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Abstract13

The oceans are acidifying in response to the oceanic uptake of anthropogenic CO214

from the atmosphere, yet the global-scale progression of this acidification has been poorly15

documented so far by observations. Here, we fill this gap and use an observation-based16

product, OceanSODA-ETHZ, to determine the trends and drivers of the surface ocean17

aragonite saturation state (Ωar) and pH over the last four decades (1982-2021). In the18

global mean, Ωar and pH declined at rates of -0.071 ± 0.001 decade−1 and -0.0170 ± 0.000119

decade−1, respectively. These trends are driven primarily by the increase in the surface20

ocean concentration of dissolved inorganic carbon (DIC) in response to the uptake of an-21

thropogenic CO2, but moderated by changes in natural DIC. Surface warming enhances22

the decrease in pH, accounting for ∼ 15% of the global trend. Substantial ENSO-driven23

interannual variability is superimposed on these trends, with Ωar showing greater vari-24

ability than pH.25

Plain Language Summary26

As the ocean takes up human-made CO2 from the atmosphere, it becomes more27

acidic, i.e., its pH is dropping and so is its saturation state (Ωar) with respect to arag-28

onite, a type of carbonate mineral. These chemical changes, generally referred to as ”Ocean29

Acidification”, are harming marine organisms. Here, we use an observation-based data30

set to investigate the trends and drivers of these two important metrics of acidification31

in global surface ocean over the last four decades (1982-2021). Our results confirm that32

pH and Ωar have been declining across the global ocean during the study period and that33

these trends are predominantly driven by the increase in the surface ocean concentra-34

tion of dissolved inorganic carbon resulting from the accumulation of human-made CO2.35

We also show that the observed ocean warming enhances the decline in pH. Both met-36

rics, and especially Ωar vary substantially around these long-term trends, largely in re-37

sponse to El Niño events in the tropics. Our study provides, for the first time, a global38

observation-based quantification of the progression and driving factors of ocean acidi-39

fication, which will help to better understand the impact of ocean acidification on ma-40

rine life.41

1 Introduction42

The oceans provide a large ecosystem service by taking up roughly a third of the43

CO2 emitted by anthropogenic activities (Friedlingstein et al., 2022; Sabine et al., 2004;44

Khatiwala et al., 2013; Gruber et al., 2023), but this comes at a substantial cost, i.e., ocean45

acidification (OA) (Caldeira & Wickett, 2003; Orr et al., 2005; Doney et al., 2009). While46

the term acidification stems from the fact that CO2 taken up from the atmosphere and47

added to seawater liberates protons, i.e., increases the concentration of H+ and thus low-48

ers seawater pH (pH = -log [H+]), OA refers to a larger set of chemical changes in sea-49

water. Some of the CO2 that is taken up is titrated away by carbonate ions dissolved50

in seawater (Sarmiento & Gruber, 2006), reducing the concentration of these ions. This51

causes the saturation state of calcium carbonate CaCO3 minerals (Ω), such as that of52

aragonite (Ωar), to decline.53

Ocean acidification has been the subject of much research in the past two decades54

since it can severely impact marine life (R. A. Feely et al., 2004; Orr et al., 2005; Doney55

et al., 2009; Gruber et al., 2012; Jiang et al., 2019; Kroeker et al., 2013). This impact56

can occur at the level of an individual organism by affecting, e.g., its physiology or be-57

havioral patterns (Doney et al., 2020; Figuerola et al., 2021; Radford et al., 2021; Corn-58

wall et al., 2022). It can also occur all the way up at the scales of communities and ecosys-59

tems, e.g., by altering population dynamics or by knocking out keystone species and thereby60

altering community structure (Hall-Spencer & Harvey, 2019; Doney et al., 2020; Corn-61
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wall et al., 2021; Harvey et al., 2021). Thus, it is critical that we understand the histor-62

ical progression and contemporary state of OA across the global ocean. This would per-63

mit us also to make better predictions of what the future may hold. However, the abil-64

ity of the oceanographic community to quantitatively describe the past progression of65

OA across the global ocean with observations has been remarkably limited. This con-66

trasts with model-based studies which clearly established past and future trends of OA67

(Orr et al., 2005; R. A. Feely et al., 2009; Friedrich et al., 2012; Bopp et al., 2013; Kwiatkowski68

et al., 2020; Terhaar et al., 2023).69

This lack of observation-based studies of OA trends is in part due to the limited70

number of historical observations available for the key parameters of OA, i.e., [H+], pH,71

and Ωar. For example, seawater pH measurements before 1989 relied primarily on glass72

electrodes, which involve uncertainties of the order of 0.1 pH units. This is too uncer-73

tain to capture the pH alterations induced by OA, rendering these observations unus-74

able. A further complication arises because the pH scale of many earlier records is am-75

biguous (Jiang et al., 2019). The availability and quality of seawater pH data has im-76

proved gradually in the subsequent decades, following the refinement of spectrophoto-77

metric pH measurement methods (Byrne & Breland, 1989; Clayton & Byrne, 1993; A. G. Dick-78

son, 1993; Jiang et al., 2019). These developments have been greatly aided by efforts such79

as the Global Ocean Acidification Observing Network (GOA-ON) (Brewer, 2013; Tilbrook80

et al., 2019), which supported communities around the world to make high quality mea-81

surements, especially in coastal regions. Also, the recent advent of the biogeochemical82

Argo program with pH sensors has dramatically increased the amount of available data83

in the last few years, especially in the open seas (Claustre et al., 2020). But the tem-84

poral coverage of these data is very limited, preventing an assessment of OA changes over85

multiple decades. For the saturation state Ωar or the concentration of the carbonate ion86

in seawater, the situation is even worse, as they are typically not measured directly. This87

leaves no record from which changes in time can be deduced directly.88

For these reasons, observation-based OA trend studies have used pH, [H+], and89

Ωar computed from the more frequently measured variables of the ocean carbonate sys-90

tem, namely the partial pressure of CO2 (pCO2) and total alkalinity (Alk) (Bates, 2007;91

