References
Abhilash, Sinha, S., Sinha, M.K. and Pandey, B.D., 2014. Extraction of lanthanum and cerium from Indian red mud. International Journal of Mineral Processing, 127: 70-73.
Ahmad, Z., 2003. The properties and application of scandium-reinforced aluminum. Jom, 55(2): 35-39.
Alkan, G. et al., 2018. Novel Approach for Enhanced Scandium and Titanium Leaching Efficiency from Bauxite Residue with Suppressed Silica Gel Formation. Scientific Reports, 8(1): 5676.
Balomenos, E. et al., 2017a. The EURARE Project: Development of a Sustainable Exploitation Scheme for Europe’s Rare Earth Ore Deposits. Johnson Matthey Technology Review, 61(2): 142-153.
Balomenos, E., Davris, P., Pontikes, Y. and Panias, D., 2017b. Mud2Metal: Lessons Learned on the Path for Complete Utilization of Bauxite Residue Through Industrial Symbiosis. Journal of Sustainable Metallurgy, 3(3): 551-560.
Balomenos, E., Giannopoulou, I., Gerogiorgis, D., Panias, D. and Paspaliaris, I., 2014. Resource-efficient and economically viable pyrometallurgical processing of industrial ferrous by-products. Waste and Biomass Valorization, 5(3): 333-342.
Balomenos, E., Giannopoulou, I., Panias, D. and Paspaliaris, I., 2011. A novel red mud treatment process: process design and preliminary results. Travaux ICSOBA, 36(40): 255-266.
Balomenos, E., Kastritis, D., Panias, D., Paspaliaris, I. and Boufounos, D., 2016. The Enexal Bauxite Residue Treatment Process: Industrial Scale Pilot Plant Results. In: J. Grandfield (Ed.), Light Metals 2014. Springer International Publishing, Cham, pp. 143-147.
Balomenos E. et al., 2021a, Scandium Extraction from Bauxite Residue Using Sulfuric Acid and a Composite Extractant-Enhanced Ion-Exchange Polymer Resin, The Minerals, Metals & Minerals Society 2021 G. Azimi et al. (eds.), Rare Metal Technology 2021, The Minerals, Metals & Materials Series, https://doi.org/10.1007/978-3-030-65489-4_22.
Balomenos E. et al., 2021b, Developing a Parallel-to-Aluminium Value Chain for Scandium and Al-Sc Alloy Production. Pilot Scale Results under the SCALE Project. TRAVAUX 50, Proceedings of the 39th International ICSOBA Conference, 22 – 24 November 2021.
Bárdossy, G. and Aleva, G.J.J., 1990. Lateritic bauxites, 27. Elsevier Science Ltd.
Bárdossy, G., 1982. Karst Bauxites (Bauxite deposits on carbonate rocks) Budapest. Hungary.
Bogomazov, A.V. and Senyuta, A.S., 2017. Method for the acid treatment of red mud. Google Patents.
Borra, C.R., Blanpain, B., Pontikes, Y., Binnemans, K. and Van Gerven, T., 2016a. Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. Journal of Sustainable Metallurgy, 2(4): 365-386.
Borra, C.R., Blanpain, B., Pontikes, Y., Binnemans, K. and Van Gerven, T., 2016b. Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery. Journal of Sustainable Metallurgy, 2(1): 28-37.
Borra, C.R., Blanpain, B., Pontikes, Y., Binnemans, K. and Van Gerven, T., 2017. Recovery of Rare Earths and Major Metals from Bauxite Residue (Red Mud) by Alkali Roasting, Smelting, and Leaching. Journal of Sustainable Metallurgy, 3(2): 393-404.
Borra, C.R., Pontikes, Y., Binnemans, K. and Van Gerven, T., 2015. Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 76: 20-27.
Boudreault, R., Fournier, J., Primeau, D. and Labrecque-Gilbert, M.-M., 2017. Processes for treating red mud. Google Patents.
