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Abstract: Central Asia (CA) is experiencing rapid warming, leading to more Extreme 16 

precipitation events (EPEs). However, the anticipated changes in cropland and population 17 

exposure to EPEs are still unexplored. In this study, projected changes in EPEs characteristics, 18 

as well as cropland and population exposure from EPEs are quantified using global climate model 19 

simulations. Our findings reveal a significant increase in the exposure of cropland and 20 

population to extreme precipitation over time. Specifically, under the high-emission SSP5-8.5 21 

future pathway, the amount, frequency, intensity, and spatial extent of extreme precipitation in 22 

CA are projected to considerably amplify, particularly in the high mountain regions. Under the 23 

SSP5-8.5 scenario, cropland exposure in CA increases by 46.4%, with a total cropland exposure 24 

of approximately 190.7 million km² expected between 2021 and 2100. Additionally, under the 25 

SSP3-7.0 scenario, population exposure in CA increases by 92.6%, resulting in a total 26 

population exposure of about 48.1 billion person-days during the same period. The future 27 

maximum centers of exposure are concentrated over northern Kazakhstan and the tri-border 28 

region of Tajikistan, Kyrgyzstan, and Uzbekistan. Notably, the climate effect is more dominant 29 

than the other effects, whereas changes in population effect contribute to the total change in 30 

population exposure. Given the heterogeneous distribution of population and cropland in CA, 31 

it is imperative for the countries in the region to implement effective measures that harness 32 

extreme precipitation and cope with the impacts of these extreme climate events. 33 
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Key Points:  36 

⚫ Extreme precipitation events are projected to increase substantially over the 21st century 37 

in the mountainous regions across Central Asia. 38 

⚫ This study considers both population and cropland as vulnerable hazard-bearers to extreme 39 

precipitation in the exposure assessment. 40 

⚫ The population exposure is greatest in the SSP3-7.0 scenario and the cropland exposure is 41 

greatest in the SSP5-8.5 scenario. 42 

Plain Language Summary: Climate change is anticipated to intensify the risk of extreme 43 

precipitation events (EPEs). When evaluating these risks, it is crucial to consider 44 

socioeconomic factors. This study employs projections based on five Global Climate Models 45 

(GCMs) to assess the socioeconomic impacts of precipitation extremes on cropland and 46 

population under three Representative Concentration Pathways (RCPs) and Shared 47 

Socioeconomic Pathways (SSPs) across four future time periods (2021-2040, 2041-2060, 2061-48 

2080, and 2081-2100). The findings reveal a substantial increase in the exposure of the 49 

population and cropland in CA to extreme precipitation over time. Among the scenarios 50 

examined, the SSP3-7.0 scenario exhibits the highest population exposure, while the SSP5-8.5 51 

scenario results in the highest cropland exposure in CA. It can be inferred that the climate 52 

influence is more dominant than the population and cropland, particularly for CA. Consequently, 53 

CA demands heightened attention due to the vulnerability of its population and cropland to 54 

EPEs. Moreover, CA must prioritize the implementation of effective adaptation measures due 55 

to its highly heterogeneous spatial distribution of population. Additionally, as a predominantly 56 

agricultural region with a significant reliance on water resources, the region faces exceptional 57 

challenges. 58 

1. Introduction 59 

In the context of global climate change, increasing evidence supports that climate change is 60 

responsible for triggering numerous extreme weather and climate events on a global scale 61 

(IPCC, 2021). Climate change is anticipated to accelerate the global hydrological cycle and 62 

intensify all forms of extreme weather and climate events (Ombadi et al., 2023; Zscheischler et 63 

al., 2020; Tabari et al., 2020; Zhou et al., 2023; Jong et al., 2023). EPEs are projected to become 64 

more intense, longer in duration, and more frequent (Jong et al., 2023; Huang et al., 2022; 65 

Zhang et al., 2021; Zhang et al., 2020), particularly in arid regions (Yao et al., 2021). Given the 66 

recent increase in the frequency and substantial impact of EPEs, they have garnered greater 67 

attention than ever before. To effectively prioritize research efforts and inform strategies for 68 

risk management, it is crucial to assess future risks, specifically examining the exposure of 69 

populations to specific hazards. However, it should be noted that such risks may vary by age, 70 

season, and geographical region (Samir et al., 2017). 71 
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EPEs led to significant consequences for substantial socioeconomic and ecological losses (Doan et 72 

al., 2022; Gao et al., 2020) also profound implications for human safety and property protection 73 

(Swain et al., 2020; Tandon et al., 2018). For instance, the extreme precipitation in China in 74 

