Reference
  1. Blaser, H. U. (2003). Enantioselective catalysis in fine chemicals production. Chemical Communications , 3 , 293-296.
  2. Dudas, J., & Hanika, J. (2009). Design, scale up and safe piloting of thymol hydrogenation and menthol racemization. Chemical Engineering Research & Des ign, 87 , 83-90.
  3. Thiel, O. R., Bernard, C., Tormos, W., Brewin, A., Hirotani, S., Murakami, K., Saito, K., Larsen, R. D., Martinelli, M. J., & Reider, P. J. (2008). Practical synthesis of the calcimimetic agent, cinacalcet. Tetrahedron Letters , 49 , 13-15.
  4. Truppo, M. D., Turner, N. J., & Rozzell, J. D. (2009). Efficient kinetic resolution of racemic amines using a transaminase in combination with an amino acid oxidase. Chemical Commun ications, 16 , 2127-2129.
  5. Bilal, M., & Iqbal, H. M. N. (2019). Tailoring multipurpose biocatalysts via protein engineering approaches: A review.Catalysis. Letters , 149 , 2204-2217.
  6. Kelly, S. A., Pohle, S., Wharry, S., Mix, S., Allen, C. C. R., Moody, T. S., & Gilmore, B. F. (2018). Application of ω-transaminases in the pharmaceutical industry. Chemical Reviews , 118 , 349-367.
  7. Gupta, M. N., & Roy, I. (2004). Enzymes in organic media: Forms, functions and applications. European Journal of Biochemistry ,271 , 2575-2583.
  8. Carrea, G., & Ho, W. S. (2000). Properties and synthetic applications of enzymes in organic solvents. Angewandte Chemie International Edition , 39 , 2226-2254.
  9. Kumar, A., Dhar, K., Kanwar, S. S., & Arora, P. K. (2016). Lipase catalysis in organic solvents: Advantages and applications.Biological Procedures Online , 18 , 2.
  10. Ogino, H., & Ishikawa, H. (2001). Enzymes which are stable in the presence of organic solvents. Journal of Bioscience and Bioengineering , 91 , 109-116.
  11. Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature , 485 , 185-194.
  12. Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., & Damborsky, J. (2013). Strategies for stabilization of enzymes in organic solvents. ACS Catalysis , 3 , 2823-2836.
  13. Tian, K., Tai, K., Chua, B. J. W., & Li, Z. (2017). Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease.Bioresource Technology , 245 , 1491-1497.
  14. Reetz, M. T., & Carballeira, J. D. (2007). Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.Nature Protocols , 2 , 891-903.
  15. Zhu, F., He, B., Gu, F., Deng, H., Chen, C., Wang, W., & Chen, N. (2020). Improvement in organic solvent resistance and activity of metalloprotease by directed evolution. Journal of Biotechnology , 309 , 68-74.
  16. Cheng, F., Li, M. Y., Wei, D. J., Zhang, X. J., Jia, D. X., Liu, Z. Q., & Zheng, Y. G. (2022). Enabling biocatalysis in high-concentration organic cosolvent by enzyme gate engineering.Biotechnology and Bioengineering , 119 , 845-856.
  17. Cui, H., Vedder, M., Zhang, L., Jaeger, K. E., Schwaneberg, U., & Davari, M. D. (2022). Polar substitutions on the surface of a lipase substantially improve tolerance in organic solvents.ChemSusChem , 15 , e202102551.
  18. Meng, Q., Capra, N., Palacio, C. M., Lanfranchi, E., Otzen, M., Schie, L. Z., Rozeboom, H. J., Thunnissen, A. W. H., Wijma, H. J., & Janssen, D. B. (2020). Robust ω-transaminases by computational stabilization of the subunit interface. ACS Catalysis ,10 , 2915-2928.
  19. Cheng, F., Zhu, L., & Schwaneberg, U. (2015). Directed evolution 2.0: Improving and deciphering enzyme properties. Chemical Communications , 51 , 9760-9772.
  20. Gargiulo, S., & Soumillion, P. (2021). Directed evolution for enzyme development in biocatalysis. Current Opinion Chemical Biology ,61 , 107-113.
  21. Fesko, K., Steiner, K., Breinbauer, R., Schwab, H., Schürmann, M., & Strohmeier, G. A. (2013). Investigation of one-enzyme systems in the ω-transaminase-catalyzed synthesis of chiral amines. Journal of Molecular Catalysis B-Enzymatic , 96 , 103-110.
  22. Lyskowski, A., Gruber, C., Steinkellner, G., Schurmann, M., Schwab, H., Gruber, K., & Steiner, K. (2014). Crystal structure of an (R )-selective ω-transaminase from Aspergillus terreus.PLoS One , 9 , e87350.
  23. Baud, D., Ladkau, N., Moody, T. S., Ward, J. M., & Hailes, H. C. (2015). A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase. Chemical Communications, 51 , 17225-17228.