Bruckard, W.J. et al., 2010. Smelting of bauxite residue to form a soluble sodium aluminium silicate phase to recover alumina and soda. Mineral Processing and Extractive Metallurgy, 119(1): 18-26.
Cardenia C., Balomenos E., Panias D., “Iron recovery from bauxite residue through reductive roasting and wet magnetic separation”, Journal of Sustainable Metallurgy, 2018). https://doi.org/10.1007/s40831-018-0181-5.
Chassé, M., Griffin, W.L., O’Reilly, S.Y. and Calas, G., 2016. Scandium Speciation in a World-Class Lateritic Deposit. Geochemical Perspectives Letters, 3(2): 105-114.
Chun, T., Zhu, D., Pan, J. and He, Z., 2014. Recovery of Alumina from Magnetic Separation Tailings of Red Mud by Na2CO3 Solution Leaching. Metallurgical and Materials Transactions B, 45(3): 827-832.
Davris, P., Balomenos, E., Panias, D. and Paspaliaris, I., 2016a. Chapter 12 - Leaching Rare Earth Elements from Bauxite Residue Using Brønsted Acidic Ionic Liquids A2 - Lima, Ismar Borges De. In: W.L. Filho (Ed.), Rare Earths Industry. Elsevier, Boston, pp. 183-197.
Davris, P., Balomenos, E., Panias, D. and Paspaliaris, I., 2016b. Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy, 164: 125-135.
Davris, P., Balomenos, E., Panias, D. and Paspaliaris, I., 2018a. Developing New Process for Selective Extraction of Rare Earth Elements from Bauxite Residue Based on Functionalized Ionic Liquids. Light Metals 2018. Springer International Publishing, Cham, pp. 149-156.
Davris, P., Balomenos, E., Taxiarchou, M., Panias, D. and Paspaliaris, I., 2017. Current and Alternative Routes in the Production of Rare Earth Elements. BHM Berg- und Hüttenmännische Monatshefte, 162(7): 245-251.
Davris, P., Gelestathi N., Balomenos, E., Panias, D. and Paspaliaris, I., 2018b. Bauxite residue slag leaching for Al, Ti and Sc recovery. Proceedings of the 2nd International Bauxite Residue Valorisation and Best Practices Conference, Athens 7-10/05/2018, ISBN-number: 9789082825923, pp 361-366.
Davris, P., Marino D. Balomenos, E., Panias, D. and Paspaliaris, I., 2018c . Hydrometallurgical Extraction of Scandium from Bauxite Residue based on Sulfuric Acid Process, Proceedings of the 2nd International Bauxite Residue Valorisation and Best Practices Conference, Athens 7-10/05/2018, ISBN-number: 9789082825923, pp 449-454.
Deady, É.A., Mouchos, E., Goodenough, K., Williamson, B.J. and Wall, F., 2018. A review of the potential for rare-earth element resources from European red muds: examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineralogical Magazine, 80(01): 43-61.
Deng, B. et al., 2017. Enrichment of Sc2O3 and TiO2 from bauxite ore residues. Journal of Hazardous Materials, 331: 71-80.
Derevyankin, V., Porotnikova, T., Kocherova, E., Yumasheva, I. and Moiseev, V., 1981. Behaviour of scandium and lanthanum in the production of alumina from bauxite. Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya: 86-89.
Erçağ, E. and Apak, R., 1997. Furnace smelting and extractive metallurgy of red mud: Recovery of TiO2, Al2O3 and pig iron. Journal of chemical technology and biotechnology, 70(3): 241-246.
Evans, K. 2016. The History, Challenges, and New Developments in the Management and Use of Bauxite Residue. J. Sustain. Metall. 2, 316–331.
Fulford, G.D., Lever, G. and Sato, T., 1991a. Recovery of rare earth elements from Bayer process red mud. Google Patents.
