Reference
Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., & Zigmond, M. J. (1989). Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. Journal of Neurochemistry , 52 (5), 1655–1658. https://doi.org/10.1111/j.1471-4159.1989.tb09224.x
Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Beta-adrenergic modulation of cognitive flexibility during stress. Journal of Cognitive Neuroscience, 19 (3), 468–478. https://doi.org/10.1162/jocn.2007.19.3.468
Allen, A. P., Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G. (2014). Biological and psychological markers of stress in humans: focus on the Trier Social Stress Test. Neuroscience & Biobehavioral Reviews, 38 , 94–124. https://doi.org/10.1016/j.neubiorev.2013.11.005
Ananiadou, K., & Claro, M. (2009). 21st century skills and competences for new millennium learners in OECD countries, OECD Education Working Papers, No. 41 , OECD Publishing, Paris. https://doi.org/10.1787/218525261154.
Arafah, B. H., Nishiyama, F. J., Tlaygeh, H. M., & Hejal, R. B. (2007). Measurement of salivary cortisol concentration in the assessment of adrenal function in critically ill subjects: A surrogate marker of the circulating free cortisol. Journal of Clinical Endocrinology Metabolism, 92 (8), 2965–2971. https://doi.org/10.1210/jc.2007- 0181
Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience , 10 (6), 410–422. https://doi.org/10.1038/nrn2648
Barbato, G., Ficca, G., Muscettola, G., Fichele, M., Beatrice, M., & Rinaldi, F., (2000). Diurnal variation in spontaneous eye-blink rate.Psychiatry Research, 93 (2), 145–151. https://doi.org/10.1016/S0165-1781(00)00108-6
Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport. 10 , 2763–2767. https://doi.org/10.1097/00001756-199909090-00012
Beversdorf, D. Q. (2019). Neuropsychopharmacological regulation of performance on creativity-related tasks. Current Opinion in Behavioral Sciences , 27 , 55–63. https://doi.org/10.1016/j.cobeha.2018.09.010
Beversdorf, D. Q., White, D. M., Chever, D. C., Hughes, J. D., & Bornstein, R. A. (2002). Central beta-adrenergic modulation of cognitive flexibility. Neuroreport, 13 (18), 2505–2507. https://doi.org/10.1097/01.wnr.0000048923.00321.a7
Blackford, J. U., Buckholtz, J. W., Avery, S. N., Zald, D. H. (2010). A unique role for the human amygdala in novelty detection.NeuroImage 50, 1188–1193. https://doi.org/10.1016/j.neuroimage.2009.12.083
Boot, N., Baas, M., van Gaal, S., Cools, R., & De Dreu, C. K. W. (2017). Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda.Neuroscience & Biobehavioral Reviews , 78 , 13–23. https://doi.org/10.1016/j.neubiorev.2017.04.007
Bremner, J. D., Krystal, J. H., Southwick, S. M., & Charney, D. S. (1996). Noradrenergic mechanisms in stress and anxiety: I. Preclinical studies. Synapse, 23 (1), 28–38. https://doi.org/10.1002/(SICI)1098-2396(199605)23:1<28::AID-SYN4>3.0.CO;2-J
Byron, K., Khazanchi, S., & Nazarian, D. (2010). The relationship between stressors and creativity: A meta-analysis examining competing theoretical models. Journal of Applied Psychology, 95 , 201–212. https://doi.org/10.1037/a0017868
Chrousos, G. P., (2009). Stress and disorders of the stress system.Nature Reviews Endocrinology, 5 (7), 374–381. https://doi.org/10.1038/nrendo.2009.106.
Chakravarty, A. (2010). The creative brain – Revisiting concepts.Medical Hypotheses , 74 (3), 606–612. https://doi.org/10.1016/j.mehy.2009.10.014
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition , 115 (3), 458–465. https://doi.org/10.1016/j.cognition.2010.03.007
Akbari Chermahini, S., & Hommel, B. (2012). More creative through positive mood? Not everyone! Frontiers in Human Neuroscience, 6 . https://doi.org/10.3389/fnhum.2012.00319
Cools, R., & D’Esposito, M. (2011). Inverted-U–shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69 (12), e113–e125. http://dx.doi.org/10.1016/j.biopsych.2011.03.028.
