Reference
- Blaser, H. U. (2003). Enantioselective catalysis in fine chemicals
production. Chemical Communications , 3 , 293-296.
- Dudas, J., & Hanika, J. (2009). Design, scale up and safe piloting of
thymol hydrogenation and menthol racemization. Chemical
Engineering Research & Des ign, 87 , 83-90.
- Thiel, O. R., Bernard, C., Tormos, W., Brewin, A., Hirotani, S.,
Murakami, K., Saito, K., Larsen, R. D., Martinelli, M. J., & Reider,
P. J. (2008). Practical synthesis of the calcimimetic agent,
cinacalcet. Tetrahedron Letters , 49 , 13-15.
- Truppo, M. D., Turner, N. J., & Rozzell, J. D. (2009). Efficient
kinetic resolution of racemic amines using a transaminase in
combination with an amino acid oxidase. Chemical
Commun ications, 16 , 2127-2129.
- Bilal, M., & Iqbal, H. M. N. (2019). Tailoring multipurpose
biocatalysts via protein engineering approaches: A review.Catalysis. Letters , 149 , 2204-2217.
- Kelly, S. A., Pohle, S., Wharry, S., Mix, S., Allen, C. C. R., Moody,
T. S., & Gilmore, B. F. (2018). Application of ω-transaminases in the
pharmaceutical industry. Chemical Reviews , 118 , 349-367.
- Gupta, M. N., & Roy, I. (2004). Enzymes in organic media: Forms,
functions and applications. European Journal of Biochemistry ,271 , 2575-2583.
- Carrea, G., & Ho, W. S. (2000). Properties and synthetic applications
of enzymes in organic solvents. Angewandte Chemie International
Edition , 39 , 2226-2254.
- Kumar, A., Dhar, K., Kanwar, S. S., & Arora, P. K. (2016). Lipase
catalysis in organic solvents: Advantages and applications.Biological Procedures Online , 18 , 2.
- Ogino, H., & Ishikawa, H. (2001). Enzymes which are stable in the
presence of organic solvents. Journal of Bioscience and
Bioengineering , 91 , 109-116.
- Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S.,
Moore, J. C., & Robins, K. (2012). Engineering the third wave of
biocatalysis. Nature , 485 , 185-194.
- Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z.,
Chaloupkova, R., & Damborsky, J. (2013). Strategies for stabilization
of enzymes in organic solvents. ACS Catalysis , 3 ,
2823-2836.
- Tian, K., Tai, K., Chua, B. J. W., & Li, Z. (2017). Directed
evolution of Thermomyces lanuginosus lipase to enhance methanol
tolerance for efficient production of biodiesel from waste grease.Bioresource Technology , 245 , 1491-1497.
- Reetz, M. T., & Carballeira, J. D. (2007). Iterative saturation
mutagenesis (ISM) for rapid directed evolution of functional enzymes.Nature Protocols , 2 , 891-903.
- Zhu, F., He, B., Gu, F., Deng, H., Chen, C., Wang, W., & Chen, N.
(2020). Improvement in organic solvent resistance and activity of
metalloprotease by directed evolution. Journal of
Biotechnology , 309 , 68-74.
- Cheng, F., Li, M. Y., Wei, D. J., Zhang, X. J., Jia, D. X., Liu, Z.
Q., & Zheng, Y. G. (2022). Enabling biocatalysis in
high-concentration organic cosolvent by enzyme gate engineering.Biotechnology and Bioengineering , 119 , 845-856.
- Cui, H., Vedder, M., Zhang, L., Jaeger, K. E., Schwaneberg, U., &
Davari, M. D. (2022). Polar substitutions on the surface of a lipase
substantially improve tolerance in organic solvents.ChemSusChem , 15 , e202102551.
- Meng, Q., Capra, N., Palacio, C. M., Lanfranchi, E., Otzen, M., Schie,
L. Z., Rozeboom, H. J., Thunnissen, A. W. H., Wijma, H. J., &
Janssen, D. B. (2020). Robust ω-transaminases by computational
stabilization of the subunit interface. ACS Catalysis ,10 , 2915-2928.
- Cheng, F., Zhu, L., & Schwaneberg, U. (2015). Directed evolution 2.0:
Improving and deciphering enzyme properties. Chemical
Communications , 51 , 9760-9772.
- Gargiulo, S., & Soumillion, P. (2021). Directed evolution for enzyme
development in biocatalysis. Current Opinion Chemical Biology ,61 , 107-113.
- Fesko, K., Steiner, K., Breinbauer, R., Schwab, H., Schürmann, M., &
Strohmeier, G. A. (2013). Investigation of one-enzyme systems in the
ω-transaminase-catalyzed synthesis of chiral amines. Journal of
Molecular Catalysis B-Enzymatic , 96 , 103-110.
- Lyskowski, A., Gruber, C., Steinkellner, G., Schurmann, M., Schwab,
H., Gruber, K., & Steiner, K. (2014). Crystal structure of an
(R )-selective ω-transaminase from Aspergillus terreus.PLoS One , 9 , e87350.
- Baud, D., Ladkau, N., Moody, T. S., Ward, J. M., & Hailes, H. C.
(2015). A rapid, sensitive colorimetric assay for the high-throughput
screening of transaminases in liquid or solid-phase. Chemical
Communications, 51 , 17225-17228.
