Inbar Vaknin

and 3 more

Pockmarks are morphological depressions commonly observed in ocean and lake floors. Pockmarks form by fluid (typically gas) seepage thorough a sealing sedimentary layer, deforming and breaching the layer. The seepage-induced sediment deformation mechanisms, and their links to the resulting pockmarks morphology, are not well understood. To bridge this gap, we conduct laboratory experiments in which gas seeps through a granular (sand) reservoir, overlaid by a (clay) seal, both submerged under water. We find that gas rises through the reservoir and accumulates at the seal base. Once sufficient gas over-pressure is achieved, gas deforms the seal, and finally escapes via either: (i) doming of the seal followed by dome breaching via fracturing; (ii) brittle faulting, delineating a plug. The gas lifts the plug and seeps through the bounding faults; or (iii) plastic deformation by bubbles ascending through the seal. The preferred mechanism is found to depend on the seal thickness and stiffness: in stiff seals, a transition from doming and fracturing to brittle faulting occurs as the thickness increases, whereas bubbles rise is preferred in the most compliant, thickest seals. Seepage can also occur by mixed modes, such as bubbles rising in faults. Repeated seepage events suspend the sediment at the surface and create pockmarks. We present a quantitative analysis that explains the tendency for the various modes of deformation observed experimentally. Finally, we connect simple theoretical arguments with field observations, highlighting similarities and differences that bound the applicability of laboratory experiments to natural pockmarks.

Ali Saeibehrouzi

and 3 more

Solute transport in unsaturated porous media is of interest in many engineering and environmental applications. The interplay between small-scale, local forces and the porous microstructure exerts a strong control on the transport of fluids and solutes at the larger, macroscopic scales. Heterogeneity in pore geometry is intrinsic to natural materials across a large range of scales. This multiscale nature, and the intricate links between two-phase flow and solute transport, remain far from well understood, by and large. Here, we use high-resolution direct simulation to quantify solute mixing and dispersion behavior within correlated porous media during drainage under an unfavorable viscosity ratio. Through analysis of flow and transport at multiple realizations, we find that increasing spatial correlations in pore sizes increase the size of the required Representative Elementary Volume (REV). We show that increasing the correlation length enhances solute dispersivity through its impact on the spatial distribution of low-velocity (diffusion-dominated) and high-velocity (advection-dominated) regions. Fluid saturation is shown to directly affect diffusive mass flux among high-and low-velocity zones. Another indirect effect of correlated heterogeneity on solute transport is through its control of the drainage patterns via repeated alteration in the connectivity of flowing pathways. Our findings improve quantitative understanding of solute mixing and dispersion under two-phase conditions, highly relevant to some of our most urgent environmental problems.

Ali Saeibehrouzi

and 3 more

Solute transport in unsaturated porous media is of interest in many engineering and environmen- tal applications. The interplay between small-scale, local forces and the porous microstructure exerts a strong control on the transport of fluids and solutes at the larger, macroscopic scales. Heterogeneity in pore geometry is intrinsic to natural materials across a large range of scales. This multiscale nature, and the intricate links between two-phase flow and solute transport, remain far from well understood, by and large. Here, we use high-resolution direct simulation to quantify solute mixing and dispersion behavior within correlated porous media during drainage under an unfavorable viscosity ratio. Through analysis of flow and transport at multiple realizations, we find that increasing spatial correlations in pore sizes increase the size of the required Representative Elementary Volume (REV). We show that increasing the correlation length enhances solute dis- persivity through its impact on the spatial distribution of low-velocity (diffusion-dominated) and high-velocity (advection-dominated) regions. Fluid saturation is shown to directly affect diffusive mass flux among high- and low-velocity zones. Another indirect effect of correlated heterogene- ity on solute transport is through its control of the drainage patterns via repeated alteration in the connectivity of flowing pathways. Our findings improve quantitative understanding of solute mixing and dispersion under two-phase conditions, highly relevant to some of our most urgent environmental problems.