Figure 14 (a) The reaction network of the temporal nanochannel on a bilayer membrane. Copyright (2014) Royal Society of Chemistry. (b) The temporal switch of the 1D channel on the silicon particle. Copyright (2019) Royal Society of Chemistry
4. Conclusions and Perspectives
Since the first report in 2010, a number of artificial fuel-driven DSAs have been proposed, and various temporary, ordered molecular aggregates have been obtained. It greatly promoted the study of supramolecular chemistry from thermodynamic statistics to non-equilibrium states. Recently, the concept of fuel-driven DSA has been extended to create non-equilibrium temporary materials. Some materials, of which the solubility, color, fluorescence, self-healable abilities, adsorption capacity, etc. can be altered by the addition and spontaneous consumption of the chemical fuel, were successfully prepared. In this review, we firstly summarized the recently reported reaction networks which are possible to be used for realizing artificial dissipative self-assemblies and creating temporary materials in recent years, and then demonstrated the latest advances in fuel-driven temporary materials, including gels, nanoreactors, self-erased inks, temporary self-healable materials, etc. The mechanisms of their temporary behaviors and potential applications were carefully discussed. It can be found that compared with static materials under thermodynamic equilibrium, fuel-driven temporary materials provide more opportunities to create new functions and applications due to their controllable time-dependent variability.
However, as a new type of material, fuel-driven temporary materials are very far from well-developed. Firstly, the vast majority of present fuel-driven temporary materials are organic or polymeric materials. Their stiffness, robustness, and heat/cold resistance restrict their availability in some harsh conditions. However, the report on fuel-driven temporary inorganic materials, such as ceramics, alloys, or carbon materials, is still rare. Although the temporary formation or deformation of an inorganic bulky material remains a challenge, temporary alteration of the wettability of inorganic particles is not difficult to be achieved. It may offer great convenience for the flotation of inorganic nanoparticles. Secondly, the repeatability of the fuel-driven cycles remains to be enhanced. Most fuel-driven temporary materials were so far conducted under the experimental condition of batch-wise addition of fuel, which often results in poor recyclability due to the accumulation of the waste. Thus, it is expected to find more reaction networks in which the waste can automatically evaporate or precipitate. [25] Moreover, developing a special continuous reactor that can quantitively feed the chemical fuel and discharge the waste is another path to solving this problem. [78] Finally, the new functions and applications of fuel-driven temporal materials are still to be explored. The motivation for studying DSA is the curiosity to have an insight into molecular self-assembly in living bodies. The similitude in mechanism suggests that fuel-driven temporary materials are possible candidates for constructing bionic equipment. For example, a fuel-driven temporarily-deformed hydrogel is potentially used as a new type of artificial muscle in the manufacturing of soft robots since the contraction of the natural muscle is also driven by chemical fuel (ATP). Meanwhile, fuel-driven temporary gating of a 1D nanochannel is probably used in producing semipermeable membranes that can modulate the transmembrane mass transportation like cytomembrane. Besides, fuel-driven temporary hydrogels may also achieve other applications such as controlled drug delivery systems, temporary implantable cell scaffolds, and controllable adhesives. Since the continuous accumulation of successful examples, we do believe that the above applications will be realized in the near future with the smart molecular design of the precursor and the suitable selection of the reaction network. In the meantime, it can be expected that more fuel-driven temporary materials with other novel properties will be created to meet the increasing demands of daily life, medicine, or industry.
Acknowledgement
This work was financially supported by the Heilongjiang Provincial Natural Science Foundation of China (LH2022B009), National Natural Science Foundation of China (21704023, U20A20339). Guangtong Wang and Mengmeng Nan contributed equally.
References
  1. Tew, G. N.; Stupp, S. I. Multifunctional Supramolecular Materials. In Functional Polymers, Vol. 704, ACS Publications, Washington, DC,1998 , pp. 218–226.
  2. Grzybowski, Bartosz A.; Wilmer, C. E.; Kim, J.; Browne K. P.; Bishop, K. J. M. Self-assembly: from Crystals to Cells. Soft Matter2009 , 5 , 1110-1128.