Dave, A. A., Lehet, M., Diwadkar, V. A., & Thakkar, K. N. (2021). Ocular measures during associative learning predict recall accuracy.International Journal of Psychophysiology , 166 , 103–115. https://doi.org/10.1016/j.ijpsycho.2021.05.010
de Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6 (6), 463–475. https://doi.org/10.1038/nrn1683
de Rooij, A., Vromans, R. D., & Dekker, M. (2011). Noradrenergic Modulation of Creativity: Evidence from Pupillometry. Creativity Research Journal, 30 (4), 339–351. https://doi.org/10.1080/10400419.2018.1530533
Dedovic, K., Rexroth, M., Wolff, E., Duchesne, A., Scherling, C., Beaudry, T., Lue, S.D., Lord, C., Engert, V., & Pruessner, J.C. (2009). Neural correlates of processing stressful information: An event-related fMRI study. Brain Research, 1293 , 49–60. https://doi.org/10.1016/j.brainres.2009.06.044
Dedovic, K., Duchesne, A., Andrews, J., Engert, V., & Pruessner, J. C. (2009). The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. NeuroImage. 47 , 864–871. https://doi.org/10.1016/j.neuroimage.2009.05.074
D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66 , 115–142. https://doi.org/10.1146/annurev-psych-010814-015031
Dodds, C. M., Müller, U., Clark, L., Van, L. A., Cools, R., & Robbins, T. W. (2008). Methylphenidate has differential effects on blood oxygenation level-dependent signal related to cognitive subprocesses of reversal learning. Journal of Neuroscience, 28 (23), 5976–5982. https://doi.org/10.1523/JNEUROSCI.1153-08.2008
Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., Fox, M. D., Snyder, A. Z., Vincent, J. L., Raichle, M. E., Schlaggar, B. L., & Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans.Proceedings of the National Academy of Sciences, 104 (26), 11073–11078. https://doi.org/10.1073/pnas.0704320104
Dorn, L. D., Lucke, J. F., Loucks, T. L., & Berga, S. L. (2007). Salivary cortisol reflects serum cortisol: Analysis of circadian profiles. Annals of Clinical Biochemistry, 44 (3), 281–284. https://doi.org/10.1258/000456307780480954.
Duan, H., Wang, X., Hu, W., & Kounios, J. (2020). Effects of acute stress on divergent and convergent problem-solving. Thinking & Reasoning, 26 (1), 68–86. https://doi.org/10.1080/13546783.2019.1572539
Dumontheil, I., Gilbert, S. J., Frith, C. D., & Burgess, P. W. (2010). Recruitment of lateral rostral prefrontal cortex in spontaneous and task-related thoughts. Quarterly Journal of Experimental Psychology, 63 (9), 1740–1756. https://doi.org/10.1080/17470210903538114
Ehinger, B. V., Groß, K., Ibs, I., & König, P. (2019). A new comprehensive eye-tracking test battery concurrently evaluating the pupil labs glasses and the EyeLink 1000. PeerJ, 7 , e7086. https://doi.org/10.7717/peerj.7086
Fabio, R. A., Picciotto, G., & Caprì, T. (2021). The effects of psychosocial and cognitive stress on executive functions and automatic processes in healthy subjects: A pilot study. Current Psychology ,41 , 7555–7564. https://doi.org/10.1007/s12144-020-01302-1
Freed, W. J., Kleinman, J. E., Karson, C. N., Potkin, S. G., Murphy, D. L., & Wyatt, R. J. (1980). Eye-blink rates and platelet monoamine oxidase activity in chronic schizophrenic patients. Biological psychiatry, 15(2), 329–332.
Fogelman, N., & Canli, T. (2018). Early life stress and cortisol: A meta-analysis. Hormones and Behavior , 98 , 63–76. https://doi.org/10.1016/j.yhbeh.2017.12.014
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103 (26), 10046–10051. https://doi.org/10.1073/pnas.0604187103
Gabrys, R. L., Howell, J. W., Cebulski, S. F., Anisman, H., & Matheson, K. (2019). Acute stressor effects on cognitive flexibility: Mediating role of stressor appraisals and cortisol. Stress , 22 (2), 182–189. https://doi.org/10.1080/10253890.2018.1494152
Guedj, C., Meunier, D., Meunier, M., & Hadj-Bouziane, F. (2017). Could LC-NE-dependent adjustment of neural gain drive functional brain network reorganization? Neural Plasticity , 2017 , 1–12. https://doi.org/10.1155/2017/4328015
Guilford, J. P. (1950). Creativity. American Psychologist, 5 , 444–454. https://doi.org/10.1037/ h0063487
Hasselmo, M. E., Linster, C., Patil, M., Ma, D., & Cekic, M. (1997). Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. Journal of Neurophysiology ,77 (6), 3326–3339. https://doi.org/10.1152/jn.1997.77.6.3326
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford publications.
