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Abstract 18 
 19 
Radiation energy balance at the top of the atmosphere (TOA) is a critical boundary condition for 20 
the Earth climate. It is essential to validate it in the global climate models (GCM) on both global 21 
and regional scales. However, the comparison of overall radiation field is known to conceal 22 
compensating errors. Here we use a new set of radiative kernels to diagnose the radiation biases 23 
by different geophysical variables in the latest GCMs. We find although clouds remain a primary 24 
cause of radiation biases, the radiation biases caused by non-cloud variables are of comparable 25 
magnitudes. Many GCMs tend to have a cold bias in the air temperature and a moist bias in the 26 
tropospheric humidity, which lead to considerable biases in TOA radiation budget but are 27 
compensated by cloud biases. These findings signify the importance of validating the GCM-28 
simulated radiation fields, with respect to both the overall and component radiation biases. 29 

 30 
(Plain Language Abstract) 31 
Radiation energy balance at the top of atmosphere is crucial to the Earth climate system and is 32 
routinely examined in climate model validations. Here, we show that seemingly good agreements 33 
between model and observation can be due to compensating errors and propose the use of a 34 
kernel method for separately identifying component radiation biases due to different geophysical 35 
variables, which may afford a more stringent test of climate models.  36 
 37 

Key Points 38 
1. Climate models are subject to compensating radiation biases caused by cloud and non-cloud 39 

variables. 40 
2. Many models have a cold temperature bias and a moist humidity bias in the troposphere. 41 
3. Kernel diagnosis of component radiation biases affords a stricter test for climate models. 42 
  43 



1. Introduction 44 
Radiation energy balance at the top of the atmosphere (TOA) critically shapes the Earth 45 

climate. The global mean values of the longwave and shortwave radiation fluxes, as well as their 46 
distribution patterns are often used to validate the simulations of the global climate models 47 
(GCMs) (e.g., Kiehl et al. 1994; Su et al. 2010; Li et al. 2013; Dolinar et al. 2015; Loeb et al. 48 
2020; Wild 2020). As illustrated by Fig. 1 (a) to (f) and also by others (e.g., Zhao et al. 2018; 49 
Golaz et al. 2019), the state-of-the-art GCMs show remarkable skills in reproducing observed 50 
climatological mean radiation fields, including the net radiation and its longwave and shortwave 51 
components.  52 

 53 
 54 

Figure 1. Climatological mean radiative fluxes in all-sky (units: W m-2) from (a, b, c) the 55 
CERES satellite observation, and (d, e, f) multi-model mean of the AMIP simulations of GCMs. 56 
Global mean values are shown on the upper-right corner in each panel. AMIP: Atmospheric 57 
Modelling Intercomparison Project; GCM: Global Climate Model; CERES: Clouds and the 58 
Earth's Radiant Energy System. 59 

 60 
However, the validation of GCMs with regard to overall radiation field is known to conceal 61 

possible compensating errors (Huang et al. 2007; Huang and Ramaswamy 2008; Huang, X. et al. 62 
2008, 2013; Bani Shahabadi et al. 2016; Della Fera et al. 2022). For example, Huang et al. 63 
(2007) showed, by validating a GCM against spectrally resolved satellite radiance, that a 64 
seemingly good all-sky OLR field may result from compensating radiation errors due to the 65 
biases in the cloud fields and those in the non-cloud fields, such as the atmospheric temperature 66 
and humidity. On the other hand, comparisons of geophysical variables between GCM 67 
simulations and observations, such as the satellite retrieval products, verify the biases in the non-68 
radiation fields. Some of these biases, such as those in the tropospheric humidity and 69 
temperature, appear to be persistent in a number of models (Gettelman et al. 2006, Jiang et al. 70 
2015). These recognitions thus bear important questions: Is the agreement in the radiation fields 71 
between the latest GCMs and observations, as shown in Fig. 1, subject to compensating errors? 72 
And how much do different geophysical variables respectively contribute to the total radiation 73 
bias?   74 

