References
Abhilash, Sinha, S., Sinha, M.K. and Pandey, B.D., 2014. Extraction of
lanthanum and cerium from Indian red mud. International Journal of
Mineral Processing, 127: 70-73.
Ahmad, Z., 2003. The properties and application of scandium-reinforced
aluminum. Jom, 55(2): 35-39.
Alkan, G. et al., 2018. Novel Approach for Enhanced Scandium and
Titanium Leaching Efficiency from Bauxite Residue with Suppressed Silica
Gel Formation. Scientific Reports, 8(1): 5676.
Balomenos, E. et al., 2017a. The EURARE Project: Development of a
Sustainable Exploitation Scheme for Europe’s Rare Earth Ore Deposits.
Johnson Matthey Technology Review, 61(2): 142-153.
Balomenos, E., Davris, P., Pontikes, Y. and Panias, D., 2017b.
Mud2Metal: Lessons Learned on the Path for Complete Utilization of
Bauxite Residue Through Industrial Symbiosis. Journal of Sustainable
Metallurgy, 3(3): 551-560.
Balomenos, E., Giannopoulou, I., Gerogiorgis, D., Panias, D. and
Paspaliaris, I., 2014. Resource-efficient and economically viable
pyrometallurgical processing of industrial ferrous by-products. Waste
and Biomass Valorization, 5(3): 333-342.
Balomenos, E., Giannopoulou, I., Panias, D. and Paspaliaris, I., 2011. A
novel red mud treatment process: process design and preliminary results.
Travaux ICSOBA, 36(40): 255-266.
Balomenos, E., Kastritis, D., Panias, D., Paspaliaris, I. and Boufounos,
D., 2016. The Enexal Bauxite Residue Treatment Process: Industrial Scale
Pilot Plant Results. In: J. Grandfield (Ed.), Light Metals 2014.
Springer International Publishing, Cham, pp. 143-147.
Balomenos E. et al., 2021a, Scandium Extraction from Bauxite Residue
Using Sulfuric Acid and a Composite Extractant-Enhanced Ion-Exchange
Polymer Resin, The Minerals, Metals & Minerals Society 2021 G. Azimi et
al. (eds.), Rare Metal Technology 2021, The Minerals, Metals &
Materials Series, https://doi.org/10.1007/978-3-030-65489-4_22.
Balomenos E. et al., 2021b,
Developing a Parallel-to-Aluminium Value Chain for Scandium and Al-Sc
Alloy Production. Pilot Scale Results under the SCALE Project. TRAVAUX
50, Proceedings of the 39th International ICSOBA
Conference, 22 – 24 November 2021.
Bárdossy, G. and Aleva, G.J.J., 1990. Lateritic bauxites, 27. Elsevier
Science Ltd.
Bárdossy, G., 1982. Karst Bauxites (Bauxite deposits on carbonate rocks)
Budapest. Hungary.
Bogomazov, A.V. and Senyuta, A.S., 2017. Method for the acid treatment
of red mud. Google Patents.
Borra, C.R., Blanpain, B., Pontikes, Y., Binnemans, K. and Van Gerven,
T., 2016a. Recovery of Rare Earths and Other Valuable Metals From
Bauxite Residue (Red Mud): A Review. Journal of Sustainable Metallurgy,
2(4): 365-386.
Borra, C.R., Blanpain, B., Pontikes, Y., Binnemans, K. and Van Gerven,
T., 2016b. Smelting of Bauxite Residue (Red Mud) in View of Iron and
Selective Rare Earths Recovery. Journal of Sustainable Metallurgy, 2(1):
28-37.
Borra, C.R., Blanpain, B., Pontikes, Y., Binnemans, K. and Van Gerven,
T., 2017. Recovery of Rare Earths and Major Metals from Bauxite Residue
(Red Mud) by Alkali Roasting, Smelting, and Leaching. Journal of
Sustainable Metallurgy, 3(2): 393-404.
Borra, C.R., Pontikes, Y., Binnemans, K. and Van Gerven, T., 2015.
Leaching of rare earths from bauxite residue (red mud). Minerals
Engineering, 76: 20-27.
Boudreault, R., Fournier, J., Primeau, D. and Labrecque-Gilbert, M.-M.,
2017. Processes for treating red mud. Google Patents.
Bruckard, W.J. et al., 2010. Smelting of bauxite residue to form a
soluble sodium aluminium silicate phase to recover alumina and soda.
