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ABSTRACT: In the equilibrium range of the wave spectrum’s high frequency tail, energy levels

are proportional to the wind friction velocity. As a consequence of this intrinsic coupling, spectral

tail energy levels can be used as proxy observations of surface stress and wind speed when direct

observations are unavailable. Proxy observations from drifting wave-buoy networks can therefore

augment existing remote sensing capabilities by providing long dwell observations of surface

winds. Here we consider the skill of proxy wind estimates obtained from observations recorded by

the globally distributed Sofar Spotter network (observations from 2021–2022) when compared with

collocated observations derived from satellites (yielding over 20000 collocations) and reanalysis

data. We consider physics motivated parameterizations (based on frequency−4 universal tail

assumption), inverse modelling (estimate wind speed from spectral energy balance), and a data

driven approach (artificial neural network) as potential methods. Evaluation of trained/calibrated

models on unseen test-data reveals comparable performance across methods with generally order

1 m/s root-mean-square-difference with satellite observations.
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1. Introduction19

In situ observations of ocean surface winds are sparse. The cost of deploying and maintaining20

deep sea moorings restricts the use of moored buoys to select locations (e.g., the TOA array, Hayes21

et al. 1991). Ship based anemometer readings (e.g., the voluntary observing ship scheme, Kent22

et al. 2010) are restricted to major trading routes, often have sub-optimal placement of instruments,23

are biased towards low wind conditions (due to storm avoidance), and have seen a decline in24

participation rates from the merchant marine fleet over the last decade (Smith et al. 2019).25

While less complex than moored systems, the cost of deploying and maintaining drifting in-26

strument arrays (e.g., buoys with anemometers), still prohibits efforts to establish large oceanic27

observational networks that directly observe surface wind or stress. As a consequence, remote28

sensing observations from satellites, rather than in situ observations, are the predominant source29

of (near) real-time global oceanic surface wind observations (Ribal and Young 2019).30

Programs to observe sea surface temperature, surface barometric pressure or surface waves are31

actively growing through efforts such as the Global Drifter Program (Niiler 2001; Maximenko32

et al. 2013) or the Sofar Spotter network (Houghton et al. 2021). Given the strong relation between33

waves and wind – in particular in the high frequency wave spectral tail – wave observations from34

these efforts could provide valuable proxy observations of surface stress and wind at 10 meter35

elevation (𝑈10), greatly expanding available surface wind observations.36

Proxy observations of wind from spectral wave observations are presently based on assumed37

proportionality between tail spectral energy levels and wind friction velocities. Observations38

show that for mature wind seas, energy levels of the frequency spectrum 𝑒( 𝑓 ) for frequencies39

𝑓 above the peak scale as 𝑒( 𝑓 ) ∝ 𝑔𝑢∗ 𝑓 −4, with 𝑢∗ denoting the wind friction velocity and a40

constant of proportionality 2𝜋𝛼Toba (Toba 1973; Thomson et al. 2013). Physical motivation for41

this dependency on 𝑢∗, and the 𝑓 −4 shape is based on the assumption of local equilibrium between42

generation, dissipation and nonlinear interactions in the tail of the spectrum (Phillips 1985). On the43

open ocean ocean, the evolution of the wave variance density spectrum 𝐸 ( 𝑓 , 𝜃,x, 𝑡) as a function44

of frequency, direction 𝜃, space x, and time 𝑡, is described by a wave energy transport equation of45

the form46

D𝐸

D𝑡
= 𝑆gen + 𝑆diss + 𝑆nl (1)
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which describes the evolution of wave-energy in (spectral) space and time (left-hand-side) under47

the action of generation by wind (𝑆gen), dissipation due to white-capping (𝑆diss), and nonlinear48

interactions (𝑆nl). Assuming statistical stationarity and homogeneity of the wave field in the tail49

(𝐷𝐸/𝐷𝑡 ≈ 0), and using approximate forms for the source terms, Phillips (1985) found theoretical50

direct proportionality between spectral tail levels and friction velocity, as established in earlier51

experimentations.52

Efforts to estimate wind-stress and 𝑈10 from buoy observed 𝑒( 𝑓 ) are generally based on these53

findings, and reported accuracy of wave-derived𝑈10 estimates have been found to be O(1 m/s) when54

evaluated in coastal regions and moderate (𝑈10 < 10 m/s) wind conditions (Thomson et al. 2013;55

Voermans et al. 2019; Shimura et al. 2022; Beckman and Long 2022). However, comparison of56

proxy estimates from Spotter buoys with altimeter-derived wind observations appeared to indicate57

that buoy-derived wind estimates saturate at 10 m/s and sometimes (severely) underestimate 𝑈1058

under strong wind conditions (Houghton et al. 2021, their Fig. 3).59

Here, we revisit the potential of proxy𝑈10 estimates for several reasons. Foremost, the saturation60

reported in Houghton et al. (2021) is likely not due to fundamental saturation of spectral levels, but61

is rather attributable to algorithmic issues in determining the spectral region actively interacting62

with the wind (Shimura et al. 2022, e.g., their Fig. 7). Second, initially only bulk parameters63

were reported by Spotter buoys, but from 2021 onward, wave spectra from all operational Spotter64

buoys (as of March 2023, 570 buoys) are available hourly. Hence, there is now a 2 year long65

spectral dataset that can be used to calibrate/train and test different methods to obtain proxy wind66

observations from the Sofar Spotter network.67

We first consider the physics-motivated parameterizations by Voermans et al. (2019) and Shimura68

et al. (2022) which both relate wind stress to observed representative energy levels, but differ in69

how they are defined. Second, motivated by advances in understanding of wind-wave interaction70