  3. Yan, X. Z.; Wang, F.; Zheng, B.; Huang, F. H. Stimuli-responsive Supramolecular Polymeric Materials. Chem. Soc. Rev.2012 , 41 , 6042-6065.
  4. Amabilino, D. B.; Smith, D. K.; Steed, J. W.; Supramolecular Materials. Chem. Soc. Rev. 2017 , 46 , 2404-2420.
  5. Ikeda, M.; Bioinspired Supramolecular Materials. Bull. Chem. Soc. Jpn . 2013 , 86 , 10−24.
  6. Fialkowski, M.; Bishop, K. J. M.; Klajn, R.; Smoukov, S. K.; Campbell, C. J.; Grzybowski, B. A. Principles and Implementations of Dissipative (Dynamic) Self-Assembly. J. Phys. Chem. B 2006 ,110 , 2482-2496.
  7. van Rossum, S. A. P.; Tena-Solsona, M.; van Esch, J. H.; Eelkema, R.; Boekhoven, J. Dissipative Out-of-equilibrium Assembly of Man-made Supramolecular Materials. Chem. Soc. Rev. 2017 ,46 , 5519-5535.
  8. De, S.; Klajn, R. Dissipative Self-Assembly Driven by the Consumption of Chemical Fuels. Adv. Mater. 2018, 30 , 1706750.
  9. Wang, G. T.; Liu, S. Q. Strategies to Construct a Chemical-fuel-driven Self-assembly. ChemSystemsChem 2020 , 2 , e1900046.
  10. Morris, R. L.; Hollenbeck, P. J. Axonal Transport of Mitochondria along Microtubules and F-actin in Living Vertebrate Neurons. J. Cell Biol. 1995 , 131 , 1315-1326.
  11. Reisler, E.; Egelman, E. H. Actin Structure and Function: What We Still Do Not Understand. J. Biol. Chem. 2007 ,282 , 36133-36137.
  12. Bugyi, B.; Carlier, M.-F. Control of Actin Filament Treadmilling in Cell Motility Annual Review of Biophysics. Annu. Rev. Biophys.2010 , 39 , 449-470.
  13. Weißenfels, M.; Gemen, J.; Klajn, R. Dissipative Self-Assembly: Fueling with Chemicals versus Light. Chem 2021 ,7 , 23-37.
  14. Liu, M. M.; Creemer C. N.; Reardon T. J.; Parquette, J. R. Light-driven Dissipative Self-assembly of a Peptide Hydrogel.Chem. Commun. 2021 , 57 , 13776-13779.
  15. Chen, X.-M.; Feng, W.-J.; Bisoyi, H. K.; Zhang, S.; Chen, X.; Yang H.; Li Q. Light-activated Photodeformable Supramolecular Dissipative Self-assemblies. Nat. Commun. 2022 , 13 , 3216.
  16. Pappas, C. G.; Mutasa, T.; Frederix, P. W. J. M.; Fleming, S.; Bai, S.; Debnath, S.; Kelly, S. M.; Gachagan, A.; Ulijn, R. V. Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Mater. Horiz. 2015 , 2 , 198-202.
  17. Bhangu, S. K.; Bocchinfuso G.; Ashokkumar M.; Cavalieri F. Sound-driven Dissipative Self-assembly of Aromatic Biomolecules into Functional Nanoparticles. Nanoscale Horiz. 2020 ,5 , 553-563.
  18. Kashin, A. S.; Degtyareva, E. S.; Ananikov, V. P. Visualization of the Mechanical Wave Effect on Liquid Microphases and Its Application for the Tuning of Dissipative Soft Microreactors. JACS Au2021 , 1 , 87-97.
  19. Ke, H.; Yang, L.-P.; Xie, M.; Chen, Z.; Yao, H.; Jiang, W. Shear-induced Assembly of a Transient Yet Highly Stretchable Hydrogel Based on Pseudopolyrotaxanes. Nat. Chem. 2019 ,11 , 470-477.