  24. Cao, J. R., Fan, F. F., Lyu, C. J., Wang, H. P., Li, Y., Hu, S., Zhao, W. R., Chen, H. B., Huang, J., & Mei, L. H. (2021). Improving the thermostability and activity of transaminase from Aspergillus terreu s by charge-charge interaction. Frontiers in Chemistry ,9 , 664156.
  25. Garrido-del Solo, C., García-Cánovas, F., Havsteen, B. H., & Varón-Castellanos, R. (1993). Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable. Biochemical Journal ,294 , 459-464.
  26. Choi, B., Rempala, G. A., & Kim, J. K. (2017). Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters. Scientific Reports , 7 , 17018.
  27. Tsuzuki, W., Ue, A., & Kitamura, Y. (2001). Effect of dimethylsulfoxide on hydrolysis of lipase. Bioscience, Biotechnology, and Biochemistry , 65 , 2078-2082.
  28. Tsuzuki, W., Ue, A., & Nagao, A. (2003). Polar organic solvent added to an aqueous solution changes hydrolytic property of lipase.Bioscience, Biotechnology, and Biochemistry , 67 , 1660-1666.
  29. Larsen, T. A., Olson, A. J., & Goodsell, D. S. (1998). Morphology of protein-protein interfaces. Structures , 6, 421-427.
  30. Bellissent-Funel, M. C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P., Sterpone, F., van der Spoel, D., Xu, Y., & Garcia, A. E. (2016). Water determines the structure and dynamics of proteins.Chemical Reviews , 116 , 7673-7697.
  31. Li, S. F., Xie, J. Y., Qiu, S., Xu, S. Y., Cheng, F., Wang, Y. J., & Zheng, Y. G. (2021). Semirational engineering of an aldo-keto reductase Km AKR for overcoming trade-offs between catalytic activity and thermostability. Biotechnology and Bioengineering ,118 , 4441-4452.
  32. Tokuriki, N., Stricher, F., Serrano, L., & Tawfik, D. S. (2008). How protein stability and new functions trade off. PLoS Computational Biology , 4 , e1000002.
  33. Stimple, S. D., Smith, M. D., & Tessier, P. M. (2020). Directed evolution methods for overcoming trade-offs between protein activity and stability. AIChE Journal , 66 (3), e16814.
  34. Cui, H., Stadtmüller, T. H. J., Jiang, Q., Jaeger, K. E., Schwaneberg, U., & Davari, M. D. (2020). How to engineer organic solvent resistant enzymes: Insights from combined molecular dynamics and directed evolution study. ChemCatChem , 12 , 4073-4083.
Liu, J., Wei, B., Che, C., Gong, Z., Jiang, Y., SI, M., Zhang, J., & Yang, G. (2019). Enhanced stability of manganese superoxide dismutase by amino acid replacement designed via molecular dynamics simulation.International Journal of Biological Macromolecules , 128 , 297-303.
  1. Pace, C. N., Fu, H., Fryar, K. L., Landua, J., Trevino, S. R., Shirley, B. A., Hendricks, M. M., Iimura, S., Gajiwala, K., & Scholtz, J. M. (2011). Contribution of hydrophobic interactions to protein stability. Journal of Molecular Biology , 408 , 514-528.
  2. Siddiqui, K. S. (2017). Defying the activity-stability trade-off in enzymes: Taking advantage of entropy to enhance activity and thermostability. Critical Reviews in Biotechnology , 37 , 309-322.
  3. Cui, H., Zhang, L., Eltoukhy, L., Jiang, Q., Korkunç, S. K., Jaeger, K. E., Schwaneberg, U., & Davari, M. D. (2020). Enzyme hydration determines resistance in organic cosolvents. ACS Catalysis ,10 , 14847-14856.
  4. Cui, H., Jaeger, K. E., Davari, M. D., & Schwaneberg, U. (2021). CompassR yields highly organic-solvent-tolerant enzymes through recombination of compatible substitutions. Molecular Human Reproduction , 27 , 2789-2797.
  5. Richard, J. P., Amyes, T. L., Malabanan, M. M., Zhai, X., Kim, K. J., Reinhardt, C. J., Wierenga, R. K., Drake, E. J., & Gulick, A. M. (2016). Structure-function studies of hydrophobic residues that clamp a basic glutamate side chain during catalysis by triosephosphate isomerase. Biochemistry , 55 , 3036-3047.
  6. Schuurmann, J., Quehl, P., Festel, G., & Jose, J. (2014). Bacterial whole-cell biocatalysts by surface display of enzymes: Toward industrial application. Applied Microbiology and Biotechnology ,98 , 8031-8046.
  7. Carballeira, J. D., Quezada, M. A., Hoyos, P., Simeo, Y., Hernaiz, M. J., Alcantara, A. R., & Sinisterra, J. V. (2009). Microbial cells as catalysts for stereoselective redox reactions. Biotechnology Advances , 27 , 686-714.
  8. Lin, B., & Tao, Y. (2017). Whole-cell biocatalysts by design.Microbial Cell Factories, 16 , 106.
Table 1. The half-life (t 1/2) and specific activity of WT and M3 under different concentrations of DMSO