Figure 14 (a) The reaction network of the temporal nanochannel
on a bilayer membrane. Copyright
(2014) Royal Society of Chemistry. (b) The temporal switch of the 1D
channel on the silicon particle. Copyright (2019) Royal Society of
Chemistry
4. Conclusions and Perspectives
Since the first report in 2010, a number of artificial fuel-driven DSAs
have been proposed, and various temporary, ordered molecular aggregates
have been obtained. It greatly promoted the study of supramolecular
chemistry from thermodynamic statistics to non-equilibrium states.
Recently, the concept of fuel-driven DSA has been extended to create
non-equilibrium temporary materials. Some materials, of which the
solubility, color, fluorescence, self-healable abilities, adsorption
capacity, etc. can be altered by the addition and spontaneous
consumption of the chemical fuel, were successfully prepared. In this
review, we firstly summarized the recently reported reaction networks
which are possible to be used for realizing artificial dissipative
self-assemblies and creating
temporary materials in recent
years, and then demonstrated the latest advances in fuel-driven
temporary materials, including gels, nanoreactors, self-erased inks,
temporary self-healable materials, etc. The mechanisms of their
temporary behaviors and potential applications were carefully discussed.
It can be found that compared with static materials under thermodynamic
equilibrium, fuel-driven temporary materials provide more opportunities
to create new functions and applications due to their controllable
time-dependent variability.
However, as a new type of material, fuel-driven temporary materials are
very far from well-developed. Firstly, the vast majority of present
fuel-driven temporary materials are organic or polymeric materials.
Their stiffness, robustness, and heat/cold resistance restrict their
availability in some harsh conditions. However, the report
on fuel-driven temporary
inorganic materials, such as ceramics, alloys, or carbon materials, is
still rare. Although the temporary formation or deformation of an
inorganic bulky material remains a challenge, temporary alteration of
the wettability of inorganic particles is not difficult to be achieved.
It may offer great convenience for the flotation of inorganic
nanoparticles. Secondly, the repeatability of the fuel-driven cycles
remains to be enhanced. Most fuel-driven temporary materials were so far
conducted under the experimental condition of batch-wise addition of
fuel, which often results in poor recyclability due to the accumulation
of the waste. Thus, it is expected to find more reaction networks in
which the waste can automatically evaporate or precipitate. [25]
Moreover, developing a special continuous reactor that can quantitively
feed the chemical fuel and discharge the waste is another path to
solving this problem. [78] Finally, the new functions and
applications of fuel-driven temporal materials are still to be explored.
The motivation for studying DSA is the curiosity to have an insight into
molecular self-assembly in living bodies. The similitude in mechanism
suggests that fuel-driven temporary materials are possible candidates
for constructing bionic equipment. For example, a fuel-driven
temporarily-deformed hydrogel is potentially used as a new type of
artificial muscle in the manufacturing of soft robots since the
contraction of the natural muscle is also driven by chemical fuel (ATP).
Meanwhile, fuel-driven temporary gating of a 1D nanochannel is probably
used in producing semipermeable membranes that can modulate the
transmembrane mass transportation like cytomembrane. Besides,
fuel-driven temporary hydrogels may also achieve other applications such
as controlled drug delivery systems, temporary implantable cell
scaffolds, and controllable adhesives. Since the continuous accumulation
of successful examples, we do believe that the above applications will
be realized in the near future with the smart molecular design of the
precursor and the suitable selection of the reaction network. In the
meantime, it can be expected that more fuel-driven temporary materials
with other novel properties will be created to meet the increasing
demands of daily life, medicine, or industry.
Acknowledgement
This work was financially supported by the Heilongjiang Provincial
Natural Science Foundation of China (LH2022B009), National Natural
Science Foundation of China (21704023, U20A20339). Guangtong Wang and
Mengmeng Nan contributed equally.
References
- Tew, G. N.; Stupp, S. I. Multifunctional Supramolecular Materials. In
Functional Polymers, Vol. 704, ACS Publications, Washington, DC,1998 , pp. 218–226.