  20. Heuser, T.; Steppert, A.-K.; Lopez, C. M.; Zhu, B.; Walther, A. Generic Concept to Program the Time Domain of Self-Assemblies with a Self-Regulation Mechanism. NanoLett. 2015 , 15 , 2213-2219.
  21. Boekhoven, J.; Brizard, A. M.; Kowlgi, K. N. K.; Koper, G. J. M.; Eelkema, R.; van Esch J. H. Dissipative Self-Assembly of a Molecular Gelator by Using a Chemical Fuel. Angew. Chem. Int. Ed.2010 , 49 , 4825-4828.
  22. Boekhoven, J.; Hendriksen, W. E.; Koper, G. J. M.; Eelkema, R.; van Esch, J. H. Transient Assembly of Active Materials Fueled by a Chemical Reaction. Science 2015 , 349 , 1075-1079.
  23. Kariyawasam, L. S.; Hartley, C. S. Dissipative Assembly of Aqueous Carboxylic Acid Anhydrides Fueled by Carbodiimides. J. Am. Chem. Soc. 2017 , 139 , 11949-11955.
  24. Heuser, T.; Weyandt, E.; Walther, A. Biocatalytic Feedback-Driven Temporal Programming of Self-Regulating Peptide Hydrogels.Angew. Chem. Int. Ed. 2015 , 54 , 13258-13262.
  25. Biagini, C.; Fielden, S. D. P.; Leigh, D. A.; Schaufelberger, F.; Stefano, S. D. Thomas D. Dissipative Catalysis with a Molecular Machine. Angew. Chem. Int. Ed. 2019 , 58 , 9876-9880.
  26. Maiti, S.; Fortunati, I.; Ferrante, C.; Scrimin, P.; Prins, L. J. Dissipative Self-assembly of Vesicular Nanoreactors. Nat. Chem.2016 , 8 , 725-731.
  27. Jalani, K.; Dhiman, S.; Jain, A.; George, S. J. Temporal Switching of an Amphiphilic Self-assembly by a Chemical Fuel-driven Conformational Response. Chem. Sci. 2017 , 8 , 6030-6036.
  28. Singh, N.; Lainer, B.; Formon, G. J. M.; Piccoli, S. D.; Hermans, T. M. Re-programming Hydrogel Properties Using a Fuel-Driven Reaction Cycle. J. Am. Chem. Soc. 2020 , 142 , 4083-4087.
  29. Wang, G. T.; Sun, J. Z.; An, L.; Liu S. Q. Fuel-driven Dissipative Self-assembly of a Supra-amphiphile in Batch Reactor.Biomacromolecules 2018 , 19 , 2542-2548.
  30. Ogden, W. A.; Guan Z. B. Redox Chemical-Fueled Dissipative Self-Assembly of Active Materials. ChemSystemsChem2020 , 2 , e1900030.
  31. Tena-Solsona, M.; Rieβ, B.; Grötsch, R. K.; Löhrer, F. C.; Wanzke, C.; Käsdorf, B.; Bausch, A. R.; Müller-Buschbaum, P.; Lieleg, O.; Boekhoven, J. Non-equilibrium Dissipative Supramolecular Materials with a Tunable Lifetime. Nat. Commun. 2017 , 8 , 15895.
  32. Grötsch, R. K.; Angi, A.; Mideksa, Y. G.; Wanzke, C.; Tena-Solsona, M.; Feige, M. J.; Rieger, B.; Boekhoven, J. Dissipative Self-Assembly of Photoluminescent Silicon Nanocrystals. Angew. Chem. Int. Ed.2018 , 57 , 14608-14612.
  33. Bal, S.; Das, K.; Ahmed, S.; Das, D. Chemically Fueled Dissipative Self-Assembly that Exploits Cooperative Catalysis. Angew. Chem. Int. Ed. 2019 , 58 , 244-247.