Hermans, E. J., Henckens, M. J., Joëls, M., & Fernández, G. (2014). Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Neurosciences, 37 (6), 304–314. http://dx.doi.org/10.1016/j.tins.2014.03.006.
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative Innovation: Possible Brain Mechanisms. Neurocase, 9 (5), 369–379. https://doi.org/10.1076/neur.9.5.369.16553
Heilman, K. M. (2016). Possible brain mechanisms of creativity.Archives of Clinical Neuropsychology , 31 (4), 285–296. https://doi.org/10.1093/arclin/acw009
Hillier, A., Alexander, J. K., & Beversdorf, D. Q. (2006). The effect of auditory stressors on cognitive flexibility. Neurocase, 12 (4), 228–231. https://doi.org/10.1080/13554790600878887
Howells, F. M., Stein, D. J., & Russell, V. A. (2012). Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance.Metabolic Brain Disease , 27 (3), 267–274. https://doi.org/10.1007/s11011-012-9287-9
Hu, N., Hu, X., Xu, Z., Li, Q., Long, Q., Gu, Y., & Chen, A. (2019). Temporal dynamic modulation of acute stress on error processing in healthy males. Psychophysiology, 56 (9), e13398. https://doi.org/10.1111/psyp.13398
Izawa, S., Sugaya, N., Yamamoto, R., Ogawa, N., & Nomura, S. (2010). The cortisol awakening response and autonomic nervous system activity during nocturnal and early morning periods. Neuroendocrinology Letters, 31 (5), 685–689. https://pubmed.ncbi.nlm.nih.gov/21178943/
Jongkees, B. J., & Colzato, L. S. (2016). Spontaneous eye blink rate as predictor of dopamine-related cognitive function—A review.Neuroscience & Biobehavioral Reviews , 71 , 58–82. https://doi.org/10.1016/j.neubiorev.2016.08.020
Kaminer, J., Powers, A.S., Horn, K.G., Hui, C., & Evinger, C. (2011). Characterizing the spontaneous blink generator: An animal model.Neuroscience, 31 , 11256–11267. https://doi.org/10.1523/JNEUROSCI.6218-10.2011
Kalia, V., Vishwanath, K., Knauft, K., Vellen, B. V. D., Luebbe, A., & Williams, A. (2018). Acute stress attenuates cognitive flexibility in males only: An fNIRS examination. Frontiers in Psychology ,9 , 2084. https://doi.org/10.3389/fpsyg.2018.02084
Kellendonk, C., Simpson, E.H., Polan, H.J., Malleret, G., Vronskaya, S., Winiger, V., Moore, H., & Kandel, E.R. (2006). Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron, 49 , 603–615. https://doi.org/10.1016/j.neuron.2006.01.023
Kleven, M. S., & Koek, W. (1996). Differential effects of direct and indirect dopamine agonists on eye blink rate in cynomolgus monkeys.Journal of Pharmacology and Experimental Therapeutics, 279 , 1211–1219. https://psycnet.apa.org/record/1997-02921-005
Knapen, T., de Gee, J.W., Brascamp, J., Nuiten, S., Hoppenbrouwers, S., Theeuwes, J. (2016). Cognitive and ocular factors jointly determine pupil responses under equiluminance.PLoS One 11 (5), e0155574. https://doi.org/10.1371/journal.pone.0155574
Knauft, K., Waldron, A., Mathur, M., & Kalia, V. (2021). Perceived chronic stress influences the effect of acute stress on cognitive flexibility. Scientific Reports , 11 (1), 23629. https://doi.org/10.1038/s41598-021-03101-5
Knudsen, E. I. (2007). Fundamental Components of Attention. Annual Review of Neuroscience, 3 0(1), 57–78. https://doi.org/10.1146/annurev.neuro.30.051606.094256
Kongs, S. K., Thompson, L. L., Iverson, G. L., & Heaton, R. K. (1993).Wisconsin Card Sorting Test–64 card version professional manual . Psychological Assessment Resources.
Koss, M.C. (1986). Pupillary dilation as an index of central nervous system α2adrenoceptor activation. Journal ofPharmacological Methods, 15 (1), 1–19. https://doi.org/ 10.1016/0160-5402(86)90002-1.