Bates et al., 2014; Lauvset & Gruber, 2014; Lauvset et al., 2015; Jiang et al., 2019). Most92

studies so far have applied this approach for local to regional studies, relying primarily93

on the data from the few existing long-term time series sites (Bates, 2007; Bates et al.,94

2014; Olafsson et al., 2010) or the few regions where sufficient observations exist to es-95

tablish trends directly (Sutton et al., 2014; Kim et al., 2014; Leseurre et al., 2022). These96

studies unequivocally demonstrated that the ocean is acidifying, revealing highly signif-97

icant long-term decreases in pH and Ωar at all sites and regions. But the community lacks98

an observation-based global-scale analysis that permits researchers to put these local and99

regional trends into context and also allows them to assess regional differences.100

A first attempt to establish global trends in OA based solely on observations was101

made by Lauvset et al. (2015) who used measured pCO2 and empirical estimates of Alk102

to estimate trends in surface ocean pH. They found significant pH decreases in ∼70%103

of all large-scale biomes and a mean rate of decrease of 0.018±0.004 decade−1 for 1991–104

2011. But their study did not include Ωar, had insufficient data in several key regions105

such as the Southern Ocean, required a large amount of spatial aggregation leading to106

a very low resolution, and was limited in time to two decades. Building on this work and107

its own synthesis of the data from various time series sites across the world’s oceans, the108

Intergovernmental Panel on Climate Change (IPCC) concluded in its special report on109

the Ocean and Cryosphere (Bindoff et al., 2019), that ”pH in open ocean surface water110

has changed by a virtually certain range of –0.017 to –0.027 pH units per decade since111

the late 1980s.” IPCC’s Working Group 1 report in AR6 confirmed in essence this very112

large range for the global mean rate, and also discussed the spatial variability around113

this mean trend (Canadell et al., 2021). An alternative approach was taken more recently114
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by Jiang et al. (2019) who combined a climatological seawater CO2 product with model115

results to obtain trends in the OA parameters. But by relying on a model for establish-116

ing the trends, this estimate cannot really be considered observation-based. Thus, while117

there is a pressing need for an observation-based assessment of the trends and drivers118

of OA on a global scale, the existing analyses are insufficient to fulfil this need. This gap119

is even more evident when compared to the huge volume of literature on long-term trends120

and variability in surface ocean pCO2 (A. Fay & McKinley, 2013; Tjiputra et al., 2014;121

Landschützer et al., 2014; Rödenbeck et al., 2015; Landschützer et al., 2016; A. R. Fay122

et al., 2021; Gloege et al., 2022).123

To close this gap, we present a global-scale analysis on the trends and drivers in124

both surface ocean pH and Ωar using an updated version of the OceanSODA-ETHZ observation-125

based product (Gregor & Gruber, 2021). This updated product covers the period from126

1982 to 2021 at a spatial resolution of 1° × 1°, and at monthly resolution in time, and127

thus provides not only much higher resolution than the previous analysis by Lauvset et128

al. (2015), but also doubles the length of the analyzed time period. OceanSODA-ETHZ129

was derived by combining in-situ observations of pCO2 and Alk with a range of satel-130

lite observations using a machine-learning approach. In this product, the surface ocean131

[H+], pH and Ωar are computed from the mapped pCO2 and Alk data. Since this ap-132

proach explicitly also involves the determination of the concentration of dissolved inor-133

ganic carbon (DIC), it permits us to analyze also the main drivers for the changes in [H+],134

pH and Ωar.135

2 Materials and Methods136

2.1 OceanSODA-ETHZ dataset and trend analyses137

We use the global surface [H+], pH, and Ωar data from OceanSODA-ETHZ to an-138

alyze long-term trends in global OA from 1982 through 2021 (Gregor & Gruber, 2021).139

OceanSODA-ETHZ is an observation-based, global gridded data set with monthly data140

for ocean carbonate system parameters at a resolution of 1° × 1°. It was derived with141

a two-step machine learning approach (clustering and regression) that maps the observed142

distribution of pCO2 and Alk to the global ocean using a range of independent variables143

as predictors. The version used here was updated from the published version by includ-144

ing data for the years 2020 and 2021. The OceanSODA-ETHZ product computed [H+],145

pH, Ωar and DIC from the mapped pCO2 and Alk distribution by solving the marine146

carbonate system:147

Ωar,pH, [H
+], DIC, . . . = PyCO2SYS(pCO2, Alk, T, S,Nutrients) (1)

where PyCO2SYS is the software used to solve the marine carbonate system (Humphreys148

et al., 2020). For the dissociation constants of the marine carbonate system, we used the149

Mehrbach et al. (1973) constants refitted by A. Dickson and Millero (1987), as this gives150

the lowest uncertainty whenpCO2 and Alk are used as input (Raimondi et al., 2019).151

Additional inputs consist of sea-surface temperature (T), sea-surface salinity (S), and152

the concentrations of the nutrients silicate and phosphate. Sea-surface temperature was153

taken from the NOAA OI SST V2 High-Resolution Dataset (OISSTv2; Reynolds et al.,154

2007), while sea-surface salinity is a combination of the ESA-CCI sea surface salinity prod-155

uct for 2010 to 2020 (Boutin et al., 2018) and Simple Ocean Data Assimilation (SODA156

v3.4.2; Carton et al., 2018) where the ESA-CCI product is not available. Silicate and157

phosphate concentrations were taken from the World Ocean Atlas 2018 (Boyer et al., 2018).158