2010 resulted in thousands of deaths and extensive property damage due to landslides and 75 

mudslides (Wang et al., 2016). Similarly, extreme precipitation in northern Pakistan in 2010 76 

claimed approximately 3,000 lives (Lau et al., 2012), while northern India experienced more 77 

than 5,000 casualties from EPEs in 2013 (Cho et al., 2016). EPEs have also been identified as 78 

a major contributor to crop yield reductions, surpassing the impacts of other extreme climate 79 

hazards (Fu et al., 2023; Hasegawa et al., 2021; Li et al., 2019; Basile et al., 2022). With further 80 

climate warming, these EPEs and associated hazards are expected to become more frequent 81 

across various regions of the world (Jiang et al., 2016; Cook et al., 2020). EPEs deserve more 82 

attention in arid and semi-arid regions. This is because arid and semi-arid regions are particularly 83 

prone to flooding, mudslides and landslides when extreme precipitation occurs (Mariotti et al., 2002; 84 

Xue et al., 2017; Xu et al., 2015; Zhang et al., 2017; Swain et al., 2015; Donat et al., 2016). 85 

Additionally, crops in arid regions are less resistant to extreme precipitation due to fragile 86 

ecosystems. 87 

Central Asia (CA), a typical arid and semi-arid region, identified as a hotspot of global warming, 88 

is experiencing a temperature increase that is approximately twice as rapid as the global average 89 

(Zhang et al., 2019), and the warming trend is projected to persist throughout the 21st century 90 

(Huang et al., 2014; Guo et al., 2021). While some studies suggest a significant increase in 91 

mean precipitation and interannual variability across most of CA under future scenarios (Jiang 92 

et al., 2020; Zhao et al., 2018), the trend towards greater precipitation appears more prominent 93 

during the winter season (Yu et al., 2018). Additionally, the intensity of EPEs in CA is predicted 94 

to escalate in response to global warming (Peng et al., 2020). However, alternative models 95 

propose a potential trend towards drier summers, and projections for future drought exhibit 96 

higher uncertainty among models compared to changes in extreme precipitation (Jiang et al., 97 

2020). The vulnerable ecosystems of CA, characterized by relatively sparse vegetation cover, 98 

are particularly susceptible to the impacts of global climate change (Hu et al., 2016; Yuan et 99 

al., 2017). CA is considered ecologically fragile, with changes in precipitation significantly 100 

influencing human production and livelihoods (Wei et al., 2023). Adverse climate events like 101 

floods have had detrimental effects on the region's delicate ecosystems, impeding 102 

socioeconomic and sustainable development (Dike et al., 2022; Scussolini et al., 2016). Given 103 

the limited resilience and adaptive capacity of the region, extreme climate change poses a 104 

significant challenge to livelihoods, exerting far-reaching impacts on various key 105 

socioeconomic sectors (Devkota et al., 2013; Liu et al., 2023). Furthermore, the economies of 106 

CA countries heavily rely on primary industries, particularly agriculture, which is highly 107 

vulnerable to changes in the local hydrological cycle (Gessner et al., 2013; Jiang et al., 2023). 108 

Modifications in precipitation patterns strongly impact the livelihoods of CA populations and 109 

the fragility of the environment. Moreover, both the population and cropland in CA are 110 

concentrated in areas prone to high flood risk, amplifying the risks associated with EPEs (Li et 111 

al., 2019). Addressing the adverse impacts of future EPEs in these vulnerable areas and 112 

quantifying the associated socioeconomic risks are imperative for policymakers and the 113 

development of climate adaptation strategies. 114 
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Recent studies indicate that global exposure to extreme precipitation is expected to increase in 115 

the future (Li et al., 2019; Shi et al., 2021). However, there have been relatively few long-term 116 

studies examining trends in EPEs. Furthermore, previous research on extreme precipitation in 117 

CA has primarily focused on historical and future analyses of spatial and temporal evolution, 118 

as well as attribution mechanisms (Ma et al., 2021; Zhang et al., 2021; Li et al., 2022; Jiang et 119 

al., 2021; Xu et al., 2022; Liu et al., 2022). Few studies have investigated the demographic and 120 

socioeconomic impacts of extreme precipitation in CA. As a result, there is a need to quantify 121 

future changes in extreme precipitation in the region and comprehensively assess the 122 

implications of heightened EPEs. Therefore, accurate prediction of changes in the 123 

characteristics of extreme precipitation under different future climate scenarios in CA is crucial 124 

for developing effective adaptation strategies in different regions to mitigate the risks posed by 125 

extreme precipitation. 126 

This study aimed to examine future changes in extreme precipitation and the resulting exposure 127 

of population and cropland in CA using multi-model projections from the ISI-MIP framework. 128 

