 hs (one step) the models are fed with the actual TEC and Kp 579 

values to forecast the next 24 hs (48 hs) without re-training, online or incremental training 580 

(the weights on the NN are the same as the output of the training). Thus it is expected that the 581 

models’ performance deteriorates especially in the last days of the test set and consequently, 582 

the overall RMSE is higher than in the first 24 hs forecasting. 583 

Figure 13 shows the RSME values calculated for the complete test set for all the virtual 584 

stations and for the three proposed (LSTM, GRU and CNN) and the naive methods. It can be 585 

seen that the RMSE for low-latitude virtual stations is considerably larger than in the other 586 

cases (mid or high-latitude regions). In general, the errors follow a similar pattern to those in 587 

Figure 12. Hence, the behavior of each model is consistent when compared with the observed 588 

24 hs test set where CNN models have the best performance. Moreover, St07 exhibits the 589 

worst performance, which is expected due to the above-mentioned characteristic of being an 590 

oceanic low-latitude virtual station. The only exception is St14 which shows, in this case, a 591 

similar RMSE for any of the DL methods,  but the RSME is quite low (~1.5 TECu). When 592 

compared with the naive methods, errors in DL methods are worse. This is because a) the 593 

above-mentioned problem of not training again using the new data as the prediction “walks” 594 

through the test set, and b) the test set (43 days) contains few perturbed days (2 days 595 

geomagnetically disturbed with Kp=5), which means, for example, that the actual data is 596 

closed to the reference curve (e.g. 27-avg days), in general terms the lower the activity the 597 

higher the chance of naive methods to have a better performance.  598 

 599 

Case studies 600 

 601 

It is well known that the ionosphere exhibits regular variability and morphology at different 602 

spatial and time scales, as well as non-regular variability (depending on different forcing) 603 

(Zolesi & Cander, 2014; Mendillo, 2006). In particular, we are interested in space weather 604 

effects on the ionosphere, thus we analyzed different cases of study under geomagnetic storm 605 

conditions. It is important to stress that each of the cases of study corresponds to time periods 606 

not considered in the training of the models. Moreover, we analyzed cases from 2017. 607 



We have analyzed four geomagnetic storms (see Table 2 to better highlight the behaviour of 608 

the TEC forecasting under different levels of geomagnetic disturbance (intensity from G1 to 609 

G4, according to the NOAA scale). Table 2 summarizes the dates of the selected events 610 

(column 1), the maximum Kp (column 2), the specification of the class of the storm and the 611 

solar event generating the disturbance (CH = Coronal Hole; CME = Coronal Mass Ejection; 612 

column 3). Column 4 contains the mean value (for each DL method) of the global ΔTEC and 613 

column 5 is the standard deviation of global ΔTEC. 614 

The global ΔTEC for any of the DL models is calculated as follows, 615 𝐺𝑙𝑜𝑏𝑎𝑙𝛥𝑇𝐸𝐶 = ଵ௦௧ ∑ 𝛥𝑇𝐸𝐶௦௧   616 

Where st is the number of the virtual station stations (grid points) and ΔTEC is the TEC 617 

difference between the forecasted TEC and the corresponding GIM TEC value. 618 

We consider as “storm events” the days between the Sudden Storm Commencement (SSC) or 619 

sudden variation of Dst due to the arrival of the disturbance at the magnetopause until the 620 

recovery to the pre-disturbance conditions. 621 

The table contains the same cases of study selected by Cesaroni et al (2020) but it is worth 622 

mentioning that the metrics reported in that paper refer to the comparison of the forecasted 623 

global maps obtained by applying both the “single point forecasting” and extending the 624 

forecasting for any point in the globe as described in the introduction. Even if a direct 625 

comparison with the performance of the NARX used in Cesaroni et al (2020) is not 626 

possible,any of the new proposed DL techniques seems to show better performance than the 627 

multi-layer perceptron implemented in the mentioned paper.  628 

 629 

 630 

 631 

   μ (TECu) σ (TECu) 