Following many previous studies (e.g., Lauvset et al., 2015; Bates et al., 2014), we159

use here the total scale for pH, which includes the contribution of sulfate ions (A. G. Dick-160

son, 1993). In contrast, we report for [H+] its free concentration, which is equivalent to161

pH on the free scale (Clayton & Byrne, 1993), i.e., without the contribution of the sul-162
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fate ions. We use the saturation state of Ωar as the second metric to quantify the evo-163

lution of OA (Mucci et al., 1983; Takahashi et al., 2014). Although aragonite is ∼50%164

more soluble than calcite, the trends for its two saturation states tend to be nearly iden-165

tical.166

Trends are calculated on annual averages using an ordinary least squares (OLS)167

regression. We thereby determined the uncertainties of the trends based on the two-sided168

inverse Students t-distribution for a 95% confidence interval with (n−2) degree of free-169

dom, where n is the number of data in the global mean time series. The uncertainties170

of the global mean trends are then computed by multiplying the critical value of the t-171

distribution with the standard errors of the estimate for the slopes. The reported un-172

certainty thus reflects only the uncertainty of the trend and thus does not include any173

error in the underlying data.174

2.2 Driver decomposition of trends175

We decompose the trends in Ωar and [H+] into contributions from trends in the176

main drivers, that is DIC, Alk, T and freshwater (FW). The freshwater driver includes177

both the direct effect of changes in salinity on Ωar and pH, as well as the indirect effect178

caused by changes in the surface ocean DIC and Alk due to the net freshwater balance179

(Lovenduski et al., 2007; Landschützer et al., 2018). To this end, we remove the fresh-180

water component from the DIC and Alk driver by normalizing these two parameters to181

a constant salinity of 34.5 (Sarmiento & Gruber, 2006; Landschützer et al., 2018). The182

resulting quantities are denoted by sDIC and sAlk. We further decompose DIC into an183

anthropogenic and a natural component, DIC = Cant + Cnat, i.e., the component driven184

solely by the anthropogenic increase in atmospheric CO2 and the resulting uptake of an-185

thropogenic CO2 by the surface ocean, and the component driven by changes in circu-186

lation and biology (McNeil & Matear, 2013; Gruber et al., 2023).187

Neglecting the contributions from other minor drivers such as nutrients, we thus188

decompose the variations in the trends of Ωar and [H+] to five main driving components:189

anthropogenic sDIC (Cant), natural sDIC (Cnat), sAlk (A), temperature (T ) and fresh-190

water (FW ). Considering only the first-order terms of a Taylor expansion and using the191

product rule, this gives the rate of change of Ωar:192

dΩar

dt
=

∑
X=[Cant,Cnat,A,T,FW ]

 dω
X

dt
· Ωar ·∆X︸ ︷︷ ︸

change in sensitivity

+ω
X
· dΩar

dt
·∆X︸ ︷︷ ︸

mass effect

+ω
X
· Ωar ·

d∆X

dt︸ ︷︷ ︸
change in driver

 ,

(2)
where X is one of the five drivers, ∆X is the change in the driver (from 1982 through193

2021), and ωX is the relative sensitivity of Ωar to each driver, i.e., ωX = 1/Ωar·∂Ωar/∂X.194

Note that this definition of ωX differs from that of Egleston et al. (2010) who defined195

it as the sensitivity of X to Ωar. The time derivatives on the right-hand side of (2) are196

determined from the slopes of the linear regressions.197

The same decomposition is applied for [H+], i.e.,198

d[H+]

dt
=

∑
X=[Cant,Cnat,A,T,FW ]

dβ
X

dt
· [H+] ·∆X︸ ︷︷ ︸

change in sensitivity

+ω
X
· d[H

+]

dt
·∆X︸ ︷︷ ︸

mass effect

+ω
X
· [H+] · d∆X

dt︸ ︷︷ ︸
change in driver

 ,

(3)
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where βX is the relative sensitivity of [H+] to each driver X, i.e., βX = 1/[H+] ·199

∂[H+]/∂X. The relative sensitivities β and ω are calculated with the PyCO2SYS pro-200

gram (Lewis et al., 1998; Humphreys et al., 2020) for each grid point, using the long-term201

average conditions as input. The temperature sensitivities are assumed to be constant202

for the entire range of DIC and Alk, with a value of 0.0052 °C−1 for Ωar and a value of203

0.0354 °C−1 for [H+].204

The surface ocean concentration of Cant and its rate of change is estimated by as-205

suming that surface ocean DIC increases proportionally with the increase in atmospheric206

CO2 (Gruber et al., 2023). We determine this proportionality by computing first the amount207

of Cant the surface ocean would have if it had remained in transient equilibrium with208

the overlying atmosphere, i.e., the Ceq
ant component. We then adjust this component to209

account for the fact that the increase in surface Cant is increasingly delayed, leading to210

a growing disequilibrium term, i.e., Cdis−eq
ant , which is also proportional to the rise in at-211

mospheric CO2 (see Matsumoto and Gruber (2005) for a more in-depth discussion). Con-212

cretely, Cant is given by: Cant = Ceq
ant - C

dis−eq
ant . We determine Ceq

ant at each surface lo-213

cation by evaluating (1) whereby the in situ pCO2 is replaced with atmospheric CO2 from214

the NOAA marine boundary layer product (Dlugokencky et al., 2021). We take the dis-215

equilibrium term Cdis−eq
ant from a hindcast simulation with the ocean component of the216

Community Earth System Model (CESM) (Clement & Gruber, 2018; Hauck et al., 2020).217

The trend in the natural component, Cnat, is computed by subtracting Cant from sDIC,218

i.e., Cnat = sDIC - Cant, whereby all components are salinity normalised to 34.5.219