- Grzybowski, Bartosz A.; Wilmer, C. E.; Kim, J.; Browne K. P.; Bishop,
K. J. M. Self-assembly: from Crystals to Cells. Soft Matter2009 , 5 , 1110-1128.
- Yan, X. Z.; Wang, F.; Zheng, B.; Huang, F. H. Stimuli-responsive
Supramolecular Polymeric Materials. Chem. Soc. Rev.2012 , 41 , 6042-6065.
- Amabilino, D. B.; Smith, D. K.; Steed, J. W.; Supramolecular
Materials. Chem. Soc. Rev. 2017 , 46 ,
2404-2420.
- Ikeda, M.; Bioinspired Supramolecular Materials. Bull. Chem.
Soc. Jpn . 2013 , 86 , 10−24.
- Fialkowski, M.; Bishop, K. J. M.; Klajn, R.; Smoukov, S. K.; Campbell,
C. J.; Grzybowski, B. A. Principles and Implementations of Dissipative
(Dynamic) Self-Assembly. J. Phys. Chem. B 2006 ,110 , 2482-2496.
- van Rossum, S. A. P.; Tena-Solsona, M.; van Esch, J. H.; Eelkema, R.;
Boekhoven, J. Dissipative Out-of-equilibrium Assembly of Man-made
Supramolecular Materials. Chem. Soc. Rev. 2017 ,46 , 5519-5535.
- De, S.; Klajn, R. Dissipative Self-Assembly Driven by the Consumption
of Chemical Fuels. Adv. Mater. 2018, 30 , 1706750.
- Wang, G. T.; Liu, S. Q. Strategies to Construct a Chemical-fuel-driven
Self-assembly. ChemSystemsChem 2020 , 2 ,
e1900046.
- Morris, R. L.; Hollenbeck, P. J. Axonal Transport of Mitochondria
along Microtubules and F-actin in Living Vertebrate Neurons. J.
Cell Biol. 1995 , 131 , 1315-1326.
- Reisler, E.; Egelman, E. H. Actin Structure and Function: What We
Still Do Not Understand. J. Biol. Chem. 2007 ,282 , 36133-36137.
- Bugyi, B.; Carlier, M.-F. Control of Actin Filament Treadmilling in
Cell Motility Annual Review of Biophysics. Annu. Rev. Biophys.2010 , 39 , 449-470.
- Weißenfels, M.; Gemen, J.; Klajn, R. Dissipative Self-Assembly:
Fueling with Chemicals versus Light. Chem 2021 ,7 , 23-37.
- Liu, M. M.; Creemer C. N.; Reardon T. J.; Parquette, J. R.
Light-driven Dissipative Self-assembly of a Peptide Hydrogel.Chem. Commun. 2021 , 57 , 13776-13779.
- Chen, X.-M.; Feng, W.-J.; Bisoyi, H. K.; Zhang, S.; Chen, X.; Yang H.;
Li Q. Light-activated Photodeformable Supramolecular Dissipative
Self-assemblies. Nat. Commun. 2022 , 13 , 3216.
- Pappas, C. G.; Mutasa, T.; Frederix, P. W. J. M.; Fleming, S.; Bai,
S.; Debnath, S.; Kelly, S. M.; Gachagan, A.; Ulijn, R. V. Transient
supramolecular reconfiguration of peptide nanostructures using
ultrasound. Mater. Horiz. 2015 , 2 , 198-202.
- Bhangu, S. K.; Bocchinfuso G.; Ashokkumar M.; Cavalieri F.
Sound-driven Dissipative Self-assembly of Aromatic Biomolecules into
Functional Nanoparticles. Nanoscale Horiz. 2020 ,5 , 553-563.
- Kashin, A. S.; Degtyareva, E. S.; Ananikov, V. P. Visualization of the
Mechanical Wave Effect on Liquid Microphases and Its Application for
the Tuning of Dissipative Soft Microreactors. JACS Au2021 , 1 , 87-97.
- Ke, H.; Yang, L.-P.; Xie, M.; Chen, Z.; Yao, H.; Jiang, W.