(Janssen 1989, 1991; Ardhuin et al. 2009) we consider explicit stationary solutions of the source71

term balance to determine 𝑈10. Lastly, given the size of the observation dataset, and the rapid72

developments in data driven (or machine learning) methods over the last decade, we train a73

shallow, artificial neural network to infer 𝑈10 from raw observational data. To calibrate and test74

these methods we use collocated observations between wave buoys and satellite altimeter derived75
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wind speeds. In this work we focus on wind speed estimation (because altimeters do not directly76

report direction), but we will comment on directional estimates in passing.77

2. Proxy estimates78

a. Physics motivated parameterizations79

Observations in mature wind seas show that energy levels in the tail of the wave spectrum are80

proportional to the wind friction velocity (Toba 1973; Thomson et al. 2013) through Toba’s relation81

𝜖 =
𝑔𝜖 ′

𝑢∗
, (2)

where the dimensionless slope spectrum 𝜖 is an 𝑂 (1) empirical constant in the equilibrium range82

and 𝜖′ is a representative value of squared slope density 𝜖 ( 𝑓 ) = 𝑘2𝑒( 𝑓 ) in the equilibrium range.83

The wavenumber 𝑘 ( 𝑓 ) is defined through the deep-water dispersion relation 𝑘 = (2𝜋 𝑓 )2/𝑔, and84

𝜖 ( 𝑓 ) may be interpreted as the spectral squared-slope density since
∫ ∞

0 𝜖 ( 𝑓 )𝑑𝑓 represents the mean85

squared slope. Further, 𝜖 may be expressed as (Phillips 1985; Thomson et al. 2013),86

𝜖 = 2𝜋𝛼Toba = 8𝜋𝛽𝐼, (3)

where 𝛽 is the proportionality constant between the saturation spectrum and inverse wave age87

(0.006 ≤ 𝛽 ≤ 0.024, Juszko et al. 1995), and 𝐼 (≈ 2.5, Thomson et al. 2013) accounts for wind-88

wave directional misalignment. In this work, 𝜖 , rather than 𝛽 and 𝐼, is the calibrated parameter89

with literature values of 𝛽 and 𝐼 corresponding to 𝜖 as an 𝑂 (1) parameter (0.4 ≤ 𝜖 ≤ 1.4). When90

calibrated, 𝜖 also compensates for errors relating 𝑈10 to 𝑢∗ and estimating 𝜖 ′. Therefore, we91

consider 𝜖 a model parameter (absorbing 2𝜋) and not directly representative of 𝛼Toba.92

Given a 𝑢∗ estimate from Equation 3, a proxy estimate of 𝑈10 may be obtained from a constant-93

stress boundary layer approximation. For neutrally stable conditions, the sustained wind profile is94

well-represented by a logarithmic profile (Janssen 1989), with 𝑈10 approximated by95

𝑈10 =
𝑢∗
𝜅

log
(
1+ 10

𝑧𝑟

)
. (4)
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Here 𝜅 ≈ 0.41 is the von Karman constant and 𝑧𝑟 the sea-surface roughness in the presence of96

waves. Here we approximate 𝑧𝑟 through Charnock’s relation as 𝑧𝑟 = 𝑧𝑐 = 𝛼𝑢2
∗/𝑔 (Charnock 1955),97

with 𝛼 =𝑂 (0.01) as the Charnock parameter.98

Estimation of wind direction 𝜃10 depends on the assumption that the mean wave direction 𝜃𝑤 in99

the equilibrium range is generally aligned with the wind stress direction 𝜃∗, so that 𝜃∗ = 𝜃𝑤. In100

the atmospheric boundary layer near the ocean surface, stress and sustained winds are typically101

aligned; therefore we have, to a good approximation, 𝜃∗ = 𝜃10 = 𝜃𝑤. To define 𝜃𝑤, we assume102

representative values of directional moments in the equilibrium range are available, and (following103

Kuik et al. 1988) define the wind direction as104

𝜃10 = atan2(𝑏′1, 𝑎
′
1) (5)

where 𝑎′1, 𝑏
′
1 are the representative moments, and atan2 is the two argument inverse tangent.105

Thus, to arrive at an estimate of wind speed from the wave spectrum, a choice of representative106

values of the spectrum and directional moments, 𝜖′, 𝑎′1, 𝑏
′
1, is necessary. In this work, we explore107

two different approaches for calculating these representative values.108

1) V2019: Best fit approximation for 𝜖′, 𝑎′1, 𝑏
′
1 (Voermans et al. 2019)109

Due to sampling, instrument noise, and the idealized assumptions underlying equilibrium range110

theory, observed spectra will only approximately follow a 𝑓 −4 power law. To account for limitations111

in real data, Voermans et al. (2019) define the representative value of the compensated spectra 𝜖′112

and the directional moments 𝑎′1, 𝑏′1 as the mean over a spectral region with size Δ 𝑓 and bounds113

𝑓0, 𝑓0 +Δ 𝑓 where squared steepness 𝜖 is approximately constant, i.e.114


𝜖′

𝑎′1

𝑏′1


=

1
Δ 𝑓

∫ 𝑓0+Δ 𝑓

𝑓0


𝜖 ( 𝑓 )
𝑎1( 𝑓 )
𝑏1( 𝑓 )


d 𝑓 . (6)
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The lower bound, 𝑓0, of the best fit frequency interval is found through minimization of the relative115

difference of a constant relative slope with observed slope spectra over the averaging window,116