2.3 Time of Emergence220

The Time of emergence (ToE) is defined as the time it takes for a signal to arise
from the noise of natural climate variability (Keller et al., 2014):

ToE = (2×N)/S (4)

where N is the standard deviation of the detrended and deseasonalized monthly data,221

and S is the annual trend. This results in TOE having an output in units of years.222

3 Results and Discussions223

3.1 Evaluation224

The rate of pH change estimated from OceanSODA-ETHZ generally agrees well225

with the reported rates from observation stations around the globe (Table S1 in the sup-226

plementary material). However, many stations have reported trends over much shorter227

periods, making the comparisons less robust owing to a stronger imprint of interannual228

variability. We thus focus the evaluation of our trend estimates with those stemming from229

the longest-running (> 30 years) and best-sampled time series sites in the ocean, namely230

the Hawaii Ocean Time-series (HOT) (Dore et al., 2009) in the North Pacific, the Bermuda231

Atlantic Time series Study (BATS) in the North Atlantic (Bates et al., 2014; Bates &232

Johnson, 2020) (Table S2). This evaluation is particularly insightful since the data from233

these two time series sites were not used for the training of the machine-learning algo-234

rithm in OceanSODA-ETHZ. Neither site measured pH or Ωar, but DIC and Alk, from235

which we computed pH and Ωar following the same procedures as for OceanSODA-ETHZ.236

We also recomputed the long-term trends in order to ensure maximum comparability with237

our estimates. To this end, we first deseasonalized the data from the time series stations238

using a harmonic fit (Gruber et al., 2002) and then computed the trend in the same man-239

ner as done for OceanSODA-ETHZ.240

For BATS and the period covered by this site, i.e., 1992-2021, we compute for OceanSODA-241

ETHZ a decadal rate of change for pH of -0.017±0.001 decade−1, numerically identical242

to what we determined from the reported time series data. By including data from the243
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nearby Station ”S” (Gruber et al., 2002), Bates and Johnson (2020) was able to extend244

this record back in time, reporting for 1983-2020 a slightly more negative trend of -0.019±0.001245

decade−1 (Table S1), a bit more negative than our estimate for the same period (-0.016±0.001),246

but still within the uncertainties. The trends for Ωar are slightly more different, but still247

in agreement. While our estimate for the period 1992-2021 of -0.061±0.005 decade−1 is248

again numerically identical to that we computed from the time series data, Bates and249

Johnson (2020) found for the combined Station ”S” and BATS sites over the 1983-2020250

period a trend of -0.09±0.01 decade−1, which is quite a bit more negative than ours (Ta-251

ble S1).252

Our pH trend estimate for the HOT site (1989-2021) of -0.018±0.001 decade−1 is253

again the same as that we computed from the reported time series data (-0.018±0.001254

decade−1). But, as was the case at BATS, there is a somewhat less agreement on the255

trend in Ωar. For OceanSODA-ETHZ, we find a trend of -0.083±0.005 decade−1, while256

for the time series data, the trend amounts to -0.089±0.006 decade−1.257

The evaluation of the trends at the other time series sites (Table S1 in the supple-258

mentary material), often of much shorter duration, confirms the overall excellent agree-259

ment. But this comparison also suggests that the OceanSODA-ETHZ has a slight ten-260

dency for underestimating long-term trends, especially for Ωar. This could be a conse-261

quence of the cluster-regression approach that we employed in ensemble mode to create262

OceanSODA-ETHZ, as this machine-learning method tends to suppress variations and263

trends (Gregor & Gruber, 2021). Still, these evaluations suggest that OceanSODA-ETHZ264

reproduces the observed long-term trends at the time series stations with high fidelity,265

giving us confidence in the use of this product to assess long-term trends in OA across266

the global ocean (Chau et al., 2022).267

3.2 Long-term trends268

The temporal evolution of the reconstructed global surface mean Ωar, pH, and [H+]269

from the OceanSODA-ETHZ product confirm the expected strong trends induced by ocean270

acidification over the four decades from 1982 through 2021 (Fig. 1). Averaged over the271

global ice-free ocean, surface Ωar decreased by nearly 10% over these four decades, and272

pH experienced a drop of ∼0.06 units. At the same time, [H+] increased proportionately273

by slightly more than 1 nmol kg−1. This translates into highly significant average trends274

of -0.071 ± 0.001 decade−1 for Ωar (R2 = 0.98; p ≪ 0.01) and -0.0170 ± 0.0001 decade−1
275

for pH (R2 = 0.99; p ≪ 0.01). For [H+] the average rate of increase amounts to 0.240276

± 0.004 nmol kg−1 decade−1. The global trends are very insensitive to the choice of the277

exact beginning or ending years. For example, shortening the record to 30 years and com-278

puting the trends by shifting the beginning year from 1982 to 1992 yields variations in279

the trends of < 7%.280

The reported uncertainties of the trends reflect just the statistical uncertainty of281

the regression slope, and thus do not include any additional uncertainties induced by sys-282

tematic errors associated with the underlying data. In order to obtain a zeroth order es-283

timate of this contribution, we determined the trends for each individual ensemble mem-284

ber in the OceanSODA-ETHZ product and computed the resulting standard deviation.285

This resulted in essentially the same uncertainty as the reported trend uncertainty. Larger286

contributions to the trend uncertainty could stem from biases in our mapped product287

that change with time, such as those that could be induced from changed sampling through288

time, or from temporally changing systematic errors in the measurements of pCO2 and/or289

alkalinity that underlie the OceanSODA-ETHZ product. Although we have not found290

any indication of such temporally changing errors (Gregor & Gruber, 2021), we cannot291

exclude this either. We thus conclude that the reported trend uncertainties are likely an292

underestimate, perhaps by several fold. Even if we adopted, for example, a fivefold in-293

crease in the uncertainty, the relative uncertainties of the trend estimates would remain294
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Figure 1. Temporal and spatial structure of the long-term trends in global aragonite sat-

uration state (Ωar), pH, and [H+] from 1982 to 2021 using OceanSODA-ETHZ data (Gregor