In comparison to CMIP5 and CMIP6, the ISI-MIP framework employs a novel, more federated 129 

approach that utilizes the 1960-1999 WATCH in-analysis data to downscale and bias correct 130 

climate model outputs. Furthermore, the ISI-MIP models generally operate at finer resolutions 131 

and adhere to a standardized modeling protocol, enhancing their ability to simulate climate 132 

extremes (Gao et al., 2020; Hempel et al., 2013; Warszawski et al., 2014; Yang et al., 2020). In 133 

this research, we specifically quantify the shifts in exposure to extreme precipitation under 134 

future warming scenarios. Given Central Asia's high population density and heavy reliance on 135 

agriculture, we focus on population and cropland as primary factors influencing exposure. The 136 

findings from this investigation are crucial for understanding the region's future vulnerability 137 

and for informing effective mitigation and adaptation strategies. Importantly, this study 138 

represents an early attempt to comprehensively and quantitatively evaluate the impact of future 139 

changes in extreme precipitation on Central Asia's population and cropland. 140 

2. Study Area, Data and Methods 141 

2.1 Study Area 142 

The CA, comprises five countries that emerged following the dissolution of the Soviet Union: 143 

Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan, and Turkmenistan (Figure 1). Situated in the 144 

heartland of the Eurasian continent, CA exhibits a diverse topography, with elevated terrain in 145 

the east and lower elevations in the west. CA is one of the largest arid and semi-arid regions 146 

within the mid-latitudes, and its intricate topography constitutes a primary driver of 147 

precipitation variability in the area (Schiemann et al., 2008; Murnane et al., 2017). The 148 

Himalayas, the Pamir Plateau, and the Hindu Kush act as barriers, shielding the region from the 149 

influence of moist air masses originating from the Indian Ocean. Consequently, air currents 150 

from the west predominantly shape the precipitation patterns in CA, with precipitation 151 

primarily occurring on the western slopes of the mountains (Xie et al., 2021; Li et al., 2021; 152 

Zou et al., 2021). The distribution of population in the region exhibits significant heterogeneity, 153 

with a high concentration observed in the tri-border area of Uzbekistan, Tajikistan, and 154 

Kyrgyzstan. Uzbekistan stands as the most populous country in CA, boasting a population 155 
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density of 70 persons/km², while Tajikistan follows closely behind with a population density 156 

second only to Uzbekistan (61 persons/km²). Notably, Tajikistan's population density is ten 157 

times higher than that of Kazakhstan, which holds the largest land area among the CA countries. 158 

All five countries in CA heavily rely on agriculture, with the sector employing over 50% of the 159 

workforce and contributing to approximately one-fifth of the total GDP. Cotton and wheat serve 160 

as the primary crops in the region, emphasizing the paramount role of agriculture in Central 161 

Asia's economic landscape (Hamidov et al., 2016; Sommer et al., 2013). Over the past three 162 

decades, the region has witnessed a rapid increase in temperature, surpassing the warming rates 163 

observed in neighboring areas and the global average (Gong et al., 2017). 164 

 165 

Figure 1. Map of study area. (a) Location and topography in Central Asia. (b) Land use types 166 

in Central Asia. (c) Mean monthly precipitation from1995 to 2014. (d) Spatial distribution of 167 

population in 2020 under SSP1-2.6 scenario simulated by the model. 168 

2.2 Dataset 169 

Gridded precipitation products are extensively utilized for the assessment of climate model data. 170 

In this study, monthly precipitation data at a spatial resolution of 0.5° is obtained from the latest 171 

Climate Research Unit dataset (CRU TS 4.07). This dataset is based on data collected from 172 

over 4,000 weather stations worldwide and is widely recognized as one of the most prominent 173 

climate datasets available. The dataset, produced by the National Centre for Atmospheric 174 

Sciences (NCAS) in the U.K, provides monthly-scale data covering the land surface from 1901 175 

to 2022 (Harris et al., 2020; Liu et al., 2021). The CRU dataset has been extensively employed 176 

for various applications, including the identification of extreme precipitation, analysis of 177 

extreme weather climates, and bias correction for General Circulation Model (GCM) 178 

simulations (Zhang et al., 2022; Hao et al., 2018). For the purpose of this study, monthly 179 

precipitation data from CRU was used to evaluate the data obtained from the selected GCMs 180 

and perform necessary corrections. 181 
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The 5 GCMs (Table 1) including GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-182 

ESM2-0, and UKESM1-0-LL were utilized in this study. These GCMs were provided by the 183 

Intersectoral Impact Model Intercomparison Project (ISI-MIP). These 5 models were selected 184 

based on their availability of daily data for the historical period from 1950 to 2100, covering 185 

all future scenarios and variables required for analysis. Additionally, all five models are part of 186 

both the CMIP5 and CMIP6, respectively. To ensure consistent climate change impact 187 

assessments, observational and historical model outputs were aggregated to a common baseline 188 

period of 1995-2014, as utilized in the IPCC Sixth Assessment Report (AR6). The climate 189 

scenarios employed in the ISI-MIP consist of a combination of Representative Concentration 190 