Fulford, G.D., Lever, G. and Sato, T., 1991b. Recovery of rare earth elements from sulphurous acid solution by solvent extraction. Google Patents.
Grzymek, J., Derdacka-Grzymek, A., Konik, Z. and Grzymek, W., 1982. Methods for Obtaining Iron, Alumina, Titania and Binders From Metallurgical Slags and From ”Red Mud” Remaining in the Bayer Method. Light Metals: 143-155.
Gu, H., Wang, N. and Hargreaves, J.S.J., 2018. Sequential Extraction of Valuable Trace Elements from Bayer Process-Derived Waste Red Mud Samples. Journal of Sustainable Metallurgy, 4(1): 147-154.
Guccione, E., 1971. Red mud, a solid waste, can now be converted to high-quality steel. Engineering and Mining Journal(9): 136-138.
Hatzilyberis, K. et al., 2018. Process Design Aspects for Scandium-Selective Leaching of Bauxite Residue with Sulfuric Acid. Minerals, 8(3): 79.
Hoffman M., Vaszita E., Ujaczki E., Fekete-Kertész I., Molnár M., Feigl V., Adam C., SCALE Deliverable D6.1 European inventory of Scandium containing by-products, available online https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c7903051&appId=PPGMS accessed 28/01/2022.
Kaußen, F.M. and Friedrich, B., 2016. Methods for Alkaline Recovery of Aluminum from Bauxite Residue. Journal of Sustainable Metallurgy, 2(4): 353-364.
Li, G. et al., 2014. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Journal of Hazardous Materials, 280: 774-780.
Li, X.-b. et al., 2009. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Transactions of Nonferrous Metals Society of China, 19(5): 1342-1347.
Li, Z. et al., 2013. Discovery of the REE minerals in the Wulong–Nanchuan bauxite deposits, Chongqing, China: Insights on conditions of formation and processes. Journal of Geochemical Exploration, 133: 88-102.
Liu, D.-Y. and Wu, C.-S., 2012. Stockpiling and Comprehensive Utilization of Red Mud Research Progress. Materials, 5(7): 1232.
Liu, Z., Zong, Y., Li, H. and Zhao, Z., 2018. Characterization of scandium and gallium in red mud with Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and Electron Probe Micro-Analysis (EPMA). Minerals Engineering, 119: 263-273.
Liu, Z., Zong, Y., Li, H., Jia, D. and Zhao, Z., 2017. Selectively recovering scandium from high alkali Bayer red mud without impurities of iron, titanium and gallium. Journal of Rare Earths, 35(9): 896-905.
Logomerac, V., 1979. Complex utilization of red mud by smelting and solvent extraction. Trav. Com. Int. Etude Bauxites, Alumine Alum, 15: 279-285.
Mishra, S. and Bagchi, M., 2002. Mud to metal—Romelt is an answer. Smelting reduction for iron making: 167-170.
Mouchos, E., Wall, F. and Williamson, B., 2017. High-Ce REE minerals in the Parnassus-Giona bauxite deposits, Greece. Applied Earth Science, 126(2): 82-83
Narayanan, R.P., Kazantzis, N.K. and Emmert, M.H., 2018. Selective Process Steps for the Recovery of Scandium from Jamaican Bauxite Residue (Red Mud). ACS Sustainable Chemistry & Engineering, 6(1): 1478-1488.
Ochsenkühn-Petropoulou, M.T., Hatzilyberis, K.S., Mendrinos, L.N. and Salmas, C.E., 2002. Pilot-Plant Investigation of the Leaching Process for the Recovery of Scandium from Red Mud. Industrial & Engineering Chemistry Research, 41(23): 5794-5801.
Ochsenkühn-Petropulu, M. and Ochsenkühn, K., 1995. Rare earth minerals found in Greek bauxites by scanning electron microscopy and electron probe micro-analysis. Eur Microsc Anal, 37: 33-34.