Date Max Kp Scale/origin  LSTM GRU CNN LSTM GRU CNN 



27-31 

May 

2017 

7 G3 - strong / 

CME 

-0.25 -0.14 -0.18 0.96 0.96 1.01 

07-11 

Sep 2017 

8+ G4 - severe / 

CME 

0.03 0.15 0.06 1.33 1.47 1.19 

26Sep - 

03 Oct 

2017 

7- G3 - strong / 

CH 

0.28 0.4 0.38 1.01 1.02 1.09 

07 - 12 

Nov 2017 

6+ G1 /CH 0.03 0.15 0.06 1.33 1.5 1.19 

Table 2.  Case studies considering different geomagnetic storm scales, and the mean and 632 

standard deviation for LSTM, GRU and CNN models. 633 

 634 

The first important point to address is the fact that, for the selected cases of study, the DL 635 

models have been tested for a dataset (2017) very far from the training set, with overall good 636 

results showing that they are robust enough even when using far information to train (2005 to 637 

2016). Another note is that we are dealing with averaged overall errors (global ΔTEC) and 638 

because of that we expect a significantly smoothed behavior consequently there are no 639 

punctual details of the forecasting performance when observing at the single grid point. 640 

Nevertheless, this allows having a perspective of the performance of the proposed forecasting 641 

models in a more general scope. 642 

When observing the global ΔTEC, for any of the DL models (LSTM, GRU, CNN), the μ 643 

varies between 0.03 and 0.38 (in absolute value), while σ varies between 0.96 and 1.5 (in the 644 

severe geomagnetic storm case). Thus, even in the worst-case scenario any of the proposed 645 

methods have an overall good performance compared with the results in Cesaroni et al., 646 

2020. As expected, the worst results originate from the severe (G4) geomagnetic storm in 647 

September 2017. When comparing the different DL techniques, GRU models exhibit 648 

different behaviour depending on the storm (see the variation of σ, for example) while CNN 649 

appears to be consistent (σ between 1.01 and 1.19). The LSTM model is in the middle with 650 

more dependency on the storm case (σ between 0.96 and 1.33). A priori, from an overall 651 

point of view, CNN methods are more consistent and have better performance. 652 



Figure 14 shows details for the 07-11 September 2017 severe geomagnetic storm. The left 653 

upper panel shows the Global ΔTEC (TECu) for each of the 3 methods. Dash horizontal lines 654 

mark 2 thresholds of 2 TECu and 4 TECu.  In concordance, the left bottom panel shows 655 

SymH index (http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html) as a proxy for the geomagnetic 656 

activity. As expected, the major errors (ΔTEC > ± 2 TECu) can be found during the 657 

development of the storm from the sudden storm commencement (SSC) during late hours on 658 

the 8th of September, to the main phase (symH ~ -125 nT ) on the 9th of September. After 659 

that, it can also be observed that during the brief recovery phase followed by a new 660 

perturbation in the geomagnetic field that leads to a new peak  (SymH ~ -100 nT) and later on 661 

a long recovery phase during the next days, ΔTEC returns to an acceptable value between -2 662 

to 2 TECu (for any of the methods). When observing the CNN model, it can be seen that the 663 

global  ΔTEC follows the geomagnetic perturbation (slightly better than the others) but the 664 

major difference can be observed during the main phase of the geomagnetic storm when the 665 

CNN model is considerably better than the other two. This suggests that the CNN model is 666 

able to learn better from sudden changes within the data. A similar analysis with similar 667 

results was done for the other storms in table 2 (not shown here). 668 

The right upper and lower panels show basic statistics also reported in table 2. 669 