𝑓0 = argmin
∫ 𝑓0+Δ 𝑓

𝑓0

[𝜖 − 𝜖′]2

(𝜖′)2 d 𝑓 . (7)

In practice, integrals are substituted with approximate discrete sums, and the fitting range Δ 𝑓 is117

effectively a model parameter. In this work, we do not further attempt optimizing Δ 𝑓 , but instead118

use Δ 𝑓 = 0.2Hz as used by Voermans et al. (2019) and onboard the Spotter buoy currently. In the119

rest of the text, we will refer to this method as V2019.120

2) S2022: Max 𝜖′ approximation for 𝜖′, 𝑎′1, 𝑏
′
1 (Shimura et al. 2022)121

As an alternative to the best fit approximation of V2019, Shimura et al. (2022, S2022 hereafter)122

proposed defining 𝜖′ as the maximum of 𝜖 , i.e.,123

𝜖′ = 𝜖 ( 𝑓0), where 𝑓0 ≡ argmax 𝜖 ( 𝑓 ). (8)

The representative moments are analogously defined as 𝑏′1 = 𝑏1( 𝑓0), 𝑎′1 = 𝑎1( 𝑓0). The novel124

estimation method for 𝜖 ′ was principally motivated based on observed algorithm performance,125

with the resulting proxy estimates of wind speeds by S2022 being superior to V2019 (Shimura126

et al. 2022). Physically, increased wave steepness is strongly correlated to wind forcing - therefore,127

it is plausible that the frequencies being actively energized through interaction with the wind128

contribute most to the mean-squared-slope. Moreover, the peak value is likely closest to the129

saturated maximum 𝜖 for a given 𝑢∗, and assuming relaxation times are short, may be a good130

estimate even under changing conditions (e.g., rotating or reduction of winds), and potentially131

superior to a fitted approach if interaction timescales vary significantly across the tail. In the132

present context, we will evaluate the algorithm developed by Shimura et al. (2022) solely on133

performance relative to other methods.134

b. Inverse Modelling (IM)135

Beyond estimations via the parameterized solutions described above, we consider solving for wind136

speed and direction directly. Assuming (quasi-)homogeneous and (quasi-)stationary conditions,137
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the source term balance (approximately) closes at all frequency/direction components, so that138

𝑆gen( 𝑓 , 𝜃;𝐸,𝑈10, 𝜃10) + 𝑆diss( 𝑓 , 𝜃;𝐸) + 𝑆dist( 𝑓 , 𝜃;𝐸) ≈ 0. (9)

We only consider processes directly associated with a wind-driven sea (wind generation, white-139

capping, quadruplet wave-wave interaction), so that only 𝑆gen has an explicit dependence on140

(unknown) wind speed and direction. The dependency of source terms on frequency, direction,141

and known wave spectral densities is implied. Given 𝐸 ( 𝑓 , 𝜃) approximated from observations142

(more on this below), wind speed and direction may in principle be inferred from the above143

balance, though numerical approximation is required given complex expressions for the different144

source terms in the balance.145

In practice, this is difficult. The spectral distribution of generation and dissipation are not146

well understood, and modern approximations have been tailored to produce correct results in147

bulk parameters (specifically significant wave height) when operating on model spectral shapes.148

However, because quadruplet interactions are conservative (and vanish in the bulk; Hasselmann149

1962), wind generation is strictly positive (neglecting transfer from waves to wind), and white-150

capping strictly negative, the source term balance may be simplified through integration over all151

frequencies and direction,152 ∫ ∞

0

∫ 2𝜋

0

[
𝑆gen(𝑈10, 𝜃10;𝐸) + 𝑆diss(𝐸)

]
d𝜃d 𝑓 = 𝑆bulk

gen (𝑈10, 𝜃10) + 𝑆bulk
diss = 0, (10)

This bulk source term balance is expected to be more robust as it does not rely on the intricacies of153

spectral distribution. To estimate wind direction, we assume that bulk kinematic stress ®𝜏 is aligned154

with the mean wind direction such that155

®𝜏 =
∬

𝑔𝑆gen

𝜌a/w𝑐

®𝑘
𝑘

d𝜃d 𝑓︸                ︷︷                ︸
®𝜏wave

+®𝜏viscous +
𝑧2
𝑐

𝑧2
𝑟

®𝜏︸︷︷︸
®𝜏background

, (11)

with 𝜌a/w the air/water density ratio, 𝑐 = 𝜔/𝑘 the wave celerity, ®𝜏wave the contribution to the stress156

of sea waves, ®𝜏viscous the wind-aligned viscous-stress contribution which is only significant at very157

low wind speeds, and 𝜏background the contribution of unresolved background gravity-capillary waves158
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which is also assumed to be aligned with the wind. The wave stress exerted on the atmosphere is159

estimated from the rate of change of wave momentum due to energy transfer from the atmosphere160

to the waves (Janssen 1989). The background stress is parameterized (following Janssen 1989)161

through a Charnock-like relation, with 𝑧𝑐 the roughness length following from Charnock’s relation,162

and 𝑧𝑟 the surface roughness length in Equation (4) that relates 𝑢∗ to 𝑈10.163

Given expressions for generation and dissipation and an estimate of the directional wave spectrum,164

Equations (4), (10), and (11) form a system of three coupled nonlinear equations for wind speed,165

direction (𝑈10, 𝜃10) and surface roughness 𝑧𝑟 , which may be solved in an iterative fashion.166

1) Source term approximations167

To estimate energy transfer from wind to waves (𝑆gen), we use the quasi-linear approximation168

(Janssen 1991) to model energy transfer due the resonant shear-instability mechanism (Miles 1957),169