Ochsenkühn-Petropulu, M., Lyberopulu, T. and Parissakis, G., 1994. Direct determination of landthanides, yttrium and scandium in bauxites and red mud from alumina production. Analytica Chimica Acta, 296(3): 305-313.
Ochsenkühn-Petropulu, M., Lyberopulu, T. and Parissakis, G., 1995. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Analytica Chimica Acta, 315(1–2): 231-237.
Ochsenkühn-Petropulu, M., Lyberopulu, T., Ochsenkühn, K.M. and Parissakis, G., 1996. Recovery of lanthanides and yttrium from red mud by selective leaching. Analytica Chimica Acta, 319(1–2): 249-254.
Onghena, B., Borra, C.R., Van Gerven, T. and Binnemans, K., 2017. Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide. Separation and Purification Technology, 176: 208-219.
Panov, A., Klimentenok, G., Podgorodetskiy, G. and Gorbunov, V., 2012. Directions for large scale utilization of bauxite residue, Light Metals 2012. Springer, pp. 93-98.
Petrakova, O., Klimentenok, G., Panov, A., Gorbachev, S., 2014. Application of modern methods for red mud processing to produce rare earth elements., Proceedings of the 1st European Rare Earth Resources Conference (ERES), Milos Greece, pp. 221-229.
Petrakova, O.V. et al., 2016. Improved Efficiency of Red Mud Processing through Scandium Oxide Recovery. In: M. Hyland (Ed.), Light Metals 2015. Springer International Publishing, Cham, pp. 93-96.
Power, G., Gräfe, M. and Klauber, C., 2011. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy, 108(1): 33-45.
Qu, Y. and Lian, B., 2013. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresource Technology, 136: 16-23.
Qu, Y. et al., 2015. Leaching of valuable metals from red mud via batch and continuous processes by using fungi. Minerals Engineering, 81: 1-4.
Qu, Y., Lian, B., Mo, B. and Liu, C., 2013. Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy, 136: 71-77.
Raspopov, N. et al., 2013. Reduction of iron oxides during the pyrometallurgical processing of red mud. Russian Metallurgy (Metally), 2013(1): 33-37.
Rayzman, V.L., 1998. Red mud revisited-special paper on scandium potential. Aluminium International Today, 10(5): 64.
Reid, S., Tam, J., Yang, M. and Azimi, G., 2017. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment. Scientific Reports, 7(1): 15252.
Rivera, R.M., Ounoughene, G., Borra, C.R., Binnemans, K. and Van Gerven, T., 2017. Neutralisation of bauxite residue by carbon dioxide prior to acidic leaching for metal recovery. Minerals Engineering, 112: 92-102.
Rivera, R.M., Ulenaers, B., Ounoughene, G., Binnemans, K. and Van Gerven, T., 2018. Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Minerals Engineering, 119: 82-92.
Rivera, R.M., Xahakalashe B.S., Ounoughene, G., Binnemans, K., Friedrich B. and Van Gerven, T., 2019, Selective rare earth element extraction using high-pressure acid leaching of slags arising from the smelting of bauxite residue. J. Hydrometallurgy 184, DOI: 10.1016/j.hydromet.2019.01.005
Sargic, V. and Logomerac, V., 1974. Leaching and extraction in the complex processing of red mud. Trav. Com. Int. Etude Bauxites, Alumine Alum, 11: 71.
Shaoquan, X. and Suqing, L., 1996. Review of the extractive metallurgy of scandium in China (1978–1991). Hydrometallurgy, 42(3): 337-343.
Smirnov, D.I. and Molchanova, T.V., 1997. The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy, 45(3): 249-259.
Sugita, K. et al., 2016. Method of recovering rare-earth elements. Google Patents.
Suss, A., Panov, A., Kozyrev, A., Kuznetsova, N. and Gorbachev, S., 2018. Specific Features of Scandium Behavior During Sodium Bicarbonate Digestion of Red Mud. Light Metals 2018. Springer International Publishing, Cham, pp. 165-173.