 670 
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 673 

 674 

Figure 14. 07- 11 September case of study: left upper panel corresponds to Global ΔTEC for 675 

each DL technique, the left lower panel plots the SymH index, the right upper panel presents 676 



the histogram for Global ΔTEC for each technique, and the right bottom pane shows a 677 

boxplot also for each of the modelling methods. 678 

 679 

Pre-operative prototype: incremental training 680 

 681 

Since the main reason for the forecasting method in space weather is to be implemented for 682 

real-time operations, we tested each of the methods proposed in the paper using incremental 683 

training (Ade et al., 2013; Losing et al., 2018). 684 

The main objective of doing that  is to assess the performance of the models  when they are 685 

constantly updated with new information coming from freshly available data. This is 686 

especially important in space weather forecasting because one of its characteristics is being 687 

an intrinsically unbalanced problem where fewer extreme events occur for a solar cycle. 688 

Thus, there are few samples to learn from and often ML methods are not able to catch such 689 

cases.  690 

The general procedure in incremental training is the following: the models are trained once 691 

(see above in subsection “Training”), then a prediction is made to forecast the first 24 hs after 692 

the last training set sequence. The actual data is compared with this prediction and RSME is 693 

calculated to evaluate the performance of the model. For the next step (range between 24 yo 694 

48 hours after the training set), we use the previous 24 hours (new data) to re-train by 695 

adjusting the weights of the already trained model. Thus, the data, as it arrives, is 696 

continuously used to extend the model (Ditzler et.al., 2013). 697 

Here, We show the implementation of incremental training for the CNN model since, as 698 

stated above, it has the best performance of the three DL techniques. Moreover, we analyze in 699 

detail the worst case possible (among the virtual stations) which is the forecasting for virtual 700 

station 7 (oceanic low latitude station).  701 
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 731 

Figure 15.  Comparison of actual TEC values (blue), CNN base model (orange) and CNN 732 

with incremental training (green) for virtual station 7. The upper plot shows the results for the 733 

complete test set (43 days) and the lower plot is a zoom for the first 14 days. 734 

 735 

 736 

Figure 15 shows for the first forecasted day the same behaviour for the CNN base model 737 

(without re-training) as CNN with incremental training. As expected the results are the same 738 

because new data is not used yet. For the next step (48 hs), the previous 24 hs TEC and Kp 739 

are used to update the model. This means that the weights are adjusted by using the new 24 740 

hs data and thus the result is significantly better. In the zoomed panel, it can be observed that 741 

the CNN model with incremental training (green line) is following quite well the actual data 742 

(blue), even the peaks, in most of the cases. We apply incremental training to every other 743 

virtual station for the test set.  744 
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 793 

Discussion and conclusion 794 

 795 

In this work, we considered a data science approach to perform forecasting of the ionospheric 796 

Total Electron Content with a forecasting horizon of 24 hours  able to account for the 797 

variability induced by space weather events.  In order to accomplish this, we present a data 798 

pipeline to acquire the data, pre-process and prepare it for the modeling, and we implemented 799 

3 different DL techniques. For the validation, we used RMSE as the metrics within the test 800 

set. We also implemented incremental training to update the models as the forecasting 801 

advances in time and new data can help correct the weights.  802 

Regarding the data science approach, few discussions have been raised. First, the acquisition 803 

stage here is straightforward (since it is offline data) also the data resolution is 2 hours, thus 804 

there is enough time to acquire and prepare the data. Under these conditions, the real-time 805 

version for this stage is also trivial and easy to implement. Nevertheless, if the data resolution 806 

changes (e.g. we use directly GNSS derived TEC at certain locations or 15 minute time 807 

resolution GIM maps) it may constitute a challenge (e.g. data quality control, time scale). In 808 

general, the targeted time/space scales will steer the acquisition process in real-time 809 

scenarios.  810 

Feature selection and engineering (e.g. adding statistic-based features) are also important and 811 

are basically led by the knowledge of the domain (and the dataset). A desired trade-off 812 

between having few dimensions to train and having enough information regarding the 813 

problem is not an easy task. From the data perspective, the aim is to have as few features as 814 

possible to lower the amount of data needed  (Bellman, 1057). Still, we would like to have as 815 

much information as possible about the domain for a smart feature selection such as some 816 

scoring techniques (e.g. feature ranking method). In this regard, a priori knowledge is 817 

important. For example, the selection of the appropriate geomagnetic index for a given 818 