Shear-induced Assembly of a Transient Yet Highly Stretchable Hydrogel
Based on Pseudopolyrotaxanes. Nat. Chem. 2019 ,11 , 470-477.
- Heuser, T.; Steppert, A.-K.; Lopez, C. M.; Zhu, B.; Walther, A.
Generic Concept to Program the Time Domain of Self-Assemblies with a
Self-Regulation Mechanism. NanoLett. 2015 , 15 ,
2213-2219.
- Boekhoven, J.; Brizard, A. M.; Kowlgi, K. N. K.; Koper, G. J. M.;
Eelkema, R.; van Esch J. H. Dissipative Self-Assembly of a Molecular
Gelator by Using a Chemical Fuel. Angew. Chem. Int. Ed.2010 , 49 , 4825-4828.
- Boekhoven, J.; Hendriksen, W. E.; Koper, G. J. M.; Eelkema, R.; van
Esch, J. H. Transient Assembly of Active Materials Fueled by a
Chemical Reaction. Science 2015 , 349 ,
1075-1079.
- Kariyawasam, L. S.; Hartley, C. S. Dissipative Assembly of Aqueous
Carboxylic Acid Anhydrides Fueled by Carbodiimides. J. Am. Chem.
Soc. 2017 , 139 , 11949-11955.
- Heuser, T.; Weyandt, E.; Walther, A. Biocatalytic Feedback-Driven
Temporal Programming of Self-Regulating Peptide Hydrogels.Angew. Chem. Int. Ed. 2015 , 54 , 13258-13262.
- Biagini, C.; Fielden, S. D. P.; Leigh, D. A.; Schaufelberger, F.;
Stefano, S. D. Thomas D. Dissipative Catalysis with a Molecular
Machine. Angew. Chem. Int. Ed. 2019 , 58 ,
9876-9880.
- Maiti, S.; Fortunati, I.; Ferrante, C.; Scrimin, P.; Prins, L. J.
Dissipative Self-assembly of Vesicular Nanoreactors. Nat. Chem.2016 , 8 , 725-731.
- Jalani, K.; Dhiman, S.; Jain, A.; George, S. J. Temporal Switching of
an Amphiphilic Self-assembly by a Chemical Fuel-driven Conformational
Response. Chem. Sci. 2017 , 8 , 6030-6036.
- Singh, N.; Lainer, B.; Formon, G. J. M.; Piccoli, S. D.; Hermans, T.
M. Re-programming Hydrogel Properties Using a Fuel-Driven Reaction
Cycle. J. Am. Chem. Soc. 2020 , 142 , 4083-4087.
- Wang, G. T.; Sun, J. Z.; An, L.; Liu S. Q. Fuel-driven Dissipative
Self-assembly of a Supra-amphiphile in Batch Reactor.Biomacromolecules 2018 , 19 , 2542-2548.
- Ogden, W. A.; Guan Z. B. Redox Chemical-Fueled Dissipative
Self-Assembly of Active Materials. ChemSystemsChem2020 , 2 , e1900030.
- Tena-Solsona, M.; Rieβ, B.; Grötsch, R. K.; Löhrer, F. C.; Wanzke, C.;
Käsdorf, B.; Bausch, A. R.; Müller-Buschbaum, P.; Lieleg, O.;
Boekhoven, J. Non-equilibrium Dissipative Supramolecular Materials
with a Tunable Lifetime. Nat. Commun. 2017 , 8 ,
15895.
- Grötsch, R. K.; Angi, A.; Mideksa, Y. G.; Wanzke, C.; Tena-Solsona,
M.; Feige, M. J.; Rieger, B.; Boekhoven, J. Dissipative Self-Assembly
of Photoluminescent Silicon Nanocrystals. Angew. Chem. Int. Ed.2018 , 57 , 14608-14612.
- Bal, S.; Das, K.; Ahmed, S.; Das, D. Chemically Fueled Dissipative
Self-Assembly that Exploits Cooperative Catalysis. Angew. Chem.
Int. Ed. 2019 , 58 , 244-247.
- Grötsch, R. K.; Wanzke, C.; Speckbacher, M.; Angi, A.; Rieger, B.