Mineral Processing and Extractive Metallurgy, 119(1): 18-26.
Cardenia C., Balomenos E., Panias D., “Iron recovery from bauxite
residue through reductive roasting and wet magnetic separation”,
Journal of Sustainable Metallurgy, 2018).
https://doi.org/10.1007/s40831-018-0181-5.
Chassé, M., Griffin, W.L., O’Reilly, S.Y. and Calas, G., 2016. Scandium
Speciation in a World-Class Lateritic Deposit. Geochemical Perspectives
Letters, 3(2): 105-114.
Chun, T., Zhu, D., Pan, J. and He, Z., 2014. Recovery of Alumina from
Magnetic Separation Tailings of Red Mud by Na2CO3 Solution Leaching.
Metallurgical and Materials Transactions B, 45(3): 827-832.
Davris, P., Balomenos, E., Panias, D. and Paspaliaris, I., 2016a.
Chapter 12 - Leaching Rare Earth Elements from Bauxite Residue Using
Brønsted Acidic Ionic Liquids A2 - Lima, Ismar Borges De. In: W.L. Filho
(Ed.), Rare Earths Industry. Elsevier, Boston, pp. 183-197.
Davris, P., Balomenos, E., Panias, D. and Paspaliaris, I., 2016b.
Selective leaching of rare earth elements from bauxite residue (red
mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy,
164: 125-135.
Davris, P., Balomenos, E., Panias, D. and Paspaliaris, I., 2018a.
Developing New Process for Selective Extraction of Rare Earth Elements
from Bauxite Residue Based on Functionalized Ionic Liquids. Light Metals
2018. Springer International Publishing, Cham, pp. 149-156.
Davris, P., Balomenos, E., Taxiarchou, M., Panias, D. and Paspaliaris,
I., 2017. Current and Alternative Routes in the Production of Rare Earth
Elements. BHM Berg- und Hüttenmännische Monatshefte, 162(7): 245-251.
Davris, P., Gelestathi N.,
Balomenos, E., Panias, D. and Paspaliaris, I., 2018b. Bauxite residue
slag leaching for Al, Ti and Sc recovery. Proceedings of the 2nd
International Bauxite Residue Valorisation and Best Practices
Conference, Athens 7-10/05/2018, ISBN-number: 9789082825923, pp 361-366.
Davris, P., Marino D. Balomenos,
E., Panias, D. and Paspaliaris, I., 2018c . Hydrometallurgical
Extraction of Scandium from Bauxite Residue based on Sulfuric Acid
Process, Proceedings of the 2nd International Bauxite Residue
Valorisation and Best Practices Conference, Athens 7-10/05/2018,
ISBN-number: 9789082825923, pp 449-454.
Deady, É.A., Mouchos, E., Goodenough, K., Williamson, B.J. and Wall, F.,
2018. A review of the potential for rare-earth element resources from
European red muds: examples from Seydişehir, Turkey and Parnassus-Giona,
Greece. Mineralogical Magazine, 80(01): 43-61.
Deng, B. et al., 2017. Enrichment of
Sc2O3 and TiO2 from
bauxite ore residues. Journal of Hazardous Materials, 331: 71-80.
Derevyankin, V., Porotnikova, T., Kocherova, E., Yumasheva, I. and
Moiseev, V., 1981. Behaviour of scandium and lanthanum in the production
of alumina from bauxite. Izvestiya Vysshikh Uchebnykh Zavedenii,
Tsvetnaya Metallurgiya: 86-89.
Erçağ, E. and Apak, R., 1997. Furnace smelting and extractive metallurgy
of red mud: Recovery of TiO2,
Al2O3 and pig iron. Journal of chemical
technology and biotechnology, 70(3): 241-246.
Evans, K. 2016. The History, Challenges, and New Developments in the
Management and Use of Bauxite Residue. J. Sustain. Metall. 2, 316–331.
Fulford, G.D., Lever, G. and Sato, T., 1991a. Recovery of rare earth
elements from Bayer process red mud. Google Patents.
Fulford, G.D., Lever, G. and Sato, T., 1991b. Recovery of rare earth
elements from sulphurous acid solution by solvent extraction. Google
Patents.
Grzymek, J., Derdacka-Grzymek, A., Konik, Z. and Grzymek, W., 1982.
