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Content of this file:

- Table S1 and S2 compare the performance of the L19 and KCC statistical methods at the basin 
scale using pseudo-observations derived from a single realization of one out of the CMIP6 models.

- Table S2 and S3 compare the performance of the KCC statistical method at the basin scale using
pseudo-observations  derived from single  versus  multiple  realizations  of  one  out  of  the  CMIP6
models.

- Fig. S1 and S2 compare the skill of the L19 regression method to predict simulated anomalies
depending on the considered variable (P-E instead of runoff).

- Fig. S3 and S4 (to be compared with Fig. 1) evaluate the sensitivity of the L19 method to the
choice  of  the constrained variable  (P-E instead  of  runoff)  and of  the  model  ensemble  (CMIP5
instead of CMIP6).

- Fig. S5 and S6 (to be compared with Fig. 2) evaluate the sensitivity of the KCC method to the
choice of the model ensemble (P-E instead of runoff) and of the model ensemble (CMIP5 instead of
CMIP6).

- Fig. S7 and S8 compare the runoff sensitivity to temperature and precipitation at short versus long
timescales and explain why the L19 results should be considered with caution.



Basin Coverage probability 
(%)

Change in CRPS (%) Spread reduction (%)

Columbia 69.7 9.06 -37.5

Kolyma 57.58 22.8 -36.74

Lena 69.7 7.74 -12.83

Mackenzie 78.79 58.06 -14.24

Table S1: Probabilistic scores of the L19 method using the ssp51 ensemble (a single realization
of each CMIP6 model under the SSP5-8.5 high-emission scenario).  For each river basin, CRPS
change and spread reduction are averaged after using successively each CMIP6 model as pseudo-
observations.

Basin Coverage probability 
(%)

Change in CRPS (%) Spread reduction (%)

Columbia 84.85 16.08 -13.44

Kolyma 87.88 0.17 -28.61

Lena 93.94 -6.25 -23.88

Mackenzie 84.85 -22.65 -23.29

Table S2: Probabilistic scores of the KCC method using the ssp51 ensemble (a single realization
of  each  CMIP6  model  under  the  SSP5-8.5  high-emission  scenario)  and  two  observational
constraints.  For  each  river  basin,  CRPS change  and  spread  reduction  are  averaged  after  using
successively each CMIP6 model as pseudo-observations.

Basin Coverage probability 
(%)

Change in CRPS (%) Spread reduction (%)

Columbia 82.76 4.86 -25.48

Kolyma 82.76 -18.75 -39.89

Lena 86.21 6.54 -30.64

Mackenzie 72.41 -10.31 -35.39

Table  S3:  Probabilistic  scores  of  the  KCC  method  using  the  ssp50  ensemble  (multiple
realizations  of  each  CMIP6  model  under  the  SSP5-8.5  high-emission  scenario)  and  two
observational constraints.  For each river basin, CRPS change and spread reduction are averaged
after using successively each CMIP6 model as pseudo-observations.



Figure S1: Scatterplots of predicted (L19) versus simulated (GCM) relative anomalies (%) of
basin-scale water-year runoff in individual CMIP6 models under the SSP5-8.5 high-emission
scenario: a) Columbia, b) Kolyma, c) Lena, d) Mackenzie. L19 runoff anomalies are computed
from  a  simple  (ΔR~ΔP)  or  multiple  (ΔR~ΔP+ΔT)  linear  regression  and  plotted  against  the
corresponding simulated anomalies. All anomalies are averaged over 2081-2100 relatively to the
1902-1930 baseline period. In each panel,  R2 denotes coefficient of determination of the linear
regression. The closer the regression line is from y=x (thin black solid line), the better the linear
regression is.  Not  surprisingly,  the  multiple  regression  (black  circles)  is  better  than  the  simple
regression (blues circles) at predicting the simulated anomalies.



Figure S2: Same as Fig.  S1 but using P-E (precipitation minus evapotranspiration) rather
than runoff relative anomalies (%).  Not surprisingly, it  is easier to predict  P-E rather than R
anomalies  with  both  simple  (ΔP-ΔE~ΔP)  and  multiple  (ΔP-ΔE~ΔP+ΔT)  regressions  given  the
strongly model-dependent simulated soil moisture anomalies in climate models. When temperature
is  not  accounted  for,  the  P-E  simulated  anomalies  are  systematically  overestimated  by  the
regression, thus highlighting the strong influence of global warming on surface evapotranspiration.
Using P-E as a surrogate for water-year runoff therefore leads to overconfident projections.



Figure S3: Constrained versus unconstrained distributions of water-year mean P-E relative
anomalies (%) from the CMIP6 model ensemble under the SSP5-8.5 high-emission scenario:
a) Columbia, b) Kolyma, c) Lena, and d) Mackenzie. Similar to Fig.1 but using P-E as a surrogate
of R (although the regression coefficients are still constrained with GRUN runoff reconstructions).



Figure S4: Constrained versus unconstrained P-E relative anomalies (%) from the CMIP5
model ensemble under the RCP8.5 high-emission scenario: a) Columbia, b) Kolyma, c) Lena,
and d) Mackenzie. Similar to Fig.1 but using CMIP5 instead of CMIP6 models. The results are
sensitive to the choice of the CMIP ensemble, although they are qualitatively consistent regarding
the effect of the constraint on the ensemble mean.



Figure S5: Constrained versus unconstrained water-year runoff anomalies (mm/day) using
the  rcp81  ensemble  (a  single  realization  of  each  CMIP5  model  under  the  RCP8.5  scenario).
Similar to Fig.2 but using the CMIP5 models. Depending on the CMIP model ensemble, the prior
distribution is not the same but the effect of the KCC constraint on the  posterior distribution is
qualitatively consistent.



Figure S6: Constrained versus unconstrained water-year runoff anomalies (mm/day) using
the ssp50 ensemble  (multiple  realizations  of  each CMIP6 model  under  the  RCP8.5  scenario).
Similar  to  Fig.2  but  using  multiple  realizations  for  a  lower  number  of  CMIP6  models.  Not
surprisingly, differences between constraints using ssp50 and ssp51 scenarios are light, a smoothing
of the distribution can be observed when more realizations are used (ssp50), less internal variability
appears. There are no clear differences concerning the reduction of the spread.



Figure S7: Runoff sensitivity to temperature at short (x-axis) versus long (y-axis) timescales.
For each model (grey dots), the variation in runoff relative to the variation in temperature (%/°C) at
the basin-scale is computed at two timescales. The long-term runoff sensitivity is estimated as the
ratio of the averaged simulated anomalies over the 2081-2100 period compared to the 1902-1930
baseline. The short-term runoff sensitivity is estimated as the interannual variability over the 1902-
2013 period (also used to estimate the regression coefficients in L19). The same computations are
done for the CanESM5 and MIROC6 models (with 25 available realizations) after averaging an
increasing  number  of  realizations  (for  instance,  dot  20  corresponds  to  average  of  the  first  20
members). There is no obvious link between the runoff sensitivity to temperature at long versus
short timescales. Therefore, the L19 hypothesis regarding the timescale independency of the runoff
sensitivity to temperature does not seem valid.



Figure S8: Runoff sensitivity to precipitation at short (x-axis) versus long (y-axis) timescales.
Similar to Fig.S7 but comparing long and short-term runoff sensitivity to precipitation instead of
temperature. Once again, the interannual runoff sensitivity is not a good surrogate for its long-term
sensitivity to precipitation.