Boekhoven, J. Pathway Dependence in the Fuel-Driven Dissipative
Self-Assembly of Nanoparticles. J. Am. Chem. Soc.2019 , 141 , 9872-9878.
- Mondala, S.; Haldar, D. A. Transient Non-Covalent Hydrogel by a
Supramolecular Gelator with Dynamic Covalent Bonds. New J.
Chem. 2021 , 45 , 4773-4779.
- Dodo, O. J.; Petit, L.; Rajawasam, C. W. H.; Hartley, C. S.;
Konkolewicz, D. Tailoring Lifetimes and Properties of Carbodiimide
Fueled Covalently Cross-linked Polymer Networks. Macromolecules2021 , 54 , 9860−9867.
- Xu, H.; Bai, S.; Gu, G.; Gao, Y.; Sun, X.; Guo, X.; Xuan, F.; Wang, Y.
Bioinspired Self-Resettable Hydrogel Actuators Powered by a Chemical
Fuel. ACS Appl. Mater. Interfaces 2022 , 14 ,
43825-43832.
- Philippova, O. E.; Hourdet, D.; Audebert, R.; Khokhlov, A. R.
pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid).Macromolecules 1997 , 30 , 8278-8285.
- Ahn, S. K.; Kasi, R. M.; Kim, S. C.; Sharma, N.; Zhou, Y. X.
Stimuli-Responsive Polymer Gels. Soft Matter 2008 ,4 , 1151-1157.
- Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A.
Stimulus-Responsive Hydrogels: Theory, Modern Advances, and
Applications. Mat. Sci. Eng. R. 2015 , 93 ,
1-49.
- Roy, A.; Manna K.; Pal S. Recent Advances in Various
Stimuli-Responsive Hydrogels: from Synthetic Designs to Emerging
Healthcare Applications. Mater. Chem. Front. 2022 ,6 , 2338-2385.
- Han, Z. L.; Wang, P.; Mao, G. Y.; Yin, T. H.; Zhong, D. M.; Yiming,
B.; Hu, X. C.; Jia, Z.; Nian, G. D.; Qu, S. X.; Yang, W. Dual
pH-Responsive Hydrogel Actuator for Lipophilic Drug Delivery.ACS Appl. Mater. Interfaces 2020 , 12 ,
12010-12017.
- Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from Controlled Release to
pH-Responsive Drug Delivery. Drug Discov. Today 2022 ,7 , 569-579.
- Ma, C. X.; Le, X. X.; Tang, X. L.; He, J.; Xiao, P.; Zheng, J.; Xiao,
H.; Lu, W.; Zhang, J. W.; Huang, Y. J.; Chen, T. A Multiresponsive
Anisotropic Hydrogel with Macroscopic 3D Complex Deformations.Adv. Funct. Mater. 2016 , 26 , 8670-8676.
- Zhao, L.; Huang, J. H.; Zhang, Y. C.; Wang, T.; Sun, W. X.; Tong, Z.
Programmable and Bidirectional Bending of Soft Actuators Based on
Janus Structure with Sticky Tough PAA-Clay Hydrogel. ACS Appl.
Mater. Interfaces 2017 , 9 , 11866-11873.
- Yang, C. X.; Su, F.; Xu, Y. X.; Ma, Y.; Tang, L.; Zhou, N. B.; Liang,
E. X.; Wang, G. X.; Tang, J. X. pH Oscillator-Driven Jellyfish-like
Hydrogel Actuator with Dissipative Synergy between Deformation and
Fluorescence Color Change. ACS Macro Lett. 2022 ,11 , 347-353.
- Panja, S.; Patterson, C.; Adams, D. J. Temporally-Programmed Transient
Supramolecular Gels. Macromol. Rapid Commun. 2019 ,40 , 1900251.
- Xie, X.-Q.; Zhang, Y. F.; Liang, Y. J.; Wang, M. K.; Cui, Y.; Li, J.
J.; Liu, C.-S. Programmable Transient Supramolecular Chiral
G-quadruplex Hydrogels by a Chemically Fueled Non-equilibrium
Self-Assembly Strategy. Angew. Chem. Int. Ed. 2022 ,61 , e202114471.