Methods for Obtaining Iron, Alumina, Titania and Binders From
Metallurgical Slags and From ”Red Mud” Remaining in the Bayer Method.
Light Metals: 143-155.
Gu, H., Wang, N. and Hargreaves, J.S.J., 2018. Sequential Extraction of
Valuable Trace Elements from Bayer Process-Derived Waste Red Mud
Samples. Journal of Sustainable Metallurgy, 4(1): 147-154.
Guccione, E., 1971. Red mud, a solid waste, can now be converted to
high-quality steel. Engineering and Mining Journal(9): 136-138.
Hatzilyberis, K. et al., 2018. Process Design Aspects for
Scandium-Selective Leaching of Bauxite Residue with Sulfuric Acid.
Minerals, 8(3): 79.
Hoffman M., Vaszita E., Ujaczki E., Fekete-Kertész I., Molnár M., Feigl
V., Adam C., SCALE Deliverable D6.1 European inventory of Scandium
containing by-products, available online
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c7903051&appId=PPGMS
accessed 28/01/2022.
Kaußen, F.M. and Friedrich, B., 2016. Methods for Alkaline Recovery of
Aluminum from Bauxite Residue. Journal of Sustainable Metallurgy, 2(4):
353-364.
Li, G. et al., 2014. Stepwise extraction of valuable components from red
mud based on reductive roasting with sodium salts. Journal of Hazardous
Materials, 280: 774-780.
Li, X.-b. et al., 2009. Recovery of alumina and ferric oxide from Bayer
red mud rich in iron by reduction sintering. Transactions of Nonferrous
Metals Society of China, 19(5): 1342-1347.
Li, Z. et al., 2013. Discovery of the REE minerals in the
Wulong–Nanchuan bauxite deposits, Chongqing, China: Insights on
conditions of formation and processes. Journal of Geochemical
Exploration, 133: 88-102.
Liu, D.-Y. and Wu, C.-S., 2012. Stockpiling and Comprehensive
Utilization of Red Mud Research Progress. Materials, 5(7): 1232.
Liu, Z., Zong, Y., Li, H. and Zhao, Z., 2018. Characterization of
scandium and gallium in red mud with Time of Flight-Secondary Ion Mass
Spectrometry (ToF-SIMS) and Electron Probe Micro-Analysis (EPMA).
Minerals Engineering, 119: 263-273.
Liu, Z., Zong, Y., Li, H., Jia, D. and Zhao, Z., 2017. Selectively
recovering scandium from high alkali Bayer red mud without impurities of
iron, titanium and gallium. Journal of Rare Earths, 35(9): 896-905.
Logomerac, V., 1979. Complex utilization of red mud by smelting and
solvent extraction. Trav. Com. Int. Etude Bauxites, Alumine Alum, 15:
279-285.
Mishra, S. and Bagchi, M., 2002. Mud to metal—Romelt is an answer.
Smelting reduction for iron making: 167-170.
Mouchos, E., Wall, F. and Williamson, B., 2017. High-Ce REE minerals in
the Parnassus-Giona bauxite deposits, Greece. Applied Earth Science,
126(2): 82-83
Narayanan, R.P., Kazantzis, N.K. and Emmert, M.H., 2018. Selective
Process Steps for the Recovery of Scandium from Jamaican Bauxite Residue
(Red Mud). ACS Sustainable Chemistry & Engineering, 6(1): 1478-1488.
Ochsenkühn-Petropoulou, M.T., Hatzilyberis, K.S., Mendrinos, L.N. and
Salmas, C.E., 2002. Pilot-Plant Investigation of the Leaching Process
for the Recovery of Scandium from Red Mud. Industrial & Engineering
Chemistry Research, 41(23): 5794-5801.
Ochsenkühn-Petropulu, M. and Ochsenkühn, K., 1995. Rare earth minerals
found in Greek bauxites by scanning electron microscopy and electron
probe micro-analysis. Eur Microsc Anal, 37: 33-34.
Ochsenkühn-Petropulu, M., Lyberopulu, T. and Parissakis, G., 1994.
Direct determination of landthanides, yttrium and scandium in bauxites
and red mud from alumina production. Analytica Chimica Acta, 296(3):
305-313.
Ochsenkühn-Petropulu, M., Lyberopulu, T. and Parissakis, G., 1995.