Tsakanika, L.V., Ochsenkühn-Petropoulou, M.T. and Mendrinos, L.N., 2004. Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC. Analytical and Bioanalytical Chemistry, 379(5): 796-802.
Udy, M.J., 1958. Process for the separation and recovery of fe, ti, and al values from ores and wastematerials containing same. Google Patents.
Ujaczki, É. et al., 2017. Red mud as secondary source for critical raw materials–extraction study. Journal of Chemical Technology and Biotechnology, 92(11): 2835-2844.
Vafeias M., Marinos D., Panias D., Safarian J., Van Der Eijk C., Solheim I., Balomenos E., Ksiazek M., Davris P., 2018, From Red To Grey: Revisiting The Pedersen Process To Achieve Holistic Bauxite Ore Utilization, Proceedings of the 2nd International Bauxite Residue Valorisation and Best Practices Conference, Athens 7-10/05/2018, ISBN-number: 9789082825923, pp 111-117.
Vind, J. et al., 2018a. Rare Earth Element Phases in Bauxite Residue. Minerals, 8(2): 77.
Vind, J. et al., 2018b. Modes of occurrences of scandium in Greek bauxite and bauxite residue. Minerals Engineering, 123: 35-48.
Wagh, A.S. and Pinnock, W.R., 1987. Occurrence of scandium and rare earth elements in Jamaican bauxite waste. Economic Geology, 82(3): 757-761.
Wang, K.-q., Yu, Y.-b., Wang, H. and Chen, J., 2010. Experimental Investigation on Leaching Scandium from Red Mud by Hydrochloric Acid [J]. Chinese Rare Earths, 1: 27.
Wang, W. and Cheng, C.Y., 2011. Separation and purification of scandium by solvent extraction and related technologies: a review. Journal of Chemical Technology & Biotechnology, 86(10): 1237-1246.
Wang, W., Pranolo, Y. and Cheng, C.Y., 2011. Metallurgical processes for scandium recovery from various resources: A review. Hydrometallurgy, 108(1): 100-108.
Wang, W., Pranolo, Y. and Cheng, C.Y., 2013. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Separation and Purification Technology, 108: 96-102.
World Aluminium and the European Aluminium Association, 2015. Bauxite Residue Management: Best Practices, available online https://bauxite.world-aluminium.org/fileadmin/_migrated/content_uploads/Bauxite_Residue_Management_-_Best_Practice__English_.pdf, accessed 28/01/2022.
Xenidis, A., Zografidis, C., Kotsis, I. and Boufounos, D., 2016. Reductive Smelting of Greek Bauxite Residues for Iron Production. In: S.J. Lindsay (Ed.), Light Metals 2011. Springer International Publishing, Cham, pp. 113-117.
Xue, A., Chen, X.-h. and Tang, X.-n., 2010. The technological study and leaching kinetics of scandium from red mud. Nonferrous Metals Extr. Metall, 2: 51-53.
Yatsenko, S.P. and Pyagai, I.N., 2010. Red mud pulp carbonization with scandium extraction during alumina production. Theoretical Foundations of Chemical Engineering, 44(4): 563-568.
Zhang, J.-j., Deng, Z.-g. and Xu, T.-h., 2005. Experimental investigation on leaching metals from red mud. Light Metals, 2: 13-15.
Zhang, N., Li, H.-X., Cheng, H.-J. and Liu, X.-M., 2017. Electron probe microanalysis for revealing occurrence mode of scandium in Bayer red mud. Rare Metals, 36(4): 295-303.
Zhu, D.-q., Chun, T.-j., Pan, J. and He, Z., 2012. Recovery of Iron From High-Iron Red Mud by Reduction Roasting With Adding Sodium Salt. Journal of Iron and Steel Research, International, 19(8): 1-5.