Kuchinke, L., Schneider, D., Kotz, S. A., & Jacobs, A. M. (2011). Spontaneous but not explicit processing of positive sentences impaired in Asperger’s syndrome: Pupillometric evidence. Neuropsychologia ,49 (3), 331–338. https://doi.org/10.1016/j.neuropsychologia.2010.12.026
Laredo, S. A., Steinman, M. Q., Robles, C. F., Ferrer, E., Ragen, B. J., & Trainor, B. C. (2015). Effects of defeat stress on behavioral flexibility in males and females: Modulation by the mu-opioid receptor.European Journal of Neuroscience, 41 (4), 434–441. https://doi.org/10.1111/ejn.12824
Langer, K., Hagedorn, B., Stock, L.-M., Otto, T., Wolf, O. T., & Jentsch, V. L. (2020). Acute stress improves the effectivity of cognitive emotion regulation in men. Scientific Reports ,10 (1), 11571. https://doi.org/10.1038/s41598-020-68137-5
Langer, K., Jentsch, V. L., & Wolf, O. T. (2022). Cortisol promotes the cognitive regulation of high intensive emotions independent of timing.European Journal of Neuroscience , 55 (9–10), 2684–2698. https://doi.org/10.1111/ejn.15182
Lovallo, W. R., Buchanan, T. W. (2016). Stress hormones in psychophysiological research: emotional, behavioral, and cognitive implications. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 465–494). Cambridge University Press. https://doi.org/10.1017/9781107415782.021
Lucas, B. J., Nordgren, L. F. (2015). People underestimate the value of persistence for creative performance. Journal of Personality and Social Psychology, 109 , 232–243. https://doi.org/10.1037/pspa0000030
Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., & Shamay-Tsoory, S. G., (2013). The association between creativity and 7R polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in Human Neuroscience, 7 , 1–7. https://doi.org/10.3389/fnhum.2013.00502
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15 (10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214 (5–6), 655–667. https://doi.org/10.1007/s00429-010-0262-0
Munck, A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5 (1), 25–44. https://doi. org/10.1210/edrv-5-1-25
Murphy, P. R., Robertson, I. H., Balsters, J. H., & O’connell, R. G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans: Indirect markers of locus coeruleus activity. Psychophysiology, 48 (11), 1532–1543. https://doi.org/10.1111/j.1469-8986.2011.01226.x
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology , 41 (1), 49–100. https://doi.org/10.1006/cogp.1999.0734
Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology, 48 (2), 162–175. https://doi.org/10.1111/j.14698986.2010.01057.x.
Neri, D. F., Wiegmann, D., Stanny, R. R., Shappell, S. A., McCardie, A., & McKay, D. L. (1995). The effects of tyrosine on cognitive performance during extended wakefulness. Aviation, Space, and Environmental Medicine, 66 (4), 313–319. Available from: https://pubmed.ncbi.nlm.nih.gov/7794222/
Nijstad, B.A., De Dreu, C. K. W., Rietzschel, E. F., Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21 , 34–77. https://doi.org/10.1080/10463281003765323
Nyhus, E., & Barceló, F. (2009). The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain and Cognition , 71 (3), 437–451. https://doi.org/10.1016/j.bandc.2009.03.005
Pajkossy, P., Szőllősi, Á., Demeter, G., & Racsmány, M. (2018). Physiological Measures of Dopaminergic and Noradrenergic Activity During Attentional Set Shifting and Reversal. Frontiers in Psychology, 9 , 506. https://doi.org/10.3389/fpsyg.2018.00506
Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: classical theories and new developments. Trends in neurosciences, 31 (9), 464–468. https://doi.org/10.1016/j.tins.2008.06.006
Plessow, F., Fischer, R., Kirschbaum, C., & Goschke, T. (2011). Inflexibly focused under stress: Acute psychosocial stress increases shielding of action goals at the expense of reduced cognitive flexibility with increasing time lag to the stressor. Journal of Cognitive Neuroscience, 23 (11), 3218–3227. https://doi.org/10.1162/jocn_a_00024
Qin, S., Hermans, E. J., van Marle, H. J., Luo, J., & Fernández, G. (2009). Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biological Psychiatry, 66 (1), 25–32. https://doi.org/10.1016/j.biopsych.2009.03.006
Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis)inhibition in creativity: decreased inhibition improves idea generation. Cognition 134, 110–120. https://doi.org/10.1016/j.cognition.2014.09.001.
Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1993). Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Society for Neuroscience Abstracts, 19 , 974. Available from: https://eurekamag.com/research/030/732/030732406.php
Sanger, J., Bechtold, L., Schoofs, D., Blaszkewicz, M., & Wascher, E. (2014). The influence of acute stress on attention mechanisms and its electrophysiological correlates. Frontiers in Behavioral Neuroscience, 8 , 353. https://doi.org/10.3389/fnbeh.2014.00353
Shansky, R.M., & Lipps, J. (2013). Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex. Frontiers in Human Neuroscience, 7 , 123. https://doi.org/10.3389/fnhum.2013.00123
Shields, G. S., Bonner, J. C., & Moons, W. G. (2015). Does cortisol influence core executive functions? A meta-analysis of acute cortisol administration effects on working memory, inhibition, and set-shifting.Psychoneuroendocrinology, 58 , 91–103. https://doi.org/10.1016/j.psyneuen.2015.04.017
Shukla, D. (1985). Blink rate as clinical indicator. Neurology, 35 , 286. https://doi.org/10.1212/wnl.35.2.286
Thierry, A. M., Tassin, J. P., Blanc, G., & Glowinski, J. (1976). Selective activation of the mesocortical DA system by stress.Nature, 263 (5574), 242–244. https://doi.org/10.1038/263242a0
Sanchez-Ruiz, M.-J., Pérez-González, J. C., Romo, M., & Matthews, G. (2015). Divergent thinking and stress dimensions. Thinking Skills and Creativity , 17 , 102–116. https://doi.org/10.1016/j.tsc.2015.06.005
Sternberg, R.J., & Lubart, T.I. (1996). Investing in creativity.American Psychologist, 51 , 677–688. doi:10.1037//0003-066X.51.7.677
Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10 (6), 397–409. https://doi.org/10.1038/nrn2647
Unsworth, N., Robison, M. K., & Miller, A. L. (2019). Individual differences in baseline oculometrics: Examining variation in baseline pupil diameter, spontaneous eye blink rate, and fixation stability.Cognitive, Affective, & Behavioral Neuroscience. 19, 1074–1093. https://doi.org/10.3758/s13415-019-00709-z
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999). The role of Locus Coeruleus in the regulation of cognitive performance. Science , 283 (5401), 549–554. https://doi.org/10.1126/science.283.5401.549
Villarejo, M. V., Zapirain, B. G., & Zorrilla, A. M. (2012). A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee.Sensors , 12 (5), 6075–6101. https://doi.org/10.3390/s120506075
Walker, F. R., Pfingst, K., Carnevali, L., Sgoifo, A., & Nalivaiko, E. (2017). In the search for integrative biomarker of resilience to psychological stress. Neuroscience & Biobehavioral Reviews ,74 , 310–320. https://doi.org/10.1016/j.neubiorev.2016.05.003
Wang, X., Duan, H., Kan, Y., Wang, B., Qi, S., & Hu, W. (2019). The creative thinking cognitive process influenced by acute stress in humans: An electroencephalography study. Stress , 22 (4), 472–481. https://doi.org/10.1080/10253890.2019.1604665
Wang, Y., Guo, X., Wang, M., Kan, Y., Zhang, H., Zhao, H., Meilin, W., & Duan, H. (2022). Transcranial direct current stimulation of bilateral dorsolateral prefrontal cortex eliminates creativity impairment induced by acute stress. International Journal of Psychophysiology ,171 , 1–11. https://doi.org/10.1016/j.ijpsycho.2021.11.001
Wingo, T., Nesil, T., Choi, J.-S., & Li, M. D. (2016). Novelty seeking and drug addiction in humans and animals: From behavior to molecules.Journal of Neuroimmune Pharmacology , 11 (3), 456–470. https://doi.org/10.1007/s11481-015-9636-7
World Medical Association (2013). World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects . Available from: https://www.wma.net/en/30publications/10policies/b3.htm.
Yeh, Y.-c., Lai, G.-J., Lin, C. F., Lin, C.-W., & Sun, H.-C. (2015). How stress influences creativity in game-based situations: Analysis of stress hormones, negative emotions, and working memory. Computers & Education, 81 , 143–153. https://doi.org/10.1016/j.compedu.2014.09.011
Zhang, W., Sjoerds, Z., & Hommel, B. (2020). Metacontrol of human creativity: The neurocognitive mechanisms of convergent and divergent thinking. NeuroImage , 210 , 116572. https://doi.org/10.1016/j.neuroimage.2020.116572
Zhang, W., Hashemi, M. M., Kaldewaij, R., Koch, S. B. J., Beckmann, C., Klumpers, F., & Roelofs, K. (2019). Acute stress alters the ‘default’ brain processing. NeuroImage, 189 , 870–877. https://doi.org/10.1016/j.neuroimage.2019.01.063
Zhang, W., Kaldewaij, R., Hashemi, M. M., Koch, S. B. J., Smit, A., van Ast, V. A., Beckmann, C. F., Klumpers, F., & Roelofs, K. (2022). Acute-stress-induced change in salience network coupling prospectively predicts post-trauma symptom development. Translational Psychiatry, 12 (1), 63. https://doi.org/10.1038/s41398-022-01798-0