- Zhang, Y. Z.; Li, P. P.; Zhang, K. Q.; Wang X. Temporary Actuation of
Bilayer Polymer Hydrogels Mediated by the Enzymatic Reaction.Langmuir 2022 , 38 , 15433-15441.
- Olivieri, E.; Quintard, G.; Naubron, J.-V.; Quintard A. Chemically
Fueled Three-State Chiroptical Switching Supramolecular Gel with
Temporal Control. J. Am. Chem. Soc. 2021 , 143 ,
12650-12657.
- Chen, J. L.-Y.; Maiti, S.; Fortunati, I.; Ferrante, C.; Prins, L. J.;
Temporal Control over Transient Chemical Systems using Structurally
Diverse Chemical Fuels. Chem. Eur. J. 2017 , 23 ,
11549-11559.
- Dhiman, S.; Jain, A.; George, S. J. Transient Helicity: Fuel-Driven
Temporal Control over Conformational Switching in a Supramolecular
Polymer. Angew. Chem. Int. Ed. 2017 , 56 ,
1329-1333.
- Sorrenti, A.; Leira-Iglesias, J.; Sato, A.; Hermans, T. M.
Non-equilibrium Steady States in Supramolecular Polymerization.Nat. Commun. 2017 , 8 , 15899.
- Heinen, L.; Walther, A. Programmable Dynamic Steady States in
ATP-driven Nonequilibrium DNA Systems. Sci. Adv. 2019 ,5 , eaaw0590.
- Grosso, E. D.; Ragazzon, G.; Prins, L. J.; Ricci, F. Fuel-Responsive
Allosteric DNA-Based Aptamers for the Transient Release of ATP and
Cocaine. Angew. Chem. Int. Ed. 2019 , 58 ,
5582-5586.
- Hao, X.; Wang, H. R.; Zhao, W. J.; Wang, L. T.; Peng F.; Yan Q.
Dynamic Macro- and Microgels Driven by Adenosine Triphosphate-Fueled
Competitive Host–Guest Interaction. CCS Chem. 2022 ,4 , 838-846.
- Ogden W. A.; Guan Z. B. Redox Chemical-Fueled Dissipative
Self-Assembly of Active Materials. ChemSystemsChem2020 , 2 , e1900030.
- Jain, M.; Ravoo, B. J. Fuel-Driven and Enzyme-Regulated
Redox-Responsive Supramolecular Hydrogels. Angew. Chem. Int. Ed.2021 , 60 , 21062-21068.
- Das, A. K.; Maity, I.; Parmar, H. S.; McDonald, T. O.; Konda, M.
Lipase-Catalyzed Dissipative Self-Assembly of a Thixotropic Peptide
Bolaamphiphile Hydrogel for Human Umbilical Cord Stem-Cell
Proliferation. Biomacromolecules 2015 , 16 ,
1157-1168.
- Ahmed, S.; Chatterjee, A.; Dasa, K.; Das, D. Fatty Acid Based
Transient Nanostructures for Temporal Regulation of Artificial
Peroxidase Activity. Chem. Sci. 2019 , 10 ,
7574-7578.
- Singh, N.; Lainer, B.; Formon, G. J. M.; Piccoli, S. D.; Hermans, T.
M. Re-programming Hydrogel Properties Using a Fuel-Driven Reaction
Cycle. J. Am. Chem. Soc. 2020 , 142 , 4083-4087.
- Zhang, J. Y.; Liu, J.; Li, H. Z.; Li, X. H.; Zhao, Y. F.; Zhao, P.;
Cui, J. X.; Yang, B.; Song, Y. L.; Zheng, Y. J. Programming Hydrogels
with Complex Transient Behaviors via Autocatalytic Cascade Reactions.ACS Appl. Mater. Interfaces 2022 , 14 ,
20073-20082.
- Dhiman, S.; Jalani, K.; George, S. J. Redox-Mediated, Transient
Supramolecular Charge-Transfer Gel and Ink. ACS Appl. Mater.
