[1] Haberle, R.M. and Jakosky, B.M., 1990. Sublimation and transport of water from the north residual polar cap on Mars. Journal of Geophysical Research: Solid Earth, 95(B2), pp.1423-1437.
[4] McCleese, D.J., Schofield, J.T., Taylor, F.W., Abdou, W.A., Aharonson, O., Banfield, D., Calcutt, S.B., Heavens, N.G., Irwin, P.G.J., Kass, D.M. and Kleinböhl, A., 2008. Intense polar temperature inversion in the middle atmosphere on Mars.
Nature Geoscience, 1(11), pp.745-749.[5] Heavens, N.G., Benson, J.L., Kass, D.M., Kleinböhl, A., Abdou, W.A., McCleese, D.J., Richardson, M.I., Schofield, J.T., Shirley, J.H. and Wolkenberg, P.M., 2010. Water ice clouds over the Martian tropics during northern summer.
Geophysical Research Letters, 37(18).[6] McCleese, D.J., Heavens, N.G., Schofield, J.T., Abdou, W.A., Bandfield, J.L., Calcutt, S.B., Irwin, P.G.J., Kass, D.M., Kleinböhl, A., Lewis, S.R. and Paige, D.A., 2010. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols.
Journal of Geophysical Research: Planets, 115(E12).[7] Medvedev, A.S., Kuroda, T. and Hartogh, P., 2011. Influence of dust on the dynamics of the Martian atmosphere above the first scale height.
Aeolian Research, 3(2), pp.145-156.
[8] Vincendon, M., Pilorget, C., Gondet, B., Murchie, S. and Bibring, J.P., 2011. New near‐IR observations of mesospheric CO2 and H2O clouds on Mars.
Journal of Geophysical Research: Planets, 116(E11).[9] Petrosyan, A., Galperin, B., Larsen, S.E., Lewis, S.R., Määttänen, A., Read, P.L., Renno, N., Rogberg, L.P.H.T., Savijärvi, H., Siili, T. and Spiga, A., 2011. The Martian atmospheric boundary layer.
Reviews of Geophysics, 49(3).[13] Robinson, T.D. and Catling, D.C., 2014. Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency.
Nature Geoscience, 7(1), pp.12-15.[14] Williams, D.R., 2022. Mars Fact Sheet
NASA NSSDCA, Mail Code 690.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771.
[15] Sagan, C. and Chyba, C., 1997. The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases.
Science, 276 (5316), pp.1217-1221.
[19] Fenton, L.K., Geissler, P.E. and Haberle, R.M., 2007. Global warming and climate forcing by recent albedo changes on Mars.
Nature, 446(7136), pp.646-649.[22] Lacis, A.A., Hansen, J.E., Russell, G.L., Oinas, V. and Jonas, J., 2013. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change.
Tellus B: Chemical and Physical Meteorology, 65(1), p.19734.[23] Schulze-Makuch, D., Méndez, A., Fairén, A.G., Von Paris, P., Turse, C., Boyer, G., Davila, A.F., Antonio, M.R.D.S., Catling, D. and Irwin, L.N., 2011. A two-tiered approach to assessing the habitability of exoplanets.
Astrobiology, 11(10), pp.1041-1052.
[32] Wang, H. and Richardson, M.I., 2015. The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011).
Icarus, 251, pp.112-127.
[34] Bandfield, J.L., 2009. Effects of surface roughness and graybody emissivity on martian thermal infrared spectra.
Icarus, 202(2), pp.414-428.[39] Heavens, N.G., McCleese, D.J., Richardson, M.I., Kass, D.M., Kleinböhl, A. and Schofield, J.T., 2011. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation.
Journal of Geophysical Research: Planets, 116(E1).
Citations:
absorptance, α, emittance, ε reflectance, ρ :
IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.Kirchhoff's Law and Emissivity: Gustav Robert Kirchhoff (1824–1887) stated in 1860 that “at thermal equilibrium, the power
radiated by an object must be equal to the power
absorbed.” This leads to the observation that if an object absorbs 100 percent of the radiation incident upon it, it must reradiate 100 percent. As already stated, this is the definition of a
blackbody radiator.