  34. Grötsch, R. K.; Wanzke, C.; Speckbacher, M.; Angi, A.; Rieger, B. Boekhoven, J. Pathway Dependence in the Fuel-Driven Dissipative Self-Assembly of Nanoparticles. J. Am. Chem. Soc.2019 , 141 , 9872-9878.
  35. Mondala, S.; Haldar, D. A. Transient Non-Covalent Hydrogel by a Supramolecular Gelator with Dynamic Covalent Bonds. New J. Chem. 2021 , 45 , 4773-4779.
  36. Dodo, O. J.; Petit, L.; Rajawasam, C. W. H.; Hartley, C. S.; Konkolewicz, D. Tailoring Lifetimes and Properties of Carbodiimide Fueled Covalently Cross-linked Polymer Networks. Macromolecules2021 , 54 , 9860−9867.
  37. Xu, H.; Bai, S.; Gu, G.; Gao, Y.; Sun, X.; Guo, X.; Xuan, F.; Wang, Y. Bioinspired Self-Resettable Hydrogel Actuators Powered by a Chemical Fuel. ACS Appl. Mater. Interfaces 2022 , 14 , 43825-43832.
  38. Philippova, O. E.; Hourdet, D.; Audebert, R.; Khokhlov, A. R. pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid).Macromolecules 1997 , 30 , 8278-8285.
  39. Ahn, S. K.; Kasi, R. M.; Kim, S. C.; Sharma, N.; Zhou, Y. X. Stimuli-Responsive Polymer Gels. Soft Matter 2008 ,4 , 1151-1157.
  40. Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A. Stimulus-Responsive Hydrogels: Theory, Modern Advances, and Applications. Mat. Sci. Eng. R. 2015 , 93 , 1-49.
  41. Roy, A.; Manna K.; Pal S. Recent Advances in Various Stimuli-Responsive Hydrogels: from Synthetic Designs to Emerging Healthcare Applications. Mater. Chem. Front. 2022 ,6 , 2338-2385.
  42. Han, Z. L.; Wang, P.; Mao, G. Y.; Yin, T. H.; Zhong, D. M.; Yiming, B.; Hu, X. C.; Jia, Z.; Nian, G. D.; Qu, S. X.; Yang, W. Dual pH-Responsive Hydrogel Actuator for Lipophilic Drug Delivery.ACS Appl. Mater. Interfaces 2020 , 12 , 12010-12017.
  43. Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from Controlled Release to pH-Responsive Drug Delivery. Drug Discov. Today 2022 ,7 , 569-579.
  44. Ma, C. X.; Le, X. X.; Tang, X. L.; He, J.; Xiao, P.; Zheng, J.; Xiao, H.; Lu, W.; Zhang, J. W.; Huang, Y. J.; Chen, T. A Multiresponsive Anisotropic Hydrogel with Macroscopic 3D Complex Deformations.Adv. Funct. Mater. 2016 , 26 , 8670-8676.
  45. Zhao, L.; Huang, J. H.; Zhang, Y. C.; Wang, T.; Sun, W. X.; Tong, Z. Programmable and Bidirectional Bending of Soft Actuators Based on Janus Structure with Sticky Tough PAA-Clay Hydrogel. ACS Appl. Mater. Interfaces 2017 , 9 , 11866-11873.
  46. Yang, C. X.; Su, F.; Xu, Y. X.; Ma, Y.; Tang, L.; Zhou, N. B.; Liang, E. X.; Wang, G. X.; Tang, J. X. pH Oscillator-Driven Jellyfish-like Hydrogel Actuator with Dissipative Synergy between Deformation and Fluorescence Color Change. ACS Macro Lett. 2022 ,11 , 347-353.
  47. Panja, S.; Patterson, C.; Adams, D. J. Temporally-Programmed Transient Supramolecular Gels. Macromol. Rapid Commun. 2019 ,40 , 1900251.
  48. Xie, X.-Q.; Zhang, Y. F.; Liang, Y. J.; Wang, M. K.; Cui, Y.; Li, J. J.; Liu, C.-S. Programmable Transient Supramolecular Chiral G-quadruplex Hydrogels by a Chemically Fueled Non-equilibrium Self-Assembly Strategy. Angew. Chem. Int. Ed. 2022 ,61 , e202114471.