& Gruber, 2021). (a) Global area-weighted trend for Ωar (solid line), along with the estimated

anthropogenic trend (dashed line) based on the increase in Cant. (b) Global map of the 40-year

average trend of Ωar, expressed as trend per decade. (c) As (a) but for pH (left axis) and [H+]

(right axis) with the estimated anthropogenic increase being shown for the latter only. (d) As

(b), but for pH. Note that the global average trends plotted in (a) and (c) are computed over the

colored areas shown in (b) and (d), representing 96% of the global sea-ice-free surface area. The

triangle and circle in (b) and (d) indicate the locations of the two time series HOT and BATS

used to evaluate the OceanSODA-ETHZ product in detail.
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at less than 10%. We consider this an extremely pessimistic case, but we lack informa-295

tion to provide a better estimate of the true uncertainty.296

Our global mean surface pH trend supports the trend estimated by Lauvset et al.297

(2015) of 0.018±0.004 for the period 1991 through 2011, we can now provide a much more298

accurate estimate covering 96% of the global sea-ice-free surface ocean as opposed to the299

70% coverage available to Lauvset et al. (2015). Even when considering our potential300

underestimation of the trend uncertainty, our estimate permits us also to reduce the range301

given by IPCC (Bindoff et al., 2019), i.e., -0.017 to -0.027 decade−1, by more than ten-302

fold. Our global pH trend matches also well those given by a range of Earth System Mod-303

els (Kwiatkowski et al., 2020). Unfortunately, we are unaware of reported global ocean304

mean trends for Ωar.305

Spatially, the rates of the Ωar and pH declines over the past four decades vary sub-306

stantially across the open ocean (Fig. 1b,d)(see also Suppl. Tables S3 and S4). For Ωar,307

the largest trends are found in the tropical and subtropical Pacific Ocean, including the308

eastern tropical Pacific region (Fig. 1b), with rates of Ωar decreases that are, on aver-309

age, 50% higher than in the global mean. In contrast, Ωar drops much less in the North310

Pacific and North Atlantic and parts of the Southern Ocean. Here, rates tend to be only311

half those of the global mean. This gives overall a factor of four difference in rates across312

the global ocean, highlighting the importance of the regional perspective when investi-313

gating ocean acidification.314

The spatial distribution of the decline in pH tends to be the mirror image of that315

of Ωar (Fig. 1d), although the range is smaller. The highest rates of decline are found316

in the Southern Ocean and in the high latitudes of the North Atlantic and North Pa-317

cific. Rates are here, expressed in the logarithmic pH units, about 15% higher than in318

the global mean. The lowest rates of changes are found in the subtropical gyres, with319

rates that are about 25% lower than the global mean. Another striking pattern is that320

the trends in the Pacific tend to be larger than those in the Pacific for the same latitude.321

A region that breaks the mirror image, i.e., where both Ωar and pH show large changes,322

is a small equatorial band in the eastern and central Pacific.323

The distinct spatial variations of the rates of change of ocean acidification had been324

discussed in the literature only sparingly so far. Lauvset et al. (2015) also found trends325

that varied considerably across the analyzed biomes, but given the large uncertainties326

of their regional trends, they refrained from discussing them in detail. They did point327

to the systematic differences between the Atlantic and Pacific, however. A systematic328

difference we can confirm here. In its global assessment, IPCC AR6 (Canadell et al., 2021)329

discussed the regional differences as well, pointing out, for example, that the central and330

eastern upwelling zones of the Pacific exhibited a faster pH decline of –0.022 to –0.026331

decade−1 (see also Sutton et al. (2014)) compared to the western tropical Pacific, where332

the trends are only in the range of –0.010 to –0.013 decade−1 (see also Ishii et al. (2020)).333

This strong east-west gradient in the tropical Pacific is fully confirmed by our results (Fig.334

1d). IPCC AR6 further suggested for the subtropical gyres pH trends ranging from -0.016335

to -0.019 decade−1, which is a smaller range than that we find (-0.013 to -0.019 decade−1).336

In contrast, IPCC AR6 suggests subpolar latitudes values ranging from -0.003 decade−1
337

to -0.026 decade−1, while our work suggests a substantially smaller range (-0.017 to -0.020338

decade−1). We interpret these differences to be primarily the result of the relatively small339

number of time series sites that were used by the IPCC for their assessment. We are not340

aware of any study that investigated the spatial pattern of the trend in Ωar in a system-341

atic manner, although IPCC AR6 (Canadell et al., 2021) mentioned the regional differ-342

ences.343
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3.3 Drivers of the long-term trends344

The driver decomposition (2) & (3) confirms the expectation that the majority of345

the decreasing trend in Ωar and increasing trend in [H+] is driven by the anthropogenic346

increase in atmospheric pCO2 causing an increase in surface ocean Cant (dashed lines347

in Fig. 1a,c). This conclusion is in line with IPCC’s assessments (Canadell et al., 2021;348

Bindoff et al., 2019) as well as with prior work (Lauvset & Gruber, 2014; Lauvset et al.,349