Selective separation and determination of scandium from yttrium and
lanthanides in red mud by a combined ion exchange/solvent extraction
method. Analytica Chimica Acta, 315(1–2): 231-237.
Ochsenkühn-Petropulu, M., Lyberopulu, T., Ochsenkühn, K.M. and
Parissakis, G., 1996. Recovery of lanthanides and yttrium from red mud
by selective leaching. Analytica Chimica Acta, 319(1–2): 249-254.
Onghena, B., Borra, C.R., Van Gerven, T. and Binnemans, K., 2017.
Recovery of scandium from sulfation-roasted leachates of bauxite residue
by solvent extraction with the ionic liquid betainium
bis(trifluoromethylsulfonyl)imide. Separation and Purification
Technology, 176: 208-219.
Panov, A., Klimentenok, G., Podgorodetskiy, G. and Gorbunov, V., 2012.
Directions for large scale utilization of bauxite residue, Light Metals
2012. Springer, pp. 93-98.
Petrakova, O., Klimentenok, G., Panov, A., Gorbachev, S., 2014.
Application of modern methods for red mud processing to produce rare
earth elements., Proceedings of the 1st European Rare Earth Resources
Conference (ERES), Milos Greece, pp. 221-229.
Petrakova, O.V. et al., 2016. Improved Efficiency of Red Mud Processing
through Scandium Oxide Recovery. In: M. Hyland (Ed.), Light Metals 2015.
Springer International Publishing, Cham, pp. 93-96.
Power, G., Gräfe, M. and Klauber, C., 2011. Bauxite residue issues: I.
Current management, disposal and storage practices. Hydrometallurgy,
108(1): 33-45.
Qu, Y. and Lian, B., 2013. Bioleaching of rare earth and radioactive
elements from red mud using Penicillium tricolor RM-10. Bioresource
Technology, 136: 16-23.
Qu, Y. et al., 2015. Leaching of valuable metals from red mud via batch
and continuous processes by using fungi. Minerals Engineering, 81: 1-4.
Qu, Y., Lian, B., Mo, B. and Liu, C., 2013. Bioleaching of heavy metals
from red mud using Aspergillus niger. Hydrometallurgy, 136: 71-77.
Raspopov, N. et al., 2013. Reduction of iron oxides during the
pyrometallurgical processing of red mud. Russian Metallurgy (Metally),
2013(1): 33-37.
Rayzman, V.L., 1998. Red mud revisited-special paper on scandium
potential. Aluminium International Today, 10(5): 64.
Reid, S., Tam, J., Yang, M. and Azimi, G., 2017. Technospheric Mining of
Rare Earth Elements from Bauxite Residue (Red Mud): Process
Optimization, Kinetic Investigation, and Microwave Pretreatment.
Scientific Reports, 7(1): 15252.
Rivera, R.M., Ounoughene, G., Borra, C.R., Binnemans, K. and Van Gerven,
T., 2017. Neutralisation of bauxite residue by carbon dioxide prior to
acidic leaching for metal recovery. Minerals Engineering, 112: 92-102.
Rivera, R.M., Ulenaers, B., Ounoughene, G., Binnemans, K. and Van
Gerven, T., 2018. Extraction of rare earths from bauxite residue (red
mud) by dry digestion followed by water leaching. Minerals Engineering,
119: 82-92.
Rivera, R.M., Xahakalashe B.S., Ounoughene, G., Binnemans, K., Friedrich
B. and Van Gerven, T., 2019, Selective rare earth element extraction
using high-pressure acid leaching of slags arising from the smelting of
bauxite residue. J. Hydrometallurgy 184, DOI:
10.1016/j.hydromet.2019.01.005
Sargic, V. and Logomerac, V., 1974. Leaching and extraction in the
complex processing of red mud. Trav. Com. Int. Etude Bauxites, Alumine
Alum, 11: 71.
Shaoquan, X. and Suqing, L., 1996. Review of the extractive metallurgy
of scandium in China (1978–1991). Hydrometallurgy, 42(3): 337-343.
Smirnov, D.I. and Molchanova, T.V., 1997. The investigation of sulphuric
acid sorption recovery of scandium and uranium from the red mud of
alumina production. Hydrometallurgy, 45(3): 249-259.
Sugita, K. et al., 2016. Method of recovering rare-earth elements.
Google Patents.