𝑆gen

𝜔𝐸
= 𝜌a/w𝛽𝜒

2 cos2(Δ𝜃) (12)

with 𝜒 = 𝑢∗/𝑐 the inverse wave age, Δ𝜃 the smallest mutual angle between waves and wind (𝑆gen = 0170

if the absolute angle exceeds 𝜋/2), and where the Miles parameter 𝛽 is expressed in terms of the171

relative critical height 𝜇 as172

𝛽 =
𝛽max

𝜅2 𝜇 ln4 𝜇 𝜇 = 𝑘𝑧𝑟exp
(

𝜅

(𝜒+ 𝜒0) cos(Δ𝜃)

)
,

with 𝛽 = 0 for 𝜇 > 1. 𝛽max was set to 1.2 in Janssen (1991), but has since essentially been regarded173

as a model tuning parameter. The wave age tuning parameter 𝜒0 is typically set to values of 0.006–174

0.008. Here, both parameters are considered model parameters to be calibrated. For frequencies175

beyond what is observed ( 𝑓 > 0.5 Hz here), we extrapolate the spectrum until 𝜇 = 1 using a 𝑓 −5
176

tail based on the last resolved frequency 𝑓max, since a large proportion of the stress is carried by177

the tail.178

To estimate dissipative effects (𝑆diss), we adopt the direction-dependent saturation from Ardhuin179

et al. (2010), which may be expressed as180

𝑆diss
𝜔𝐸

= 𝐶sat

(
𝐵(𝑘, 𝜃) −𝐵threshold

𝐵threshold

)2
(13)
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where 𝐵threshold is a saturation-based threshold, 𝐵 is a representative spectral saturation for the181

given direction, 𝐶sat is a tuning coefficient, and 𝑆diss = 0 if the saturation is below the threshold182

(i.e., if 𝐵( 𝑓 , 𝜃) −𝐵threshold < 0). In terms of the frequency spectrum 𝐵 is expressed as183

𝐵( 𝑓 , 𝜃) =
𝑐𝑔

2𝜋

∫ 2𝜋

0
𝐹 (𝜃 − 𝜃′)𝑘3𝐸 ( 𝑓 , 𝜃′) d𝜃′ (14)

where the integration kernel is 𝐹 = cos2(𝛼) if the mutual angle |𝛼 | ≤ 𝜃0 and 0 elsewhere (with 𝜃0184

as a calibration parameter). Here we set 𝜃0 to 80◦ and no further calibration is attempted.185

The justification for this simplified form of the source term balance is our focus on bulk estimates,186

for which simplicity is preferred since the balances were tuned for use within a wave model and187

require re-calibration when applied to observational spectra. Specifically, we will calibrate for:188

the Miles scale parameter 𝛽max, the wave age tuning parameter 𝜒0, the Charnock parameter 𝛼, the189

saturation threshold parameter 𝐵threshold and the breaking strength parameter 𝐶sat.190

2) Directional spectrum reconstruction191

Direct observations of 𝐸 ( 𝑓 , 𝜃) = 𝐸 ( 𝑓 )𝐷 ( 𝑓 , 𝜃) are not available from directional wave buoys,192

and instead the directional distribution 𝐷 ( 𝑓 , 𝜃) (with
∫
𝐷d𝜃 = 1) has to be reconstructed based on193

knowledge of the frequency spectrum and the lowest two Fourier coefficients of the the directional194

distribution. Here we will use a maximum entropy method (MEM) to define the directional195

distribution (Kobune and Hashimoto 1986, referred to as ‘MEM2’) that generally produces spectra196

which compare favorably to target spectra in controlled settings (Benoit and Teisson 1995) – though197

field performance is unknown. Preliminary investigation shows that different methods can produce198

similar skill in terms of wind inference (not shown), though optimum calibration coefficients differ199

slightly.200

c. Data Driven (DD)201

In addition to the physics-based estimates, we explored the potential for a purely data-driven202

algorithm to infer wind speed from observations of directional wave spectra. Recent studies have203

shown promise in applying data-driven methods to explore the coupling between wind and waves.204

For example, Peres et al. (2015) were able to extend an observational significant wave height record205

back by multiple decades by training an artificial neural network on reanalysis wind data. More206
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recently, Shamshirband et al. (2020) compared significant wave height predictions from a numerical207

wave model with those estimated from a neural network trained on wind data, finding comparable208

accuracy between the two methods. Tackling the inverse problem, as we are in the present study,209

Zeng et al. (2016) trained a neural network to predict wind speed based on the echo spectra of high-210

frequency radar data, which are traditionally used to measure wave height and direction. Relative211

to ground-truth buoy data, the neural network achieved an root-mean-square-error (RMSE) of 1.7212

m/s.213

In order to expand on these studies with a global, multi-year dataset, we trained a neural network214

to learn a mapping from buoy-observed 𝑒( 𝑓 ), 𝑎1( 𝑓 ), and 𝑏1( 𝑓 ) to satellite altimeter measurements215

of 𝑈10. Input data were detrended and normalized by their standard deviation (at each frequency)216

across the training set (see Section 3d for details regarding the training/evaluation/test split). In217

order to set the network architecture, we conducted a parameter sweep over: the number of hidden218

rectified linear unit (ReLU) layers (ranging from 1–16), the size of each hidden layer (ranging219

from 2–128 neurons), and the strength of an L2 regularization term applied to each layer’s kernel220

(ranging from a proportionality factor of 10−4–10−1). The neural networks were constructed using221

keras, and optimized using the Adam scheme (Kingma and Ba 2014) with a Huber loss function.222