2015). However, hidden behind the dominating role of Cant are substantial and relevant350

contributions from the other drivers. A first indication of this comes from the global trend351

in Ωar in Fig. 1a), which is decreasing substantially less rapidly than expected from the352

anthropogenic trend alone. This differs markedly from the trends in pH and [H+], which353

agree remarkably well with the anthropogenic trend. A second indication comes from354

the full driver decomposition in Fig. 2a,b, which show that changes in natural CO2, tem-355

perature, and to a somewhat smaller degree also sAlk, contribute substantially to the356

trends, especially for [H+]. We discuss these two indications in sequence.357
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Figure 2. Decomposition of the global mean rate of change of (a) Ωar and (b) [H+] over the

period 1982-2021 into their main drivers following equations (2) & (3) in the main text. The

considered drivers are: salinity normalized dissolved inorganic carbon (sDIC) separated into its

anthropogenic CO2 (Cant) and natural CO2 (Cnat) components, sea surface temperature (SST),

salinity normalized alkalinity (sAlk), and freshwater (FW). Also shown for each driver are the

contribution of the three mechanisms: change in the driver sensitivity (blue), change in the car-

bonate system variable (yellow), and change in the driver itself (red). Also shown here are maps

showing the relative contribution of (c) sDIC to the rate of change of Ωar, (d) sDIC to the trend

of [H+], (e) SST to the trend in Ωar, and (f) SST to the trend in [H+] aggregated to each biome.

According to our decomposition, the main reason for the smaller than expected long-358

term trend in Ωar is the substantial compensation by natural CO2 (Cnat) (Fig. 2a). This359

means that in the OceanSODA-ETHZ product, the concentration of sDIC is not increas-360

ing as fast as predicted from the increase in anthropogenic CO2 (Cant) because of a loss361

in Cnat. Since changes in sAlk are relatively minor and even suggesting a small increase,362

this smaller than expected increase in sDIC causes a lower rate of decrease of the car-363

bonate ion concentration predicted from the increase in Cant alone, hence causing a lower364

rate of decrease of Ωar. Also warming and the freshwater component actually act to com-365

pensate for the anthropogenic CO2 driven decrease in Ωar, but their contribution is small366

(Fig. 2a). Similarly, the mass effect slows the rate of decrease of Ωar. In summary, the367
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contribution of the non-sDIC components is small, so that it is the decrease in Cnat, i.e.,368

the reduction in the concentration of natural CO2 in the surface ocean, that causes global369

mean Ωar to decrease less rapidly than predicted from the rise in atmospheric CO2 alone.370

The decomposition of the trends for [H+] reveals a different picture (Fig. 2b). While371

the strong increase in [H+] driven by Cant is also compensated by the decrease in Cnat,372

the other components, are contributing substantially to the driving up of the trend in373

[H+] (Fig. 2b). The most important driver is temperature, which contributes ∼ 15%374

to the rate of increase in [H+]. But also the [H+] mass effect and the increased sensitiv-375

ity contribute to the rise in [H+]. Taken together, a different balance emerges for the trend376

in [H+] compared to that of Ωar. For [H
+], the slowing trend induced by the loss of Cnat377

is nearly entirely compensated for by the accelerating trend induced by surface ocean378

warming, so that the overall trend is remarkably close to that predicted by Cant alone.379

In other words, the loss of Cnat tends to mask the quite substantial accelerating contri-380

bution of ocean warming on the trend of [H+].381

Thus for both trends, we find an important modification of the purely anthropogenic382

CO2 trend by surface ocean warming and the loss of Cnat, albeit with different relative383

roles. Before we discuss this finding further, we need to ensure that it is robust. This384

is especially critical since we estimate the trend in Cnat by difference from the trend in385

sDIC and Cant. Of particular concern is our estimate of the disequilibrium component,386

which we use to adjust the equilibrium estimate of Cant for the fact that even in the ab-387

sence of any climate variability surface ocean sDIC is not following perfectly the increase388

in atmospheric CO2 owing to the slowness of air-sea gas exchange and limited surface389

residence times (Matsumoto & Gruber, 2005). Globally, the mean air-sea disequilibrium390

is actually very well-constrained since it is directly related to the oceanic uptake of an-391

thropogenic CO2, which is known to within about ±15% on the basis of multiple approaches392

(Gruber et al., 2023, 2019; Hauck et al., 2020; DeVries, 2014; Mikaloff Fletcher et al., 2006;393

Sabine et al., 2004). It turns out that even adopting an uncertainty for the air-sea dis-394

equilibrium of Cant of ±30% would not alter our conclusion that Cnat has decreased over395

the last four decades. We thus consider this conclusion as robust.396

The diagnosed loss of Cnat from the surface ocean slowing down the rate of change397

of Ωar and [H+] can also be rationalized from a process perspective, especially since it398

is connected to surface ocean warming. First, one expects a loss of Cnat form the sur-399

face ocean in response to the reduced CO2 solubility associated with surface warming400

(Weiss, 1974). Second, upper ocean warming has been linked to the observed increase401

in upper ocean stratification (Sallée et al., 2021), which tends to make the biological pump402

more efficient, causing a reduction in surface ocean DIC (Sarmiento & Gruber, 2006).403

The important contribution of ocean warming to the long-term trend in [H+] be-404

comes also very clear when investigating this decomposition on a regional basis, here shown405

just for the contribution from sDIC, i.e., the sum of natural and anthropogenic CO2 (Fig.406

2c-d), and for temperature (Fig. 2e-f). While the contribution of warming to the trend407

in Ωar is less than a few percent, this number is about 8% for [H+], on average. The high-408

est contributions are found in the North Atlantic and the western Pacific, i.e., the re-409

gions that experienced the highest rates of surface warming in the last few decades (Johnson410

