[1]        Haberle, R.M. and Jakosky, B.M., 1990. Sublimation and transport of water from the north residual polar cap on Mars. Journal of Geophysical Research: Solid Earth, 95(B2), pp.1423-1437.
[2]        Pettengill, G.H. and Ford, P.G., 2000. Winter clouds over the north Martian polar cap. Geophysical Research Letters, 27(5), pp.609-612.
[3]        Savijärvi, H., Crisp, D. and Harri, A.M., 2005. Effects of CO2 and dust on present‐day solar radiation and climate on Mars. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131(611), pp.2907-2922.
[4]        McCleese, D.J., Schofield, J.T., Taylor, F.W., Abdou, W.A., Aharonson, O., Banfield, D., Calcutt, S.B., Heavens, N.G., Irwin, P.G.J., Kass, D.M. and Kleinböhl, A., 2008. Intense polar temperature inversion in the middle atmosphere on Mars. Nature Geoscience, 1(11), pp.745-749.
[5]        Heavens, N.G., Benson, J.L., Kass, D.M., Kleinböhl, A., Abdou, W.A., McCleese, D.J., Richardson, M.I., Schofield, J.T., Shirley, J.H. and Wolkenberg, P.M., 2010. Water ice clouds over the Martian tropics during northern summer. Geophysical Research Letters, 37(18).
[6]        McCleese, D.J., Heavens, N.G., Schofield, J.T., Abdou, W.A., Bandfield, J.L., Calcutt, S.B., Irwin, P.G.J., Kass, D.M., Kleinböhl, A., Lewis, S.R. and Paige, D.A., 2010. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols. Journal of Geophysical Research: Planets, 115(E12).
[7]        Medvedev, A.S., Kuroda, T. and Hartogh, P., 2011. Influence of dust on the dynamics of the Martian atmosphere above the first scale height. Aeolian Research, 3(2), pp.145-156.
[8]        Vincendon, M., Pilorget, C., Gondet, B., Murchie, S. and Bibring, J.P., 2011. New near‐IR observations of mesospheric CO2 and H2O clouds on Mars. Journal of Geophysical Research: Planets, 116(E11).
[9]        Petrosyan, A., Galperin, B., Larsen, S.E., Lewis, S.R., Määttänen, A., Read, P.L., Renno, N., Rogberg, L.P.H.T., Savijärvi, H., Siili, T. and Spiga, A., 2011. The Martian atmospheric boundary layer. Reviews of Geophysics, 49(3).
[10]      Nikolov, N. and Zeller, K., 2017. New insights on the physical nature of the atmospheric greenhouse effect deduced from an empirical planetary temperature model. Environment Pollution and Climate Change, 1(2), p.1-22.
[11]      Venable, R., 2017. Report on the Mars Apparition of 2007-2008. Journal of the Association of Lunar and Planetary Observers, the Strolling Astronomer, 60(1), pp.48-100.
[12]      Heavens, N.G., Kass, D.M. and Shirley, J.H., 2019. Dusty deep convection in the Mars year 34 planet‐encircling dust event. Journal of Geophysical Research: Planets, 124(11), pp.2863-2892.
[13]        Robinson, T.D. and Catling, D.C., 2014. Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geoscience, 7(1), pp.12-15.
[14]      Williams, D.R., 2022. Mars Fact Sheet NASA NSSDCA, Mail Code 690.1, NASA Goddard Space Flight Center, Greenbelt, MD 20771.
[15]        Sagan, C. and Chyba, C., 1997. The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases. Science, 276 (5316), pp.1217-1221.
[16]        Justus, C.G. and Braun, R.D., 2007. Atmospheric Environments for Entry, Descent, and Landing (EDL). NASA Technical Reports Server.
[17]        Haberle, R.M., 2003. Planetary atmospheres| Mars. Elsevier NASA/Ames Research Center, Moffett Field, CA, USA. https://curry.eas.gatech.edu/Courses/6140/ency/Chapter12/Ency_Atmos/Planetary_Atmos_%20Mars.pdf.
[18]        Vázquez, M. and Hanslmeier, A.,2006. UV Fluxes on Other Bodies of the Solar System. In: Ultraviolet Radiation in the Solar System. Astrophysics and Space Science Library, vol 331. Springer, Dordrecht.
[19]        Fenton, L.K., Geissler, P.E. and Haberle, R.M., 2007. Global warming and climate forcing by recent albedo changes on Mars. Nature, 446(7136), pp.646-649.
