Etienne Large

and 12 more

Denudation is a key parameter controlling the evolution of the Earth’s surface, the production of soils, the stability of relief or the long-term evolution of climate. Climate fluctuations conversely have a strong impact on denudation, but these complex feedback mechanisms are still under-constrained. To better predict future changes that will affect our habitat, and understand links between climate and denudation, precise quantification of paleo-denudation rates is required. In this work, we measure cosmogenic radionuclides (10Be) in turbidites of a well-dated marine sedimentary core recovered in the Mozambique Channel to provide a 900 ka long near-continuous record of paleo-denudation rates over the 100 ka climatic cycles. Neodymium isotopes and heavy mineral analysis were used to provide constraints on the provenance of terrigenous sediments exported from Madagascar to the studied site and show that temporal variations in sediment provenance are limited and decoupled from climatic cyclicity. Our 10Be-based paleo-denudation rates are in the same order as modern rates, ranging from 17.4 ± 5.8 mm/ka to 73.9 ± 29.4 mm/ka, and do not show major variations through the Middle and Late Pleistocene. Importantly, we did not identify a systematic significant impact of glacial/interglacial cyclicity on denudation rates. Denudation of this subtropical island may instead have been controlled by variability of monsoon intensity associated with shifts in the Inter Tropical Convergence Zone, but this interpretation remains speculative at this stage as it cannot be recorded within the resolution of cosmogenic-derived denudation rates.

Shlomy Vainer

and 9 more

The Kalahari Basin in southern Africa, shaped by subsidence and epeirogeny, features the Okavango Rift Zone (ORZ) as a significant structural element characterized by diffused extensional deformation forming a prominent depocenter. This study elucidates the Pleistocene landscape evolution of the ORZ by examining the chronology of sediment formation and filling this incipient rift and its surroundings. Modeling of cosmogenic nuclide concentrations in surficial eolian sand from distinct structural blocks around the ORZ provides insights into sand’s residence time on the surface. Sand formation occurred from ~2.2 to 1.1 Ma, coinciding with regional tectonic events. Notably, provenance analyses of sand within ORZ’s lowermost block where large alluvial fans are found indicate different source rocks and depositional environments than those of the more elevated eolian sand. This suggests that the major phase of rift subsidence and the following incision of alluvial systems into the rift occurred after eolian dune formation. Luminescence dating reveals that deposition in alluvial fan settings in the incised landscape began not later than ~250 ka, and that a lacustrine environment existed since at least ~140 ka. The established chronological framework constrains the geomorphological effects of the different tectono-climatic forces that shaped this nascent rifting area. It highlights two pronounced stages of landscape development, with the most recent major deformation event in the evolving rift probably occurring during the middle Pleistocene transition (1.2-0.75 Ma). This event is reflected as a striking change in the depositional environments due to the configurational changes accompanying rift progression.