The accuracy of each network was evaluated through the root-mean-square-difference (RMSD) on223

a 20% evaluation set.224

The network that achieved the lowest RMSD on the evaluation set consisted of 2 densely225

connected ReLU layers with 64 neurons each, followed by 2 densely connected ReLU layers with226

32 neurons each, and 2 densely connected ReLU layers with 16 neurons each. The optimal L2227

regularization strength was 0.005 at each layer. This architecture and the structure of the input to228

the neural network are depicted in Fig. 1.229

3. Data234

a. Buoy observations235

Wave spectrum observations used to calculate𝑈10 and 𝜃10 come from a global, distributed sensor236

network of several hundred Sofar Spotter buoys (Fig. 3). The Spotter buoy is a surface-following237

drifter that is approximately spherical in shape with a pentagonal horizontal profile, a mass of 5.5238

kg, and a diameter of 38 cm. In the free-drifting configuration, half of the Spotter is submerged239
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Fig. 1. Neural network architecture for wind speed prediction. The input 𝑋 ∈ R𝑚×𝑛 contains 𝑚 training

examples. Each example (row) has length 𝑛 = 294, and consists of the frequency-dependent variance density and

first two Fourier coefficients of the directional distribution. The input layer is followed by three sets of two ReLU

layers of sizes 𝑗 = 64, 𝑘 = 32, and 𝑙 = 16, respectively.

230

231

232

233

beneath the ocean surface (Fig. 2). The top half is exposed, allowing an array of hull-mounted240

solar panels to continuously power and charge the unit.241

Fig. 2. (a) Top-view of Spotter showing array of solar panels which provide power to the unit, allowing it to

continuously transmit information. (b) Spotter deployed in Half Moon Bay, CA.

242

243
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As of September 2021, all Spotter buoys deployed include sensors for barometric pressure and244

sea surface temperature along with GPS to observe surface waves. The wave spectra are derived245

using the horizontal and vertical displacements of the unit which are recorded at 2.5 Hz for a period246

of 30 minutes in the default setting. From horizontal and vertical (co-)spectra the wave energy247

density 𝑒( 𝑓 ) and four directional moments (canonically referred to as 𝑎1( 𝑓 ), 𝑏1( 𝑓 ), 𝑎2( 𝑓 ), 𝑏2( 𝑓 )248

Kuik et al. 1988) are calculated. These form the primary directional spectral observations.249

For efficient data transmission, a variable spectral resolution is used of approximately 0.01 Hz250

between 0.03 and 0.35 Hz and a resolution of 0.03 Hz from 0.35 Hz to 0.5 Hz. In this study,251

spectra are interpolated onto a regular 0.01 Hz grid, and above 0.5 Hz an extrapolated tail ( 𝑓 −4 or252

𝑓 −5 depending on local best fit on last 10 resolved bins) is appended up to 1.0 Hz such that the253

integrated energy matched the reported lumped contribution.254

Following onboard processing of sensor inputs, Spotter transmits oceanic and atmospheric255

measurements once every hour through Iridium. Given the current size of the global Spotter256

network, approximately 14,880 unique information transmissions are available daily. In January257

2023, there were 619 actively reporting buoys, a marked increase from early 2019 when the258

deployment of free-drifting Spotters as part of the Sofar Ocean-owned global drifter network first259

began (Fig. 3). Transmission was increased beyond the bulk parameters to include the directional260

spectra in December 2020, which led us to select the subsequent 2 year time period (January 2021261

to December 2022) for our wind comparison.262
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Fig. 3. Distribution of global Spotter network at the beginning of years (a) 2021, (b) 2022, and (c) 2023. On

January 1 of each of those years there were 213, 527, and 619 Spotters actively reporting, respectively.

263

264

b. Comparison data: Satellite observations and reanalysis data265

For comparison data with global coverage, satellite altimeter measurements of wind speed were266

chosen to assess the skill of the Spotter 𝑈10 estimation methods. We choose altimeters because267

they produce estimates of both wind speed and wave height, allowing us to quality-control the268

14



satellite observations via the Spotter/altimeter significant wave height mismatch (a large mismatch269

presumably implies an altimeter error, or that the instruments were not sampling the same sea-270

state). Data from multiple altimeter platforms were included in the collocation with Spotter data:271

Jason-3, Satellite with ARgos and ALtiKA (SARAL), and Sentinel-6 Michael Freilich (Sentinel-6).272

Observations corresponding to non-physical satellite values for𝑈10 were excluded from the Spotter273

comparison.274

Due to orbit characteristics and sampling footprints, a large portion of the collocated measure-275

ments are associated with an observation made by Jason-3 ( 43%) and SARAL ( 45%). Only 12%276

of the collocated measurements were associated with an observation made by Sentinel-6 due to277

its later launch date. Reported maximum RMS errors in wind speed observations from altimeters278

are 1.43 m/s for Jason-3 (Yang et al. 2020), 1.83 m/s for SARAL (Li et al. 2020) and 1.2 m/s for279

Sentinel-6 (Jiang et al. 2022). Some portion of the error values reported in the Yang et al. (2020),280

Li et al. (2020), and Jiang et al. (2022) studies can be attributed to the fact that satellite altimeters281

provide proxy measurements of 𝑈10 and are therefore subject to their own errors.282