[20]        Rapp, D. 2008. Human missions to mars: enabling technologies for exploring the red planet. Back Matter.: Appendix C Water on Mars pp 445-511. Springer Germany.
[21]        Taylor, F.W. 2010. The scientific exploration of Mars. Cambridge University Press, 2010. ISBN 978-0-521-82956-4.
[22]        Lacis, A.A., Hansen, J.E., Russell, G.L., Oinas, V. and Jonas, J., 2013. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change. Tellus B: Chemical and Physical Meteorology, 65(1), p.19734.
[23]        Schulze-Makuch, D., Méndez, A., Fairén, A.G., Von Paris, P., Turse, C., Boyer, G., Davila, A.F., Antonio, M.R.D.S., Catling, D. and Irwin, L.N., 2011. A two-tiered approach to assessing the habitability of exoplanets. Astrobiology, 11(10), pp.1041-1052.
[24]        Haberle, R.M., 2013. Estimating the power of Mars’ greenhouse effect. Icarus, 223(1), pp.619-620.
[25]        Barlow, N., 2014. Mars An Introduction to its Interior, Surface and Atmosphere. Cambridge University Press 978-0-521-85226-5 -
[26]        Mulholland, P., Wilde, S.P.R. and Heavens, N.G. 2021 MY29 Seasonal Panels Night 18Mar21. Research Gate Publication 363762939 DOI: 10.13140/RG.2.2.34221.77280/1.
[27]        Mulholland, P., Wilde, S.P.R. and Heavens, N.G. 2021 MY29 Seasonal Panels Day 18Mar21. Research Gate Publication 363763024 DOI: 10.13140/RG.2.2.25833.16486/1.
[28]        Mulholland, P., and Wilde, S.P.R., 2020. An Inverse Climate Modelling Study of the Planet Venus. International Journal of Atmospheric and Oceanic Sciences, 4(1), pp.20-35.
[29]        Mulholland, P. and Wilde, S.P.R. 2023. Mars MY29 Atmosphere Average Tables 07Jan23. Research Gate Publication 369475537.
[30]        Mulholland, P. and Wilde, S.P.R. 2021. Venus Gravity Profile 01Mar21. Research Gate Publication 349838009 DOI: 10.13140/RG.2.2.26856.80641.
[31]        Riedl, M., 2001 Optical Design Fundamentals for Infrared Systems, Second Edition, SPIE Press, Bellingham, WA.
[32]      Wang, H. and Richardson, M.I., 2015. The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus, 251, pp.112-127.
[33]        Ruff, S.W. and Christensen, P.R., 1999, July. Thermal-infrared spectral characteristics of Martian albedo features: Clues to composition. In The Fifth International Conference on Mars (p. 6230-6231).
[34]        Bandfield, J.L., 2009. Effects of surface roughness and graybody emissivity on martian thermal infrared spectra. Icarus, 202(2), pp.414-428.
[35]        Simpson, G. C., 1928. Some Studies in Terrestrial Radiation. Royal Meteorological Society (London) Memoir, Vol II. No. 16, pp. 69-95.
[36]        Wilde, S.P.R. and Mulholland, P. 2020. An Analysis of the Earth’s Energy Budget. International Journal of Atmospheric and Oceanic Sciences. Vol. 4, No. 2, 2020, pp. 54-64.
[37]      Leovy, C.E., Zurek, R.W. and Pollack, J.B., 1973. Mechanisms for Mars dust storms. Journal of Atmospheric Sciences, 30(5), pp.749-762.
[38]      Shirley, J.H., McKim, R.J., Battalio, J.M. and Kass, D.M., 2020. Orbit‐spin coupling and the triggering of the Martian planet‐encircling dust storm of 2018. Journal of Geophysical Research: Planets, 125(6), p.e2019JE006077.
[39]      Heavens, N.G., McCleese, D.J., Richardson, M.I., Kass, D.M., Kleinböhl, A. and Schofield, J.T., 2011. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation. Journal of Geophysical Research: Planets, 116(E1).
 
Citations:
absorptance, α, emittance, ε reflectance, ρ : IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.
Blackbody Radiation and Planck's Law: A blackbody is defined as a perfect radiator which absorbs all radiation incident upon it.
Kirchhoff's Law and Emissivity: Gustav Robert Kirchhoff (1824–1887) stated in 1860 that “at thermal equilibrium, the power radiated by an object must be equal to the power absorbed.” This leads to the observation that if an object absorbs 100 percent of the radiation incident upon it, it must reradiate 100 percent. As already stated, this is the definition of a blackbody radiator.