& Lyman, 2020).411

Still, the majority of the long-term trend for both [H+] and Ωar across all regions412

stem from the increase in sDIC (Fig 2c-d). This means that the distinct spatial differ-413

ences in the rates of change in [H+] and Ωar seen in Fig. 1 and shown as zonal means414

in Fig 3.3c,f are caused by the product of the spatial pattern of the sensitivities βDIC415

and ωDIC , respectively with the trend in Cant (see Fig. supplementary S5), whose spa-416

tial pattern is given by the inverse of the sensitivity γDIC (Egleston et al., 2010). This417

means that one can understand the trends in [H+] and Ωar as being proportional to the418

ratio of βDIC/γDIC and ωDIC/γDIC , respectively (see also Orr (2011) for a detailed dis-419
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cussion). All of these sensitivities are reflections of how well the surface carbonate chem-420

istry is able to buffer the increase in surface ocean CO2, which depends on temperature,421

and especially the ratio of DIC and Alk (Sarmiento & Gruber, 2006; Egleston et al., 2010).422

In the case of the trends in [H+] (and pH), the high sensitivity of βDIC at the high423

latitudes (Figure S4), largely driven by temperature, overwhelms the impact of the higher424

rates of change in Cant in the low latitudes owing to higher buffer capacities (Sabine et425

al., 2004) (or lower γDIC), such that the highest rates of changes in [H+] (pH) are found426

in the high latitudes. For Ωar, the situation is reversed. Here the high buffer capacity427

of the low latitudes (small γDIC) with the corresponding higher rates of accumulation428

of Cant overwhelms the effect of ωDIC , which has the highest (absolute) sensitivity in429

the high latitudes as well. The net result is that the highest rates of change in Ωar oc-430

cur in the low latitudes. This also means that the highest decreases in Ωar occur in the431

regions where Ωar is highest, while for [H+], the highest increases occur where [H+] is432

already high, i.e., where pH is lowest (Fig 3.3a,d). The former can be largely understood433

from the fact that the highest rates with which [CO2−
3 ] is titrated away from the inva-434

sion of Cant through the short-circuit reaction CO2 + CO2−
3 + H2O = 2HCO3

– (Sarmiento435

& Gruber, 2006) occurs in the regions where [CO2−
3 ] is most abundant, i.e. where Ωar436

is highest. The latter is directly the inverse, i.e., the regions where most of the invad-437

ing Cant is not titrated away but rather stay in its acid form through reaction with wa-438

ter to form H2CO3 is where [CO2−
3 ] (and hence also Ωar) is the lowest, and where [H+]439

is highest (or pH lowest).440
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Figure 3. Hovmoeller (latitude-time) diagrams of the zonally averaged anomalies from 1982

to 2021 together with their long-term averages and zonal mean trends. (a) Zonal average of the

long-term mean Ωar. (b) Hovmoeller diagram of the zonally averaged anomalies of Ωar. The

anomalies have been computed relative to the long-term mean shown in (a). (c) Zonal average

of the long-term linear trend in Ωar (solid line) together with the trend estimated solely on the

basis of the estimated increase in anthropogenic CO2 (dashed line). (d) As (a), but for [H+]. (e),

as (b) but for [H+]. (f), as (c) but for [H+].

3.4 Interannual Variability441

In addition to the long-term trends, both Ωar and [H+] are subject to a substan-442

tial amount of interannual variability Fig. 3.3, with Ωar revealing a much more variable443

pattern than [H+]. The interannual variability for [H+] is primarily confined to the equa-444

tor, with distinct negative [H+] anomalies found around 1983, 1987, 1992, 1998, 2002,445

etc., i.e., years characterized by El Niño events in the tropical eastern Pacific. These neg-446

ative [H+] anomalies are likely caused by the near cessation of upwelling during these447

events, thus bringing much less high DIC/low Alk (low [H+]) waters to the surface, keep-448

ing surface [H+] low (and pH high). Even though these events are also characterized by449

higher than normal sea-surface temperatures, this effect appears to be overwhelmed by450

the low DIC concentrations that characterize El Niño events (McKinley et al., 2004; R. Feely451

et al., 2006). Positive anomalies in [H+] occur during La Niña events, when upwelling452
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Figure 4. Maps depicting the time of emergence (ToE) for (a) Ωar and (b) pH. The ToE was

estimated from the rates of change in Ωar and pH and variations in their respective deseasonal-

ized monthly data, see eq(4) in the main text.

is strong, bringing large amounts of high DIC/low Alk waters to the surface(Sutton et453

al., 2014).454

The Ωar anomalies at equatorial latitudes are the opposite of those of [H+], i.e.,455

Ωar tends to be anomalously high during El Niño events and anomalously low during456

La Niña events. The drivers are the same as those for [H+], i.e., variations in the strength457

of upwelling that tends to bring high DIC/low Alk (low Ωar) waters to the surface.458

The Hovmoeller plot for Ωar reveals also a substantial amount of interannual vari-459

ability in the extratropics, especially when compared to [H+] (contrast Fig. 3.3b with460

panel f). The variability in the zonal mean comes from all ocean basins. It is most likely461

related to the interaction of transport/mixing and biological production that tend to change462

Ωar in opposite direction. Their effect is not dampened by co-variations with temper-463

ature, since temperature plays a relatively marginal role in controlling Ωar. This situ-464

ation tends to differ for [H+], where surface warming/cooling often dampens the effects465

of transport/mixing and biological production, leading to a lower level of variability (see466

also Jiang et al. (2019)).467

3.5 Time of Emergence468

Across the global ocean, the times of emergence (ToE) for both Ωar and pH esti-469

mated from OceanSODA-ETHZ are on the scale of years to decades (Fig. 4), but with470

large regional differences between the two parameters. The ToE of Ωar ranges from a471

value of near 1 year up to nearly 50 years while that of pH ranges from near 1 year to472

around 20 years only. However, for the majority of the open oceans, ToE of both Ωar473

and pH is on the time scales of a few years to a decade. Ωar exhibits generally longer474