 75 



To answer the above questions, especially the latter one, it is important to have a 76 
comprehensive view of the error budget of the radiation fields and the ability to identify the 77 
biases that matter the most energetically. Among the potential causes of radiation errors, clouds 78 
are broadly conceived to be a major source of uncertainty in GCM simulations. This can and 79 
should be confirmed by quantifying the cloud-induced radiation bias and compare it to those 80 
caused by other geophysical variables. If, as revealed by previous studies (e.g., Huang et al. 81 
2007), the cloud fields were tuned to compensate non-cloud biases in order for the model-82 
simulated all-sky radiation to match the observation, the model would have cloud and non-cloud 83 
radiation biases of comparable magnitudes and opposite signs. On a relevant note, radiation 84 
biases are often cited to justify the need of treating certain processes in the GCMs. A recent 85 
example is the inclusion of the longwave scattering effect of clouds in the radiation codes (e.g., 86 
Chen et al. 2020). However, the impact of a proposed modification cannot be properly expected 87 
without a "big-picture" knowledge, i.e., what other, possibly more dominant, radiation biases 88 
exist in the models. These issues emphasize the need to separately quantify the individual 89 
radiation biases. This is important to verify that the radiation agreement in a model is achieved 90 
for the right reasons, or to identify which variable fields or physical processes are the most 91 
imperative to improve.  92 

 93 
In this paper, we use a radiative kernel method to quantify the radiative biases caused by 94 

different geophysical variables, including surface and atmospheric temperature, humidity, 95 
surface albedo and clouds. The method and data are presented in Section 2. A systematic 96 
assessment of the radiative biases in the current GCMs is shown in Section 3. 97 
 98 
2. Method 99 
 100 
2.1 Observation and GCM data 101 
 102 

To quantify the biases in the GCM-simulated radiation fields, we use the satellite 103 
observation of the Clouds and the Earth's Radiant Energy System (CERES, Wielicki et al., 1996) 104 
as the reference values of the TOA radiation fluxes. Specifically, its Energy Balanced and Filled 105 
(EBAF) dataset, version 4.2, with clear-sky radiation value consistently defined as in the GCMs 106 
(Loeb et al. 2018, 2020) is used. All the radiative fluxes are defined to be downward positive. 107 

 108 
To quantify the GCM biases in the geophysical variables, we use the fifth generation 109 

European Centre for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5) 110 
(Hersbach et al., 2020) as the reference values of such variables as surface and atmospheric 111 
temperature, water vapor, surface albedo.  112 

 113 
The GCMs examined here are the models of the sixth phase of the Coupled Model 114 

Intercomparison Project (CMIP6, Eyring et al., 2016). Particularly, the Atmospheric Modelling 115 
Intercomparison Project (AMIP) simulations of the same period as the CERES data, years 2001-116 
2014, are used here for analysis. A list of the models included in this analysis are summarized in 117 
the Supplementary Table S1.  118 
 119 
 120 
2.2 Quantification of component biases: Kernel method 121 



 122 
Radiative kernels, !"

!#
,  are pre-calculated radiative sensitivities to different geophysical 123 

variables, 𝑥, including surface temperature, atmospheric temperature and water vapor at different 124 
altitudes, and surface albedo. In this work, we use the radiative kernels computed by Huang & 125 
Huang (2023, under review) based on the ERA5 global reanalysis dataset. When multiplied by 126 
an anomaly of the geophysical variable, ∆𝑥, the product measures the radiation difference due to 127 
this anomaly: 128 

 129 
∆𝑅# =

!"
!#
∆𝑥   (1) 130 

 131 
Consider ∆𝑥 to be the bias of the geophysical variable 𝑥 with respect to a reference value, 132 

which we take from ERA5 reanalysis of the same period in this study; then the above equation 133 
measures radiative bias caused by 𝑥, which is a main objective here. The multi-model mean 134 
biases in the geophysical variables are shown in Supplementary Information (Fig. S1).  135 

 136 
Radiative kernels have been widely used for radiative analyses, e.g., for quantifying 137 

climate feedbacks (e.g., Soden & Held 2006, Shell et al. 2008). A known limitation of Equation 138 
(1) is that it cannot be readily applied to cloud property variables whose effects on the radiation 139 
fields are strongly nonlinear. Hence, adopting the adjusted cloud radiative effect method used in 140 
feedback analysis (Shell et al. 2008), we measure the cloud-induced radiative bias essentially as 141 
a residual effect: 142 

 143 
∆𝑅$ = (∆𝑅 − ∆𝑅%) − ∑ (∆𝑅## − ∆𝑅#%)  (2) 144 
 145 
Here, ∆𝑅 and ∆𝑅% are the all-sky and clear-sky total radiative biases in any of the TOA 146 

radiation fluxes: longwave (LW), shortwave (SW) or Net (LW+SW).  ∆𝑅# and ∆𝑅#% are the all-147 
sky and clear-sky component radiative biases caused by a non-cloud geophysical variable, as 148 
measured by Equation (1). Note the first term on the right-hand side of Equation (2) is the model 149 
bias in cloud radiative effect (CRE), 150 