Interfaces 2020 , 12 , 5259-5264.
- Olivieri, E.; Gasch, B.; Quintard, G.; Naubron, J.-V.; Quintard A.
Dissipative Acid-Fueled Reprogrammable Supramolecular Materials.ACS Appl. Mater. Interfaces 2022 , 14 ,
24720-24728.
- Cheng, M.; Qian, C.; Ding, Y. H.; Chen, Y.; Xiao, T. X.; Lu, X. C.;
Jiang, J. L.; Wang, L. Y. Writable and Self-Erasable Hydrogel Based on
Dissipative Assembly Process from Multiple Carboxyl
Tetraphenylethylene Derivative. ACS Materials Lett.2020 , 2 , 425-429.
- Geng, W.-C.; Liu, Y.-C.; Zheng, Z.; Ding D.; Guo, D.-S. Direct
Visualization and Real-time Monitoring of Dissipative Self-assembly by
Synchronously Coupled Aggregation-induced Emission. Mater. Chem.
Front. 2017 , 1 , 2651-2655.
- Vriezema, D. M.; Aragonès, M. C.; Elemans, J. A. A. W.; Cornelissen,
J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Self-Assembled
Nanoreactors. Chem. Rev. 2005 , 105 , 1445-1490.
- Deraedt, C.; Astruc, D. Supramolecular Nanoreactors for Catalysis.
Coordin. Chem. Rev. 2016 , 324 , 106-122.
- Che, H. L.; van Hest, J. C. M. Stimuli-responsive Polymersomes and
Nanoreactors. J. Mater. Chem. B 2016 , 4 ,
4632-4647.
- Swisher, J. H.; Jibril, L.; Petrosko, S. H.; Mirkin, C. A.
Nanoreactors for Particle Synthesis. Nat. Rev. Mater.2022 , 7 , 428-448.
- Würbser, M. A.; Schwarz, P. S.; Heckel, J.; Bergmann, A. M.; Walther,
A.; Boekhoven, J. Chemically Fueled Block Copolymer Self-Assembly into
Transient Nanoreactors. ChemSystemsChem 2021 ,3 , e2100015.
- Lang, X. H.; Thumu, U.; Yuan, L.; Zheng, C. R.; Zhang, H. J.; He, L.
R.; Zhao, H.; Zhao, C. S. Chemical Fuel-driven Transient Polymeric
Micelle Nanoreactors toward Reversible Trapping and Reaction
Acceleration. Chem. Commun. 2021 , 57 ,
5786-5789.
- Li, P. P.; Xia, Y. G.; Hao, J. C.; Wang, X. Transient Healability of
Metallosupramolecular Polymer Networks Mediated by Kinetic Control of
Competing Chemical Reactions. Macromolecules 2020 ,53 , 2856-2863.
- Zhong, Y. B.; Li, P. P.; Hao, J. C.; Wang, X. Bioinspired Self-Healing
of Kinetically Inert Hydrogels Mediated by Chemical Nutrient Supply.ACS Appl. Mater. Interfaces 2020 , 12 ,
6471-6478.
- Jia, L. Y.; Xu, L.; Liu, Y. Q.; Hao, J. C.; Wang, X. Transient
Chemical Activation of Covalent Bonds for Healing of Kinetically
Stable and Multifunctional Organohydrogels. CCS Chem.2022 , 5 , 510-523.
- Dambenieks, A. K.; Vua, P. H. Q.; Fyles, T. M. Dissipative Assembly of
a Membrane Transport System. Chem. Sci. 2014 ,5 , 3396-3403.
- Sonu, K. P.; Vinikumar, S.; Dhiman, S.; George, S. J.; Eswaramoorthy,
M. Bio-inspired Temporal Regulation of Ion-transport in Nanochannels.Nanoscale Adv. 2019 , 1 , 1847-1852.
- Leira-Iglesias, J.; Tassoni, A.; Adachi, T.; Stich M.; Hermans T. M.
Oscillations, Travelling Fronts and Patterns in a Supramolecular
System. Nat. Nanotechnol. 2018 , 13 , 1021-1027.