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Introduction  

The supporting information presented here includes details of ocean heat flux 

calculations (Section S1), ancillary details about the ridge drilling profiles (Figure S1), 

ridge multibeam sonar surveys (Figure S2), comparison of data from drilling, sonar, and 

temperature buoy (Figure S3), evolution of physical parameters of first-year ice at the 

coring site (Figure S4), evolution of physical parameters of bottom parts of first-year ice 

and ridge (Figure S5), and estimates of ocean heat flux (Figure S6). 

Text S1. Ocean Heat Flux Calculations 

The amount of melted ice ℎ𝑖 depends on the sum of the conductive heat flux 𝑞𝑐 and 

the ocean heat flux 𝑞𝑤 and can be expressed as 

−𝜌𝑠𝑖𝐿𝑠𝑖 𝜕ℎ𝑖 𝜕𝑡⁄ = 𝑞𝑐 + 𝑞𝑤 , (1) 
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where 𝜌𝑠𝑖 is the sea-ice density, 𝐿𝑠𝑖 is the effective latent heat of sea ice, and 𝑡 is the 

time. 

The conductive heat flux 𝑞𝑐 depends on the temperature profile at the ice-water 

interface. During the investigated period from June 24 to July 21, both level ice and 

ridges were nearly isothermal, so the conductive heat flux 𝑞𝑐 was assumed to be zero in 

our calculations. The sea-ice density 𝜌𝑠𝑖 and the effective latent heat of sea ice 𝐿𝑠𝑖 

depend on the sea-ice salinity 𝑆𝑖, temperature 𝑇, and gas volume fraction 𝑣𝑔. For both 

first-year ice (FYI) coring site and Jaridge, these parameters were measured in situ. The 

results of our estimates are presented in Figure S5. The average ridge sea-ice density and 

the effective latent heat were equivalent to the values for sea ice with salinity of 2.6 and 

gas volume of 1.7%, identical to the average salinity of FYI during melt season and FYI 

average gas volume prior to melt season. 

The average FYI density and the effective latent heat were corresponding to 15% 

less energy required to melt a unit volume of sea ice. This 15% difference was mainly 

caused by the presence of under-ice meltwater layers, which led to the increase of first-

year ice bottom temperature and brine volume. In our calculation of the ocean heat flux, 

we use the average sea-ice density (909.1 kg/m3) and the effective latent heat (92% of 

the value for pure ice) as for sea ice with salinity of 2.6 and gas volume of 1.7%. The 

lower estimate of first-year ice effective latent heat was not used for the ocean heat flux 

calculations as the areal fraction of under-ice meltwater layers was estimated as 20% 

(Smith et al., 2022) and was not representative for the area of sonar surveys (Salganik et 

al., in press). 

The sea-ice density was found from Leppäranta & Manninen (1988) as: 

𝜌𝑠𝑖 = (1 − 𝑣𝑏 − 𝑣𝑔)𝜌𝑖 + 𝑣𝑏𝜌𝑏 , (2) 

The sea-ice brine mass fraction can be found from Notz (2005) as: 

𝑚𝑏 = 𝑆𝑖 𝑆𝑏⁄  (3) 

The sea-ice brine volume fraction can be found from Notz (2005) as: 

𝑣𝑏 = 1 − 𝑣𝑔 −
1 −

𝑆𝑖
𝑆𝑏

1 +
𝑆𝑖
𝑆𝑏

(
𝜌𝑖
𝜌𝑏

− 1)
 

(4) 

The density of pure ice can be found from Pounder (1966) as: 

𝜌𝑖 = 916.8 − 0.1403 ∙ 𝑇 (5) 

The brine salinity can be found from Feistel & Hagen (1998) as: 

𝑆𝑏 = −T(17.5967 + 2.00661(−𝑇)0.5 + 1.12533 ∙ 𝑇) (6) 

The brine density can be found from Schwerdtfeger (1963) as: 

𝜌𝑏 = 1000.3 + 0.78237 ∙ 𝑆𝑏 + 2.8008 ∙ 10−4 ∙ 𝑆𝑏
2 (7) 

The effective latent heat of sea ice can be found from Schwerdtfeger (1963) as: 

𝐿𝑠𝑖 = (1 −𝑚𝑏)𝐿𝑖, (8) 

where 𝐿𝑖 is the latent heat of pure ice. 

To estimate ocean heat fluxes from oceanographic measurements, we use the 

model from McPhee (1992) 

𝑞𝑤 = 𝛼ℎ𝜌𝑤𝑐𝑤𝑢(𝑇∞ − 𝑇𝑏), (9) 
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where 𝛼ℎ is the coefficient of turbulent transport (0.0095 from Notz et al., 2003), 𝜌𝑤 

and 𝑐𝑤 are the density and heat capacity of seawater (Millero, 2010), 𝑢 is the friction 

velocity (0.47 m s–1 from Fer et al., 2022), 𝑇∞ and 𝑇𝑏 are the water and ice-water interface 

temperatures. 
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Figure S1. Ridge draft measurements from ROV multibeam sonar and ice drilling lines. 

 

Figure S2. Contour plot with ice draft for June 24 (a) and July 21 (b). Black points show 

ridge drilling locations, purple point show the location of ice mass balance buoy (IMB), 

and red points show the location of ridge coring. 
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Figure S3. Comparison of ice draft from ROV multibeam sonar and manual drilling (a) 

and contour plot of the ridge temperature measurements from IMB042 buoy (b). 

 

Figure S4. Evolution of brine and gas volume (a), snow and freeboard thickness (b), sea-

ice density (c), and sea-ice draft and thickness ratio (d) measured or estimated from 

salinity and density cores at FYI coring site. Sea-ice density for combined salinity and 

density cores was calculated assuming gas volume from density core and brine volume 
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from salinity core. Sea-ice density for hydrostatic balance was estimated from the 

measured snow and ice thickness and draft. 

 

Figure S5. Evolution of bottom sea-ice salinity (a), brine and gas volume (b), sea-ice 

density (c), and ice density and latent heat product (d) measured or estimated from 

salinity and density cores for first-year ice (FYI) coring site and Jaridge. Bottom 0.20 m 

and 0.55 m of ice cores were used for FYI and ridge estimates, respectively. 

 

Figure S6. Temperature of Jaridge keel bottom from temperature buoy (IMB) and coring; 

and water temperature from the Polarstern thermosalinograph (TS) at 11-m depth and 

microstructure profiles (MSS) at 5-m depth (a), ocean heat flux estimated from ocean 

parameterization for the ridge, from ridge bottom melt estimates from ROV, from ridge 
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bottom melt estimates from ice mass balance buoy (IMB), and from ocean 

parameterization for FYI (b). 