 151 
 ∆𝐶𝑅𝐸=∆(𝑅 − 𝑅%)   (3) 152 
 153 

which is often used to measure cloud-induced radiation bias but as discussed in the Results 154 
section is subject to errors. 155 

 156 
As we use different datasets as the references of radiation fluxes (CERES) and geophysical 157 

variables (ERA5), it is worth examining their consistency. The Supplementary Fig. S2 shows the 158 
radiation biases of CMIP6 models against CERES and ERA5 are similar. Together with the 159 
radiation closure tests presented below, which verifies that the total bias ∆𝑅 can be explained by 160 
the sum of the component biases ∑∆𝑅#, this verifies the validity of using the geographical 161 
variables from ERA5 to diagnose the radiation biases against CERES. 162 
 163 
 164 
3. Results 165 
 166 



3.1 Global mean total radiation bias 167 
 168 

According to the CERES data, the global annual mean all-sky longwave and shortwave 169 
radiation fluxes for the period of 2001-2014 are 240.31 and 241.17 W m-2, respectively. As 170 
summarized in Table 1 and illustrated by Fig. 1, the CMIP6 models generally well reproduce 171 
these radiation fluxes, with multi-model mean biases in the global mean values being 2.57 and -172 
1.97 W m-2 (in the order of 1%) and the root-mean-squares (RMS, which measure the magnitude 173 
of the biases regardless of their signs) being 3.89 and 4.20 W m-2; see Supplementary Table S1 174 
and S2 for the biases in the individual models.  175 
 176 

  All-sky Clear-sky 
  Longwave Shortwave Net Longwave Shortwave Net 

CERES observation -240.31 241.17 0.85 -266.29 286.61 20.32 
 Overall radiation biases (model minus observation) 

CMIP6 
model bias 

mean 2.57 -1.97 0.59 3.99 0.98 4.97 
RMS 3.89 4.20 2.32 4.68 2.54 6.35 

 Kernel-diagnosed component radiation biases 

total bias mean 1.58 -2.50 -0.92 3.00 0.45 3.46 
RMS 3.48 3.96 2.97 3.84 2.25 5.22 

Surface 
(land) 

temperature 

mean -0.17 
--- 

-0.17 -0.26 
--- 

-0.26 

RMS 0.31 0.31 0.45 0.45 

Atmospheric 
temperature 

mean 1.78 --- 1.78 1.62 --- 1.62 
RMS 2.66 2.66 2.44 2.44 

Water vapor mean 1.31 0.19 1.50 1.64 0.09 1.73 
RMS 2.00 0.27 2.26 2.52 0.14 2.66 

Surface 
albedo 

mean --- 0.42 0.42 --- 0.37 0.37 
RMS 1.74 1.74 2.20 2.20 

Cloud mean -1.34 -3.11 -4.45 --- --- --- RMS 2.88 5.04 5.24 

Residual mean 0.98 0.53 1.51 0.98 0.53 1.51 
RMS 2.20 1.86 2.87 2.20 1.86 2.87 

 177 
Table 1. The radiation biases in the CMIP6 models. Units: W m-2. Summarized in this table are 178 
the multi-model mean and root-mean-square (RMS) of the biases in the global mean radiation 179 
fluxes of all the models examined (their respective biases are documented in Supplementary 180 
Tables S1 and S2). 181 
 182 

Although the CMIP6 GCMs generally achieve excellent accuracy in their simulations of 183 
the all-sky global mean radiation budget, it is interesting to note that many of these models have 184 
larger clear-sky global mean biases than the all-sky ones. For the global mean TOA net radiation 185 
(the sum of longwave and shortwave fluxes) as an example, the RMS biases are 2.32 W m-2 in 186 
the all-sky and 6.35 W m-2 in the clear-sky. These results indicate that compensating errors 187 
caused by cloud and non-cloud variables noted in earlier studies (e.g., Huang et al. 2007) still 188 
exist in the current models. If a GCM has biases in non-cloud variables (as indicated by clear-sky 189 
radiation biases), when its cloud fields are tuned to match the observed all-sky radiation values, 190 



it will have to produce cloud biases to offset non-cloud biases, to achieve a seeming agreement 191 
with the observations. This means that besides the cloud biases that are widely recognized and 192 
often emphasized, it is equally important to address the radiation biases due to non-cloud 193 
variables, to simulate a truly correct radiation budget in the GCMs.  194 