In lieu of additional, in situ data sources we used the global ERA5 reanalysis dataset (Hersbach283

et al. 2020) as an additional point of comparison. For this analysis, we only considered the eastward284

and northward components of 𝑈10 from ERA5 (1/4◦ resolution). For every collocated satellite285

altimeter/Spotter observation pair, the corresponding ERA5 data was obtained, interpolated in286

space and time to the altimeter/Spotter observation pair, and converted to magnitude and direction287

for comparison. Because altimeters do not provide direction estimates, directional information is288

only available from the model.289

c. Triple collocation290

In order to obtain estimates of error between the three collocated datasets, we follow an approach291

outlined in Janssen et al. (2007), which assumes no correlation between the errors associated292

with each of the wind speed measurement instruments/methods, and a linear relationship between293

the measurements and the ground truth. The method is only applied to wind speed magnitude294

as satellite altimeters do not provide directional information. Values for the wind speed linear295

calibration constants 𝛽Spotter, 𝛽satellite, and 𝛽ERA5 can be found in Table 1.296
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Estimation method 𝛽Spotter 𝛽satellite 𝛽ERA5

V2019 1.0 0.919 0.912

S2022 1.0 0.982 0.972

IM 1.0 0.949 0.954

DD 1.0 1.026 1.016

Table 1. Values of the linear calibration constant 𝛽 as defined in Janssen et al. (2007) for the four Spotter 𝑈10

estimation methods.

297

298

To note, ERA5 does assimilate satellite altimeter data, specifically from SARAL’s AltiKa instru-299

ment and other generations of the Jason satellite. However, the primary objective of validating300

Spotter’s estimation of 𝑈10, rather than conclusions on independent altimeter or model accuracy,301

makes this error assessment approach sufficient for the current analysis.302

d. Training/calibration and evaluation datasets303

To collocate Spotter and satellite data, any observed pair within 25 km and 30 minutes was304

considered a match. Matching was performed using a kd-tree data structure, in which the latitude,305

longitude and time triplet were converted to a four dimensional spatial vector x = [𝑥, 𝑦, 𝑧, 𝑡𝑣],306

with 𝑥, 𝑦, 𝑧 the 3D-representation of the latitude/longitude pair (using mean radius of the WGS84307

ellipsoid), and 𝑡𝑣 the time coordinate 𝑡 expressed as a spatial coordinate using the velocity 𝑣 defined308

by the time and space limits, i.e. 𝑣 = 25km/30min ≈ 14m/s (time deltas of 30 minute are converted309

to 25 km differences). Any two points A and B for which the Euclidean norm |x𝐴 −x𝐵 | was310

≤ 25 km were identified as a match.311

If multiple consecutive satellite observations all mapped to the same Spotter observation the312

observed mean was used as a representative best estimate. To ensure both instruments are sampling313

a sea state representing the same weather conditions, and to filter for potential outliers, we further314

restricted matches to data points where observed wave height from satellite and buoy agreed to315

within 0.25 m. With these restrictions in place the total dataset yielded 21,843 pairs over the two316

year period, excluding any erroneous observations that were discarded for this analysis.317

To train the various models we apply a 50/50 split to the data to form training-evaluation and318

testing datasets. To avoid biases due to unequal distribution of the Spotter network between 2021 to319

2022 the split is performed randomly across the dataset (versus splitting by year). Observed satellite320

derived wind speeds in both training and testing-evaluation data sets were similarly distributed (Fig.321
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4). The meta-parameters for the neural network were optimized using a further 80/20 split of the322

training-evaluation data. To calibrate the physics based estimates all training-evaluation data was323

used (no further split).324

Fig. 4. Distribution of satellite 𝑈10 observations for the training (red) and testing (blue) datasets used for the

evaluation and analysis of the different wind speed estimation methods. Mean and standard deviation values for

the distributions indicate that the splitting of the full 2021/2022 dataset did not produce significant biases.

325

326

327

e. Calibration/Training328

Calibration of the three physics-based methods was performed using a nonlinear, gradient-descent329

based optimization algorithm (SLSQP algorithm as implemented in SciPy Virtanen et al. 2020).330

Optimization was loosely constrained (bounds of 0.01 and 100 times initial value) with initial331

values given by literature values. We opted for a weighted calibration target to avoid over-fitting on332

intermediate wind speeds (Fig. 4) because training and test observations are heavily concentrated333
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Calibration Parameter Best-fit Max 𝜖 ′ Voermans et al. (2019)

Dimensionless slope spectrum 𝜖 0.55 0.83 0.75

Charnock parameter 𝛼ch 0.02 0.018 0.012

Table 2. Calibrated parameter values for the physics-based parameterizations (V2019, S2022) compared with

literature values.

350

351

Calibration Parameter Inverse model ST4 value (TEST405 Ardhuin et al. 2009)

Miles scale parameter 𝛽max 1.57 1.55

Wave age tuning parameter 𝜒0 0.004 0.006

Charnock parameter 𝛼ch 0.012 0.0095

Saturation threshold 𝐵threshold 5×10−4 9×10−4

Breaking strength parameter 𝐶sat 2.6×10−5 2.2 ×10−5

Table 3. Calibrated values for the inverse model parameters compared to representative ST4 values.

in the 5–10 m/s range. Specifically, calibration/training cost function RMSD was defined as a334

weighted error,335

RMSD =
1

20

20∑︁
𝑗=1

𝑅𝑀𝑆𝐷 𝑗 . (15)

Here, 𝑅𝑀𝑆𝐷 𝑗 was defined as the RMSD of all satellite/proxy estimate pairs for which the satellite336

observation of 𝑈10 fell within 𝑗 −1 <=𝑈10 < 𝑗 , with values exceeding 20 m/s all collected in the337

last bin. Calibration on this target reduces overall skill, but significantly improves performance at338

intermediate wind speeds.339

4. Results340

a. Calibration/Training341

For the physics-based parameterizations (V2019 and S2022 models), RMSD values with the342

training data set were 1.84 m/s (V2019 model) and 1.43 m/s (S2022 model) when compared to343

corresponding satellite altimeter observations. Model optimum parameters are of similar order344

of magnitude to typical literature values, though Charnock values are generally higher (Table 3).345

