loading page

An Iterative Mathematical Climate Model of the Atmosphere of Titan
  • Philip Mulholland,
  • Stephen Paul Rathbone Wilde
Philip Mulholland
Mulholland Geoscience

Corresponding Author:[email protected]

Author Profile
Stephen Paul Rathbone Wilde
Mulholland Geoscience

Abstract

Titan, the giant moon of the planet Saturn, is recognized to have meteorological processes involving liquid methane that are analogous to the water generated atmospheric dynamics of planet Earth. We propose here that the climatic features of Titan by contrast are more akin to those of the planet Venus, and that this structural similarity is a direct result of the slow daily rotation rate of these two terrestrial bodies. We present here a simple mathematical climate model based on meteorological principles, and intended to be a replacement for the standard radiation balance equation used in current studies of planetary climate. The Dynamic-Atmosphere Energy-Transport climate model (DAET) is designed to be applied to terrestrial bodies that have sufficient mass and surface gravity to be able to retain a dense atmosphere under a given solar radiation loading. All solar orbiting bodies have both an illuminated hemisphere of net energy collection and a dark hemisphere of net energy loss. The DAET model acknowledges the existence of these dual day and nighttime radiation environments and uses a fully transparent non-condensing atmosphere as the primary mechanism of energy storage and transport in a metrological process that links the two hemispheres. The DAET model has the following distinct advantages as a founding model of climate: It can be applied to all terrestrial planets, including those that are tidally locked. It is an atmospheric mass motion and energy circulation process, and so is fully representative of a Hadley cell; the observed fundamental meteorological process of a terrestrial planet's climate. The diabatic form of the DAET model fully replicates the traditional vacuum planet equation, and as it applies to a totally transparent atmosphere it therefore demonstrates that thermal radiant opacity, due to the presence of polyatomic molecular gases, is not a fundamental requirement for atmospheric energy retention. For the adiabatic form of the DAET model, where the turbulent asymmetric daytime process of forced radiant convection applies, the intercepted solar energy is preferentially retained by the ascending air. The adiabatic DAET climate model shows that the atmospheric greenhouse effect of surface thermal enhancement is a mass motion process, and that it is completely independent of an atmosphere's thermal radiant opacity.
08 Apr 2023Submitted to ESS Open Archive
16 Apr 2023Published in ESS Open Archive