 195 
Moreover, as illustrated by the standard deviation of the model biases in Table S3, the 196 

relative biases between the GCMs are of similar magnitudes to the multi-model mean and RMS 197 
biases. This aspect of the model bias is independent of the choice of truth reference (for which 198 
the CERES dataset is used in this study).     199 

 200 
 201 

3.2 Component radiation bias 202 
 203 

The diagnosis above signifies the importance of quantifying the radiation biases induced 204 
by different geophysical variables individually. Here, we use the kernel method described in 205 
Section 2.2 to measure the component radiation biases caused by each of these variables: surface 206 
temperature, atmospheric temperature, water vapor, surface albedo and cloud. It is worth noting 207 
that although the GCMs can generally well reproduce the global mean radiation budget 208 
compared to CERES, there exist regional biases of greater magnitudes, which as revealed below 209 
can be an order of magnitude larger than the global mean biases. It is thus important to examine 210 
the component radiation bias at both global and regional scales.  211 

 212 



 213 
Figure 2. The multi-model mean total and component all-sky radiation biases in the 214 

CMIP6 models; units: W m-2. Shown in the three columns are the Net, longwave and shortwave 215 
biases, respectively. Shown in the different rows are ∆𝑅: the total bias, ∑∆𝑅#: the sum of all the 216 
component biases diagnosed from the kernel method, ∆𝑅$: the radiation bias due to cloud, 217 
∆𝑅&'&($: the radiation bias due to non-cloud variables,  and ∆𝑅)*+: the unexplained bias 218 
residual. The dotted areas indicate where the multi-model mean bias is larger than the standard 219 
deviation. 220 

 221 



 222 
Figure 3. Like Figure 2, but for component radiation biases diagnosed by the kernel 223 

method. Shown in the different rows in order are the biases by surface temperature (∆𝑅,+), air 224 
temperature (∆𝑅,-), water vapor (∆𝑅.), and surface albedo (∆𝑅-/0).  225 
 226 

Fig. 2 and 3 show the global distributions of the total and component radiation biases 227 
averaged from all the models examined here; it complements the global mean bias values 228 
summarized in Table 1. In addition, interested readers can find the spatial correlation between 229 
the component and total radiation biases in the Supplementary Table S4 and S5, the distributions 230 
of the multi-model mean clear-sky biases in Figures S3 and S4, and the component radiation 231 
biases in each model in the Supplementary datafile.  232 

 233 
The results in Fig. 2 affirm that kernel-diagnosed radiation biases (∑∆𝑅#) can explain the 234 

majority of the total radiation biases (∆𝑅) in GCMs; their spatial correlations are 0.84, 0.69 and 235 
0.70 for the longwave, shortwave and net radiation, respectively; the performance as measured 236 
by spatial correlation for each model is documented in Supplementary Table S4 and S5. The 237 
generally small residuals (∆𝑅)*+ = ∆𝑅 − ∑∆𝑅#) indicate that the kernel method achieves a good 238 
radiation closure in explaining the total ∆𝑅, especially for the longwave radiation budget.  239 

 240 
Cloud-induced radiation biases are well recognized to be a primary contributor to the total 241 

radiation biases. Table 1 and Fig. 2 (g-i) show that it has the largest global mean biases, as well 242 
as prominent regional biases, which explain most of the spatial variance of the total biases (see 243 
the spatial correlation coefficients in Supplementary Table S4, which is typically about 0.8). 244 
Using the RMS of bias values in every grid point, we find the all-sky spatial biases in the CMIP6 245 
models are typically in the order of several W m-2, although some models have larger values 246 
exceeding 10 W m-2 (see Supplementary Table S6), which are mainly contributed by the cloud 247 



biases. The cloud biases are noticeably larger in the shortwave than in the longwave, as shown 248 
by the multi-model mean in Fig. 2, which shows local maxima exceeding 15 W m -2 (the 249 
maximum biases in the individual models may exceed 50 W m -2). We find strong, common 250 
biases in the stratocumulus regions in the eastern side of the ocean basins, e.g., adjacent to the 251 
coasts of California and Peru, where considerably less solar radiation is reflected by the 252 
modelled clouds compared to the CERES observation. In the rest of the tropical ocean, modelled 253 
clouds tend to be too reflective. These shortwave biases are offset to some extent by the 254 
longwave cloud biases, due to the compensating nature of cloud radiative effects.  255 