Satellite comparison RMSD for the IM method with the training set was 1.23 m/s, and model346

optimum parameters (Table 3) are generally comparable to values used within operational wave347

models (e.g. ST4, (Ardhuin et al. 2009)). Lastly, training of the data-driven approach typically348

converged to RMSD ≈ 1.25 m/s after 30-40 epochs.349
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b. Wind Speed352

Comparison of V2019 with satellite and ERA5 data (Fig. 5) clearly exhibits the saturation earlier353

observed in Houghton et al. (2021). RMSD (1.84 m/s) and bias (-0.92 m/s) values across the354

dataset are the highest for V2019. Spread at values for 𝑈10 > 15 is high, with estimates biased355

low. The weighted calibration does diminish severity of errors (compared with default V2019356

parameters, not shown), but at the expense of bias in the mid-range, evident from the curve in the357

quantile-quantile line.358

Performance of the other methods is generally better, with DD obtaining the lowest RMSD (1.16359

m/s) value, followed by IM (1.20 m/s) and S2022 (1.42 m/s). Bias is lowest for IM (-0.05 m/s),360

followed by the DD method (0.12 m/s) and S2022 (-0.27 m/s). All three methods capture data361

distribution well (quantile-quantile lines close to one-to-one), though the DD approach starts to362

bias low at high winds, potentially inhibiting its ability to extrapolate beyond 20 m/s wind speeds.363

All methods perform poorly at the low wind speed values, with generally large scatter compared364

to satellite observations likely due to buoy limitations. This is addressed further in the discussion.365

Errors for all methods tend to increase with increasing wind speed (Fig. 6). The random error366

for the DD and IM method demonstrate very similar characteristics for 𝑈10 > 3 m/s, with RMSD367

around 10% of 𝑈10. S2022 performs slightly worse across intermediate winds, whereas V2019368

generally performs the worst, with particularly high errors of 5 m/s at the upper range and >369

1.5 m/s RMSD values at lower wind speeds. Better performance may be gained by non-weighted370

calibration (comparable to other methods), but at the expense of even larger errors elsewhere (not371

shown).372

High bias for the DD method at higher wind speeds is noteworthy, and indicative of over-fitting373

on the training data. The sample size at high wind speeds is low and the current approach of374

weighted calibration likely amplifies over-fitting in this range. Both S2022 and (more-so) V2019375

exhibit a bias trade-off from calibration: compensating negative bias in the mid-range with positive376

bias at the upper range of wind speeds. The observed bias compensation in the physics motivated377

methods may indicate that the physics are not fully parameterized, which contrasts near zero bias378

of the IM method output above 3 m/s.379

Comparisons with ERA5 data show broadly similar trends, though RMSD values (distributed380

or bulk) are higher, which is expected if satellite data is closest to truth at the Spotter observation381

19



location. Triple collocation results indicate that this is likely the case (Table 4). Regardless of382

the proxy method, ERA5 error is estimated at ∼ 1 m/s, whereas (with more variation) satellite383

errors are limited to ∼ 0.5 m/s. Of the proxy methods, the DD approach has the lowest bulk error384

magnitudes. Errors associated with the ERA5 and satellite observations are likely underestimated385

due to the assimilation of satellite observations into ERA5.386
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Fig. 5. From top to bottom in the left column, ERA5 𝑈10 values are compared to the estimation methods

used to produce estimates of 𝑈10 from Spotter spectra in the following order: (1) V2019, (2) S2022, (3) IM, and

(4) DD. From top to bottom in the right column, satellite altimeter 𝑈10 values are compared to the estimation

methods used to produce estimates of 𝑈10 from Spotter spectra in the following order: (1) V2019, (2) S2022, (3)

IM, and (4) DD. Dashed line indicates one-to-one correspondence. The dark, maroon line is the quantile-quantile

line.

387

388

389

390

391

392
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Fig. 6. RMSD (bias) values for 𝑈10 comparisons between the output from Spotter estimation methods and

(a, c) ERA5 as a reference/(b, d) satellite altimeter data as a reference are shown. Spotter/reference observation

pairs are binned by the reference 𝑈10 value (bin edges from 0 m/s to 19 m/s, bin width of 1 m/s for the range 2

m/s to 19 m/s, values above 19 m/s are collected in the last bin). The light blue, gray line indicates the number

reference observation in each bin. Bias is defined as the Spotter estimation subtracted from the reference.

393

394

395

396

397

c. Wind Direction400

Directional estimates from V2019, S2022 and IM perform similarly compared with ERA5 (Fig.401

7). The mean difference (smallest mutual angle) is small O(1◦), indicating virtually unbiased esti-402
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Estimation method 𝑒Spotter 𝑒satellite 𝑒ERA5

V2019 1.557 m/s 0.616 m/s 0.986 m/s

S2022 1.327 m/s 0.485 m/s 1.055 m/s

IM 1.167 m/s 0.609 m/s 1.015 m/s

DD 1.002 m/s 0.544 m/s 1.026 m/s

Table 4. Values of the residual measurement errors 𝑒 as defined in Janssen et al. (2007) for the four Spotter

𝑈10 estimation methods.