location (e.g. using Dst for equatorial virtual stations or AU for high latitude virtual stations, 819 

among others). Also, the time scales are important here, for example, a solar activity proxy 820 

such as the F10.7 is often used in ionospheric studies for longer scales than a day. Thus, in 821 

future works, we propose tackling the feature selection problem. Also, the data integration 822 

stage is desired to be smooth (e.g. easy way of adding, removing data, data structure, 823 

enhancing automatization of pre-processing operations, etc), with as few modifications as 824 

possible within the pipeline.  825 

Regarding the operative implementation, additional technical considerations are needed 826 



including the deployment and the monitoring of the performance. Moreover, it is desirable to 827 

update, or even change, the models or techniques without much modification in the other 828 

stages of the data pipeline, so more complex software development is needed to ensure the 829 

scalability and consistency of the system.  830 

At the modeling stage, it is worth mentioning that any of the proposed DL technologies have 831 

good training (see section ) 832 

Besides the technical issues mentioned above, from the physical point of view, the proposed 833 

models (LSTM, GRU, CNN) have a significantly good performance on a global scale but for 834 

certain locations theory can have poor performance. This is the case of virtual station 7 which 835 

is a low-latitude station located in the ocean (worst case). In this case, the data is known to 836 

have less quality and any of the methods result in reduced forecasting capabilities. 837 

Nevertheless, with the possibility of incremental learning (see Figure 16), many issues have 838 

been overcomed. An exception is virtual station 9, where CNN could not lower the error in 839 

comparison with the other models (especially the naive models). Many strategies can be used 840 

here: improve the data quality by adding more data, augmenting the time resolution (when 841 

possible), try other hyperparameters tuning or other architectures. Another approach is 842 

ensemble learning to seek better predictive performance by combining the prediction of 843 

multiple methods. Also, other machine learning techniques can be used.  Many of the 844 

mentioned techniques and strategies are proposed for future works. 845 

Considering the first 24 hours forecasting the best method is CNN with the error ranging 846 

between 0.5 and 2 TECu without re-training. As the model is used in further samples, the 847 

performance deteriorates until, in some cases, the naive methods perform better. The 848 

proposed solution is to update the model as it “walks” in time (with a 24 hours step). In 849 

Figure 16, we show the improvement in the forecasting capabilities of the DL models when 850 

incremental training is added. In general, the performance is quite good (not more than 2 851 

TECu) proving to be more reliable and robust models (in particular CNN). 852 

We also analysed different cases of geomagnetic storms, in particular using data very far 853 

from the one used in the training set (different storms in 2017). As expected best results are 854 

obtained using CNN with incremental learning.  855 

An important characteristic of CNN models in comparison with LSTM ans GRU is that, 856 

CNN model seems to have more stability and it is able to better consider fast changes. This is 857 

because CNN uses kernels to create the so-called feature maps that usually consider the 858 

spatial relationship/dependences/information from the surroundings of a given sample 859 

(depending on the kernel size). In our proposed model, the kernel size is 2, which means that 860 



a sliding window of 2x2 is used to construct the feature map. Then, each new element of the 861 

feature map considers the information within that window. Each window is composed by 2 862 

samples of each feature (TEC, Kp) and for the method, the feature map is considering the 863 

next immediate sample (next 2 hours). Thus CNN is considering the short term relationship 864 

which is not considered by the 2 RNN other models (LSTM and GRU). This short scale in 865 

time is very important for fast variability often observed in the ionosphere.   866 

It is worth mentioning, that this paper is a continuation of the work started by Cesaroni et al. 867 

(2020) and we focused here on the first of two stages of their approach to global forecasting 868 

of TEC. Thus, the new improvement in each of the single-point forecasting impacts the 869 

second stage which is extending the forecasting for any point in the globe. 870 

Although the results shown in this work are quite good, in the future, we are planning to add 871 

more data (adding recent years), study better the feature selection and propose other learning 872 

methods. Finally, in the near future, we plan to implement our models in an operative 873 

manner.  874 
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