ToE than pH in most locations, especially in the Northern Hemisphere, largely caused475

by the higher level of variability in Ωar shown in Fig. 3.3. For both Ωar and pH, the east-476

ern equatorial Pacific is estimated to have one of the longest ToE (decade to several decades),477

since this is the region where both parameters vary interannually the most. For Ωar, ToE478

is also long in the mid to high-latitude oceans, including the high-latitude north Pacific,479

north Atlantic, and south Atlantic.480

These findings imply that at most within half a century, the underlying trends in481

Ωar and [H+] will become strong enough to exceed their interannual variability for most482

of the open oceans. Correlation between the ToE distributions of these two OA param-483

eters also indicates that the development of acidification can be easily detected amidst484

interannual variations in a time frame of a few decades for vast regions of the global oceans.485

–15–



manuscript submitted to Global Biogeochemical Cycles

Our estimate of the ToE compares well with those that have been estimated from486

models so far (Schlunegger et al., 2019; Rodgers et al., 2015; Keller et al., 2014; Friedrich487

et al., 2012), although differences in the definition make direct quantifications difficult.488

For example, Friedrich et al. (2012) used the amplitude of the seasonal cycle as the met-489

ric of variance, whereas we use here the standard deviation of the deseasonalized data,490

i.e., we consider primarily the level of interannual variability as the ”noise” against which491

we aim to detect the signal. Schlunegger et al. (2019) and Rodgers et al. (2015) used the492

”noise” from an ensemble of models and compared that to the trend emerging from the493

ensemble mean, which is closer to our definition, but still different. Despite these impor-494

tant differences, our work here confirms prior assessments that the signals from ocean495

acidification emerge relatively fast, i.e., on the order of years to decades, from the back-496

ground noise. Our results also confirm prior findings that the equatorial Pacific has one497

of the longest ToEs(Rodgers et al., 2015). Previously not discussed was the difference498

between pH and Ωar, which we are now able to show.499

3.6 Caveats and limitations500

We note that the interannual variability of pH, [H+], and Ωar in the OceanSODA-501

ETHZ product may be underestimated. We base this potential caveat on the observa-502

tion that the variability of the pCO2 data in OceanSODA-ETHZ is on the low end com-503

pared to that exhibited in six other surface ocean pCO2 products (Table S5 in supple-504

mentary). Comparison of zonally averaged interannual variability of pCO2 between the505

OceanSODA-ETHZ data set (lowest interannual variability of the seven products) and506

six other pCO2-products suggests that the largest discrepancy in their respective inter-507

annual variability estimates exists in the high latitudes (Fig. S6 in supplementary). A508

systematically low interannual variability in the OceanSODA-ETHZ product would di-509

rectly lead to a systematic underestimation of the ToE. Thus, we conclude that our ToE510

results may be biased low, although we suspect that this systematic underestimation of511

the variability would not alter the regional differences.512

In addition, we also note that our driver decomposition could be biased since we513

use the same variables as predictors for generating the fields in the first place and for514

diagnosing the decomposition in the second place. This is potentially problematic since515

the predictors are interdependent, especially SST and SSS. While this may not cause prob-516

lems when predicting the distribution of the variables, it may be problematic when di-517

agnosing the role of freshwater forcing and heating/cooling of the sea surface. We cur-518

rently do not know how to address this, but we also do not have any evidence that this519

is an issue. Still, one needs to be aware of this potential caveat when analyzing the driver520

decomposition.521

4 Summary and Conclusions522

Our analyses of the OceanSODA-ETHZ product suggest that global surface ocean523

Ωar and pH have declined over the past 4 decades at rates of -0.071 ± 0.001 and -0.0170524

± 0.0001 units per decade, respectively. Both trends are predominantly caused by the525

increase in atmospheric CO2 driving a trend in the surface ocean concentration of an-526

thropogenic CO2. But we also showed that a decrease in the surface ocean concentra-527

tion of natural CO2 and ocean warming modulate the trends measurably. Especially note-528

worthy is the ∼15% enhancement of the pH trend by ocean warming. ENSO dominates529

the interannual variability in both Ωar and pH, although Ωar has greater interannual vari-530

ability. This leads to a substantially longer time of emergence for Ωar (several decades)531

compared to pH (around a decade).532

Our global trend analyses represent a major step forward relative to prior data-533

based assessments of the global trends in OA, which were either based on a limited num-534

ber of time series stations (Canadell et al., 2021) or based on spatial aggregation of data535
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over large-scale biomes (Lauvset et al., 2015). Not only were we able to substantially re-536

duce the uncertainties of the trends, but we also pointed out the substantial regional dif-537

ferences in the trends of the most important OA parameters with pH experiencing, on538

average, the highest rates of changes in the higher latitudes, while the largest changes539

in Ωar are found in the tropics. These regional differences need to be taken into account540

when assessing the impact of OA across the global surface ocean. For example, the es-541

pecially high rates of change in Ωar in the eastern Pacific can bring warm-water corals542

in toward critical saturation thresholds (Hoegh-Guldberg et al., 2007) much faster than543

inferred from the globally averaged rate of change of Ωar. Our observation-based anal-544

yses can provide also important evaluation constraints for model studies used to project545

OA into the future (Kwiatkowski et al., 2020). Of particular concern is again the spa-546

tial structure of the simulated changes, an aspect that has not been given a lot of atten-547

tion so far.548

Understanding the long-term trends and variability of global acidification enables549

us to put local changes into the larger context of global trends and variability. Even though550

we emphasized here the role of other drivers, the main driver of OA is the increase in551

atmospheric CO2. Thus, unless the anthropogenic emissions of CO2 are massively cur-552

tailed, OA is bound to continue, increasing its threats on marine life (Kroeker et al., 2013;553

Bindoff et al., 2019).554
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