  49. Zhang, Y. Z.; Li, P. P.; Zhang, K. Q.; Wang X. Temporary Actuation of Bilayer Polymer Hydrogels Mediated by the Enzymatic Reaction.Langmuir 2022 , 38 , 15433-15441.
  50. Olivieri, E.; Quintard, G.; Naubron, J.-V.; Quintard A. Chemically Fueled Three-State Chiroptical Switching Supramolecular Gel with Temporal Control. J. Am. Chem. Soc. 2021 , 143 , 12650-12657.
  51. Chen, J. L.-Y.; Maiti, S.; Fortunati, I.; Ferrante, C.; Prins, L. J.; Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels. Chem. Eur. J. 2017 , 23 , 11549-11559.
  52. Dhiman, S.; Jain, A.; George, S. J. Transient Helicity: Fuel-Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. Angew. Chem. Int. Ed. 2017 , 56 , 1329-1333.
  53. Sorrenti, A.; Leira-Iglesias, J.; Sato, A.; Hermans, T. M. Non-equilibrium Steady States in Supramolecular Polymerization.Nat. Commun. 2017 , 8 , 15899.
  54. Heinen, L.; Walther, A. Programmable Dynamic Steady States in ATP-driven Nonequilibrium DNA Systems. Sci. Adv. 2019 ,5 , eaaw0590.
  55. Grosso, E. D.; Ragazzon, G.; Prins, L. J.; Ricci, F. Fuel-Responsive Allosteric DNA-Based Aptamers for the Transient Release of ATP and Cocaine. Angew. Chem. Int. Ed. 2019 , 58 , 5582-5586.
  56. Hao, X.; Wang, H. R.; Zhao, W. J.; Wang, L. T.; Peng F.; Yan Q. Dynamic Macro- and Microgels Driven by Adenosine Triphosphate-Fueled Competitive Host–Guest Interaction. CCS Chem. 2022 ,4 , 838-846.
  57. Ogden W. A.; Guan Z. B. Redox Chemical-Fueled Dissipative Self-Assembly of Active Materials. ChemSystemsChem2020 , 2 , e1900030.
  58. Jain, M.; Ravoo, B. J. Fuel-Driven and Enzyme-Regulated Redox-Responsive Supramolecular Hydrogels. Angew. Chem. Int. Ed.2021 , 60 , 21062-21068.
  59. Das, A. K.; Maity, I.; Parmar, H. S.; McDonald, T. O.; Konda, M. Lipase-Catalyzed Dissipative Self-Assembly of a Thixotropic Peptide Bolaamphiphile Hydrogel for Human Umbilical Cord Stem-Cell Proliferation. Biomacromolecules 2015 , 16 , 1157-1168.
  60. Ahmed, S.; Chatterjee, A.; Dasa, K.; Das, D. Fatty Acid Based Transient Nanostructures for Temporal Regulation of Artificial Peroxidase Activity. Chem. Sci. 2019 , 10 , 7574-7578.
  61. Singh, N.; Lainer, B.; Formon, G. J. M.; Piccoli, S. D.; Hermans, T. M. Re-programming Hydrogel Properties Using a Fuel-Driven Reaction Cycle. J. Am. Chem. Soc. 2020 , 142 , 4083-4087.
  62. Zhang, J. Y.; Liu, J.; Li, H. Z.; Li, X. H.; Zhao, Y. F.; Zhao, P.; Cui, J. X.; Yang, B.; Song, Y. L.; Zheng, Y. J. Programming Hydrogels with Complex Transient Behaviors via Autocatalytic Cascade Reactions.ACS Appl. Mater. Interfaces 2022 , 14 , 20073-20082.
  63. Dhiman, S.; Jalani, K.; George, S. J. Redox-Mediated, Transient Supramolecular Charge-Transfer Gel and Ink. ACS Appl. Mater. Interfaces 2020 , 12 , 5259-5264.