398

399

mators for direction. Differences are distributed quasi-normally, with smallest standard deviations403

for the stress-based IM estimate (RMSD 23◦) , whereas V2019 and S2022 (both based on tail404

direction) perform comparably (RMSD of 33.6◦ and 37.8◦, respectively). Directional moments405

from buoys are generally noisy, therefore both the V2019 and IM methods would likely benefit406

from a more integrated nature of the estimation, as opposed to the point-like estimate of S2022407

implemented here.408

No comparison to the data driven method nor satellite altimeters is shown because the satellite409

instruments included in our analysis do not produce estimates of wind direction, preventing training410

or direct comparison. This naturally prohibits further definitive conclusions regarding reliability411

of estimates. That said, the high frequency tail generally reliably follows the wind direction, and412

errors of O(20◦–30◦) are in line with previous reported values (Voermans et al. 2019) at coastal413

sites. We suspect actual error may be lower given that sheltering and fetch limitations (influencing414

estimates at coastal sites Voermans et al. 2019; Shimura et al. 2022) do not apply.415
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Fig. 7. Differences between ERA5 𝜃10 and 𝜃10 as estimated by three of the Spotter wind estimation methods:

V2019, S2022, and IM.

416

417

5. Discussion and Conclusion418

For all but V2019 (best fit) the reported errors of 𝑈10 are comparable to those obtained from419

altimeters, and differences among methods are small. Thus, within the 5 ≤ 𝑈10 ≤ 25 m/s range,420

wave-derived wind observations can augment satellite derived wind products to provide additional421

long-dwell coverage in deep-water environments. Assessments of the skill of the Spotter wind422

estimation methods in shallow water environments will require further work.423

The more advanced methods (IM and DD) do reduce errors, but judged by this data alone, not424

by a sufficient margin to justify their more complex implementation. Therefore, we plan to pursue425

an embedded implementation of S2022 for the Spotter platform using the calibration coefficients426

derived here.427

There are reasons to believe that inference using the IM or DD methods could be further428

improved. At O(1 m/s), observed differences (“errors”) are comparable to those of altimeters429

when compared to fixed platforms. Assuming altimeter errors are random, O(1 m/s) differences430

are therefore likely a lower skill limit when calibrating/evaluating against altimeter data. The431

similarity in error characteristics between the inverse model and the data-driven approach confirms432

that the remaining error is likely effectively random, but what fraction is attributable to altimeter433

errors, wave observation noise, or unobserved features (e.g., atmospheric stability, heterogeneity434
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in space or time of wind and waves, etc.) is unknown and requires higher accuracy reference data435

to investigate further. Paucity of Spotter data collocated with other in situ observations currently436

prevents us from pursuing this calibration further, though the addition of calibrated scatterometer437

data in future analyses would address the data deficiencies faced in this work.438

a. Performance at low wind speeds (𝑈10 < 5 m/s)439

At very low wind speeds, performance is poor. At O(1 m/s), errors approach 100% and other440

than qualitative information (e.g., winds are mild, which can have operational use), quantitative441

utility is low. Reduced skill is in part explained by a change in exchange processes at very low442

wind speeds, where skin-drag dominates and momentum is directly transferred to currents rather443

than waves (Kudryavtsev and Makin 2001).444

Poor performance can also be linked to the frequency cut-off at 0.5 Hz presently used on Spotter445

when sending information through Iridium. At 0.5 Hz the wave speed is ∼ 3 m/s. Consequently for446

O(1 m/s) winds, waves and winds are only weakly (or not) interacting in the resolved frequencies447

( 𝑓 ≤ 0.5 Hz) since wave age ≫ 1. When using full spectra (up to 1.0 Hz) errors in inference may448

potentially be reduced (e.g. 0.5 m/s error for Spotter at 2 m/s winds were reported by Voermans449

et al. 2019). In practice, given device dimensions and GPS accuracy this may be a practical lower450

limit. At 1 Hz the device diameter (∼ 0.4 m) is an appreciable fraction of the wavelength (∼ 1.5 m)451

and will display a damped response. Further, heave motions will approach the centimeter scale452

which is at the limit of what is resolvable from the motion package.453

b. Performance at high wind speeds (𝑈10 > 25𝑚/𝑠)454

The collocated altimeter dataset is restricted to wind speeds under 25 m/s, and performance of455

wind inference from wave measurements at higher wind speeds is unclear. There is reason to456

doubt the presented methods will extrapolate well to high wind speeds (e.g., in tropical storms).457

The drag coefficient estimated from Charnock-like relations calibrated on <25m/s winds is known458

to overestimate drag at wind speeds in excess of 30 m/s (Holthuijsen et al. 2012), even if wave459

effects on the drag are taken into account (as is done in the inverse model, (Janssen 1991)).460

This overestimation of roughness will lead to reduced shear in the profile, and consequently an461

underestimation of wind speed at 10 m height if extrapolated from friction velocity estimates alone.462
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Further, under strong forcing conditions the 𝑓 −4 equilibrium range vanishes (dissipative range starts463

at the peak), and assumptions of equilibrium are suspect.464

Anecdotally, from samples where Spotters encountered hurricanes (e.g., Hurricane Ian, 2022),465

we do find (not shown) that neither the IM nor S2022 saturates, and in fact often report comparable466

wind speeds (up to 50 m/s), while V2022 and the DD method saturate to 30 m/s. Further, output of467

the IM method and S2022 during Hurricane Ian did not exhibit marked lags (compared with ERA5)468

in capturing higher wind speeds, indicating that exploring the performance of these methods in469

high wind regimes is worthwhile. Resolving this is out of scope for the current work, and care470

should be taken for reported winds well above 25 m/s.471
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