Suss, A., Panov, A., Kozyrev, A., Kuznetsova, N. and Gorbachev, S.,
2018. Specific Features of Scandium Behavior During Sodium Bicarbonate
Digestion of Red Mud. Light Metals 2018. Springer International
Publishing, Cham, pp. 165-173.
Tsakanika, L.V., Ochsenkühn-Petropoulou, M.T. and Mendrinos, L.N., 2004.
Investigation of the separation of scandium and rare earth elements from
red mud by use of reversed-phase HPLC. Analytical and Bioanalytical
Chemistry, 379(5): 796-802.
Udy, M.J., 1958. Process for the separation and recovery of fe, ti, and
al values from ores and wastematerials containing same. Google Patents.
Ujaczki, É. et al., 2017. Red mud as secondary source for critical raw
materials–extraction study. Journal of Chemical Technology and
Biotechnology, 92(11): 2835-2844.
Vafeias M., Marinos D., Panias D.,
Safarian J., Van Der Eijk C., Solheim I., Balomenos E., Ksiazek M.,
Davris P., 2018, From Red To Grey: Revisiting The Pedersen Process To
Achieve Holistic Bauxite Ore Utilization, Proceedings of the 2nd
International Bauxite Residue Valorisation and Best Practices
Conference, Athens 7-10/05/2018, ISBN-number: 9789082825923, pp 111-117.
Vind, J. et al., 2018a. Rare Earth Element Phases in Bauxite Residue.
Minerals, 8(2): 77.
Vind, J. et al., 2018b. Modes of occurrences of scandium in Greek
bauxite and bauxite residue. Minerals Engineering, 123: 35-48.
Wagh, A.S. and Pinnock, W.R., 1987. Occurrence of scandium and rare
earth elements in Jamaican bauxite waste. Economic Geology, 82(3):
757-761.
Wang, K.-q., Yu, Y.-b., Wang, H. and Chen, J., 2010. Experimental
Investigation on Leaching Scandium from Red Mud by Hydrochloric Acid
[J]. Chinese Rare Earths, 1: 27.
Wang, W. and Cheng, C.Y., 2011. Separation and purification of scandium
by solvent extraction and related technologies: a review. Journal of
Chemical Technology & Biotechnology, 86(10): 1237-1246.
Wang, W., Pranolo, Y. and Cheng, C.Y., 2011. Metallurgical processes for
scandium recovery from various resources: A review. Hydrometallurgy,
108(1): 100-108.
Wang, W., Pranolo, Y. and Cheng, C.Y., 2013. Recovery of scandium from
synthetic red mud leach solutions by solvent extraction with D2EHPA.
Separation and Purification Technology, 108: 96-102.
World Aluminium and the European Aluminium Association, 2015. Bauxite
Residue Management: Best Practices, available online
https://bauxite.world-aluminium.org/fileadmin/_migrated/content_uploads/Bauxite_Residue_Management_-_Best_Practice__English_.pdf,
accessed 28/01/2022.
Xenidis, A., Zografidis, C., Kotsis, I. and Boufounos, D., 2016.
Reductive Smelting of Greek Bauxite Residues for Iron Production. In:
S.J. Lindsay (Ed.), Light Metals 2011. Springer International
Publishing, Cham, pp. 113-117.
Xue, A., Chen, X.-h. and Tang, X.-n., 2010. The technological study and
leaching kinetics of scandium from red mud. Nonferrous Metals Extr.
Metall, 2: 51-53.
Yatsenko, S.P. and Pyagai, I.N., 2010. Red mud pulp carbonization with
scandium extraction during alumina production. Theoretical Foundations
of Chemical Engineering, 44(4): 563-568.
Zhang, J.-j., Deng, Z.-g. and Xu, T.-h., 2005. Experimental
investigation on leaching metals from red mud. Light Metals, 2: 13-15.
Zhang, N., Li, H.-X., Cheng, H.-J. and Liu, X.-M., 2017. Electron probe
microanalysis for revealing occurrence mode of scandium in Bayer red
mud. Rare Metals, 36(4): 295-303.
Zhu, D.-q., Chun, T.-j., Pan, J. and He, Z., 2012. Recovery of Iron From
High-Iron Red Mud by Reduction Roasting With Adding Sodium Salt. Journal
of Iron and Steel Research, International, 19(8): 1-5.