  64. Olivieri, E.; Gasch, B.; Quintard, G.; Naubron, J.-V.; Quintard A. Dissipative Acid-Fueled Reprogrammable Supramolecular Materials.ACS Appl. Mater. Interfaces 2022 , 14 , 24720-24728.
  65. Cheng, M.; Qian, C.; Ding, Y. H.; Chen, Y.; Xiao, T. X.; Lu, X. C.; Jiang, J. L.; Wang, L. Y. Writable and Self-Erasable Hydrogel Based on Dissipative Assembly Process from Multiple Carboxyl Tetraphenylethylene Derivative. ACS Materials Lett.2020 , 2 , 425-429.
  66. Geng, W.-C.; Liu, Y.-C.; Zheng, Z.; Ding D.; Guo, D.-S. Direct Visualization and Real-time Monitoring of Dissipative Self-assembly by Synchronously Coupled Aggregation-induced Emission. Mater. Chem. Front. 2017 , 1 , 2651-2655.
  67. Vriezema, D. M.; Aragonès, M. C.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Self-Assembled Nanoreactors. Chem. Rev. 2005 , 105 , 1445-1490.
  68. Deraedt, C.; Astruc, D. Supramolecular Nanoreactors for Catalysis. Coordin. Chem. Rev. 2016 , 324 , 106-122.
  69. Che, H. L.; van Hest, J. C. M. Stimuli-responsive Polymersomes and Nanoreactors. J. Mater. Chem. B 2016 , 4 , 4632-4647.
  70. Swisher, J. H.; Jibril, L.; Petrosko, S. H.; Mirkin, C. A. Nanoreactors for Particle Synthesis. Nat. Rev. Mater.2022 , 7 , 428-448.
  71. Würbser, M. A.; Schwarz, P. S.; Heckel, J.; Bergmann, A. M.; Walther, A.; Boekhoven, J. Chemically Fueled Block Copolymer Self-Assembly into Transient Nanoreactors. ChemSystemsChem 2021 ,3 , e2100015.
  72. Lang, X. H.; Thumu, U.; Yuan, L.; Zheng, C. R.; Zhang, H. J.; He, L. R.; Zhao, H.; Zhao, C. S. Chemical Fuel-driven Transient Polymeric Micelle Nanoreactors toward Reversible Trapping and Reaction Acceleration. Chem. Commun. 2021 , 57 , 5786-5789.
  73. Li, P. P.; Xia, Y. G.; Hao, J. C.; Wang, X. Transient Healability of Metallosupramolecular Polymer Networks Mediated by Kinetic Control of Competing Chemical Reactions. Macromolecules 2020 ,53 , 2856-2863.
  74. Zhong, Y. B.; Li, P. P.; Hao, J. C.; Wang, X. Bioinspired Self-Healing of Kinetically Inert Hydrogels Mediated by Chemical Nutrient Supply.ACS Appl. Mater. Interfaces 2020 , 12 , 6471-6478.
  75. Jia, L. Y.; Xu, L.; Liu, Y. Q.; Hao, J. C.; Wang, X. Transient Chemical Activation of Covalent Bonds for Healing of Kinetically Stable and Multifunctional Organohydrogels. CCS Chem.2022 , 5 , 510-523.
  76. Dambenieks, A. K.; Vua, P. H. Q.; Fyles, T. M. Dissipative Assembly of a Membrane Transport System. Chem. Sci. 2014 ,5 , 3396-3403.
  77. Sonu, K. P.; Vinikumar, S.; Dhiman, S.; George, S. J.; Eswaramoorthy, M. Bio-inspired Temporal Regulation of Ion-transport in Nanochannels.Nanoscale Adv. 2019 , 1 , 1847-1852.
  78. Leira-Iglesias, J.; Tassoni, A.; Adachi, T.; Stich M.; Hermans T. M. Oscillations, Travelling Fronts and Patterns in a Supramolecular System. Nat. Nanotechnol. 2018 , 13 , 1021-1027.