- Cao, J. R., Fan, F. F., Lyu, C. J., Wang, H. P., Li, Y., Hu, S., Zhao,
W. R., Chen, H. B., Huang, J., & Mei, L. H. (2021). Improving the
thermostability and activity of transaminase from Aspergillus
terreu s by charge-charge interaction. Frontiers in Chemistry ,9 , 664156.
- Garrido-del Solo, C., García-Cánovas, F., Havsteen, B. H., &
Varón-Castellanos, R. (1993). Kinetic analysis of a Michaelis-Menten
mechanism in which the enzyme is unstable. Biochemical Journal ,294 , 459-464.
- Choi, B., Rempala, G. A., & Kim, J. K. (2017). Beyond the
Michaelis-Menten equation: Accurate and efficient estimation of enzyme
kinetic parameters. Scientific Reports , 7 , 17018.
- Tsuzuki, W., Ue, A., & Kitamura, Y. (2001). Effect of
dimethylsulfoxide on hydrolysis of lipase. Bioscience,
Biotechnology, and Biochemistry , 65 , 2078-2082.
- Tsuzuki, W., Ue, A., & Nagao, A. (2003). Polar organic solvent added
to an aqueous solution changes hydrolytic property of lipase.Bioscience, Biotechnology, and Biochemistry , 67 ,
1660-1666.
- Larsen, T. A., Olson, A. J., & Goodsell, D. S. (1998). Morphology of
protein-protein interfaces. Structures , 6, 421-427.
- Bellissent-Funel, M. C., Hassanali, A., Havenith, M., Henchman, R.,
Pohl, P., Sterpone, F., van der Spoel, D., Xu, Y., & Garcia, A. E.
(2016). Water determines the structure and dynamics of proteins.Chemical Reviews , 116 , 7673-7697.
- Li, S. F., Xie, J. Y., Qiu, S., Xu, S. Y., Cheng, F., Wang, Y. J., &
Zheng, Y. G. (2021). Semirational engineering of an aldo-keto
reductase Km AKR for overcoming trade-offs between catalytic
activity and thermostability. Biotechnology and Bioengineering ,118 , 4441-4452.
- Tokuriki, N., Stricher, F., Serrano, L., & Tawfik, D. S. (2008). How
protein stability and new functions trade off. PLoS
Computational Biology , 4 , e1000002.
- Stimple, S. D., Smith, M. D., & Tessier, P. M. (2020). Directed
evolution methods for overcoming trade-offs between protein activity
and stability. AIChE Journal , 66 (3), e16814.
- Cui, H., Stadtmüller, T. H. J., Jiang, Q., Jaeger, K. E., Schwaneberg,
U., & Davari, M. D. (2020). How to engineer organic solvent resistant
enzymes: Insights from combined molecular dynamics and directed
evolution study. ChemCatChem , 12 , 4073-4083.
Liu, J., Wei, B., Che, C., Gong, Z., Jiang, Y., SI, M., Zhang, J., &
Yang, G. (2019). Enhanced stability of manganese superoxide dismutase
by amino acid replacement designed via molecular dynamics simulation.International Journal of Biological Macromolecules , 128 ,
297-303.
- Pace, C. N., Fu, H., Fryar, K. L., Landua, J., Trevino, S. R.,
Shirley, B. A., Hendricks, M. M., Iimura, S., Gajiwala, K., &
Scholtz, J. M. (2011). Contribution of hydrophobic interactions to
protein stability. Journal of Molecular Biology , 408 ,
514-528.
- Siddiqui, K. S. (2017). Defying the activity-stability trade-off in
enzymes: Taking advantage of entropy to enhance activity and
thermostability. Critical Reviews in Biotechnology , 37 ,
309-322.
- Cui, H., Zhang, L., Eltoukhy, L., Jiang, Q., Korkunç, S. K., Jaeger,
K. E., Schwaneberg, U., & Davari, M. D. (2020). Enzyme hydration
determines resistance in organic cosolvents. ACS Catalysis ,10 , 14847-14856.
- Cui, H., Jaeger, K. E., Davari, M. D., & Schwaneberg, U. (2021).
CompassR yields highly organic-solvent-tolerant enzymes through
recombination of compatible substitutions. Molecular Human
Reproduction , 27 , 2789-2797.
- Richard, J. P., Amyes, T. L., Malabanan, M. M., Zhai, X., Kim, K. J.,
Reinhardt, C. J., Wierenga, R. K., Drake, E. J., & Gulick, A. M.
(2016). Structure-function studies of hydrophobic residues that clamp
a basic glutamate side chain during catalysis by triosephosphate
isomerase. Biochemistry , 55 , 3036-3047.
- Schuurmann, J., Quehl, P., Festel, G., & Jose, J. (2014). Bacterial
whole-cell biocatalysts by surface display of enzymes: Toward
industrial application. Applied Microbiology and Biotechnology ,98 , 8031-8046.
- Carballeira, J. D., Quezada, M. A., Hoyos, P., Simeo, Y., Hernaiz, M.
J., Alcantara, A. R., & Sinisterra, J. V. (2009). Microbial cells as
catalysts for stereoselective redox reactions. Biotechnology
Advances , 27 , 686-714.
- Lin, B., & Tao, Y. (2017). Whole-cell biocatalysts by design.Microbial Cell Factories, 16 , 106.
Table 1. The half-life (t 1/2) and specific
activity of WT and M3 under different concentrations of DMSO