 256 
We also find significant biases caused by the non-cloud variables. Some of them have 257 

global mean magnitudes comparable to the cloud biases (Table 1). In particular, we find that 258 
many models have a cold bias in the air temperature and moist bias in the water vapor 259 
concentration in the troposphere (see Fig S1), both of which lead to an underestimation of the 260 
outgoing longwave radiation - a positive bias in terms of TOA radiation budget (downward 261 
positive). As marked by the shaded areas in Fig. 3 (d) and (g), the water vapor bias and air 262 
temperature bias lead to radiation biases in many models in Tropical Pacific and Southern 263 
Oceans, respectively. Interestingly, these positive non-cloud biases tend to be compensated by 264 
cloud biases of an opposite sign, which in some models results in a seemingly good all-sky 265 
radiation budget (see Tables 1 and S1) as noted above.  266 

 267 
It is worth noting that cloud bias is often measured by the cloud radiative effect (∆𝐶𝑅𝐸, as 268 

given in Equation (3)). Because this quantity depends on the clear-sky radiation field, this 269 
potentially aliases model errors in clear-sky radiation fields caused by the non-cloud variables as 270 
cloud bias. In comparison, the cloud bias ∆𝑅$  measured by Equation (2) explicitly deducts the 271 
contributions from non-cloud variables to the total radiation bias (∆𝑅) and thus is less subject to 272 
such aliasing errors. Comparing ∆𝑅$  and ∆𝐶𝑅𝐸 in the CMIP6 GCMs, we find that except in 273 
several models (see Supplementary Table S1), the two measures agree to within 10% in terms of 274 
global mean cloud biases. However, as illustrated by Supplementary Fig. S5, in some models and 275 
especially in regions where non-cloud biases prevail such as in the Arctic, the use of ∆𝐶𝑅𝐸 can 276 
strongly bias the measure of cloud radiative bias. 277 

 278 
 279 

4. Discussions and Conclusions  280 
 281 
In this paper, we propose and demonstrate the use of radiative sensitivity kernels for 282 

diagnosing the radiation biases in the GCMs. Using this method, we assess the TOA radiation 283 
fluxes simulated in the AMIP runs of the CMIP6 climate models against the CERES satellite 284 
observations and quantify how the total model biases in the net, longwave and shortwave 285 
radiation fields result from the biases in their geophysical variables, including surface 286 
temperature and albedo, atmospheric temperature and water vapor concentration, and cloud.  287 

 288 
In terms of global mean radiation fluxes, the CMIP6 models can well reproduce the 289 

CERES-observed all-sky values. However, we find many of the models have larger biases in the 290 
clear-sky global mean radiation budget, with the biases in the net radiation fluxes typically 291 
amounting to several W m-2 and being several times of their all-sky values (Tables 1 and S1). 292 
This signifies the existence of compensating errors in their simulated radiation fields. 293 



Specifically, cloud biases, possibly due to model tuning, compensate the radiation biases caused 294 
by non-cloud variables.  295 

 296 
Cloud-induced radiation bias makes a primary contribution to the total radiation bias. 297 

This is especially the case for the shortwave radiation field, where significant biases are found in 298 
the tropical regions, signifying errors in cloudiness and thus reflected solar radiation.  299 

 300 
Concerning the non-cloud biases, we find that many models have a cold bias in the air 301 

temperature and a moist bias in the tropospheric humidity compared to the ERA5 reanalysis. 302 
These biases each lead to a global mean radiation bias in the magnitude of several W m-2 (Tables 303 
1 and S1), and persistent regional biases especially in the Tropical and middle-latitude oceans 304 
(Fig. 3). This means that the GCMs cannot achieve a good (better than several W m-2) radiation 305 
closure compared to the observation benchmarks without addressing these non-cloud biases.   306 

 307 
The kernel method used here aims to obtain a first-order quantification of the component 308 

radiation biases. Given its linear approximation nature (Equation (1)), it is inevitable to leave 309 
residuals in the model error budget. Moreover, the uncertainty of greenhouse gas and aerosols 310 
prescribed in the models may also contribution to the residuals. Nevertheless, the explained bias 311 
(∑∆𝑅#) is generally strongly spatially correlated with the total flux biases (∆𝑅) (see Table S4 312 
and S5), indicating the method can explain the majority of model biases. Another notable 313 
strength of it is that it avoids the aliasing issue in quantifying the cloud radiative bias. The 314 
significant component biases, namely the cloud, air temperature and tropospheric humidity 315 
biases, disclosed by this method warrant further investigations.  316 

 317 
 318 
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