Pathways (RCP) and Shared Socioeconomic Pathways (SSP). Their detailed information is 191 

listed in Table S1 in Supporting Information S1. For this study, 3 future SSP scenarios (SSP1-192 

2.6, SSP3-7.0, and SSP5-8.5) were selected for the periods 2021-2040, 2041-2060, 2061-2080, 193 

and 2081-2100 (Ullah et al., 2022). These scenarios provide a broad range of potential future 194 

climates, covering weak, moderate, and strong forcing. The raw outputs from the 5 GCMs 195 

mentioned above were downscaled to a horizontal resolution of 0.5° × 0.5° using a statistical 196 

downscaling algorithm. This process involved bias revisions based on multiple reliable 197 

observations and reanalysis data, while preserving the long-term climate trends present in the 198 

GCM raw results. The processed results have been widely applied in the study of changes in 199 

extreme climate events and their impacts, serving as inputs to various assessment models within 200 

the ISI-MIP framework. In order to reduce prediction uncertainties, the field of climate change 201 

prediction commonly employs multi-model ensemble averaging. This study also focuses on the 202 

results of multi-model ensemble averaging (MME) to assess reliability. Given the lack of high-203 

resolution and spatial-temporal continuity in instrumental records within the study area, The 204 

CRU dataset was adopted as observational data for the study area. It is important to note that 205 

while this dataset is referred to as observational data, it is not strictly derived from instrumental 206 

observational records. 207 

The Land Use Harmonization Version 2 (LUH2) dataset is employed in this study to represent 208 

historical and future land use activities worldwide from the year 850 to 2100. The dataset has 209 

been widely utilized and referenced (Chen et al., 2020; Ma et al., 2020; Hurtt et al., 2020; 210 

Eyring et al., 2016) and serves as a significant land use forcing dataset for CMIP6 (Eyring et 211 

al., 2016). LUH2 was developed based on the Global Environmental History Database (HYDE) 212 

and incorporates multiple future scenarios aligned with the SSP framework (García-Peña et al., 213 

2021). It provides globally gridded partial land use patterns, base land use transitions, key 214 

agricultural management information, and secondary land data spanning the period from 850 215 

to 2100. The dataset has a spatial resolution of 0.25° × 0.25° and a temporal resolution of 1 year 216 

(García-Peña et al., 2021; Song et al., 2021). Within LUH2, land is classified into five main 217 

land use types (agricultural, rangeland, primary, secondary, and urban), each comprising twelve 218 

subtypes. For the representation of cropland, the sum of C3ann, C3per, C4ann, C4per, and 219 

C3nfx was utilized. In order to ensure consistency between datasets, the cropland data were 220 

interpolated to a resolution of 0.5° × 0.5° using a bilinear interpolation method, aligning it with 221 

the resolution of the climate data. 222 

Future population data for the period 2020-2100 under different SSP scenarios were acquired 223 

from the NASA Socioeconomic Data and Applications Center (SEDAC) (Zhang et al., 2022). 224 
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It is important to note that the temporal resolution of the SEDAC population data is 10 years. 225 

Consequently, for this study, we used the average population values in 2020, 2030, 2040, 2050, 226 

2060, 2070, 2080, 2090, and 2100 to represent the future population from 2020 to 2100. In 227 

order to maintain a consistent resolution between the population and climate datasets, the 228 

population data was interpolated to a resolution of 0.5° × 0.5° using a bilinear interpolation 229 

technique, ensuring alignment with the resolution of the climate data. 230 

Table 1 Details of the ISI-MIP climate models used in this study. 231 

Model name Institution ID Resolution Country 

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory 1°×1.25° USA 

IPSL-CM6A-

LR 
Institut Pierre Simon Laplace 1.2676°×2.5° France 

MPI-ESM1-2-

HR 
Max Planck Institute for Meteorology 1.865°×1.875° Germany 

MRI-ESM2-0 Meteorological Research Institute 1.124°×1.125° Japan 

UKESM1-0-

LL 

National Centre for Atmospheric Science and 

Met Office Hadley Centre 
1.25°×1.875° UK 

2.3 Evaluation methods for datasets 232 

Taylor diagrams (Taylor, 2001) provide a comprehensive assessment of a model's ability to 233 

reproduce spatial patterns of climate variables, making them a widely used method for 234 

evaluating climate model performance and dataset suitability (Guo et al., 2021; Yue et al., 2021; 235 

Sun et al., 2021). In this study, we compared the data from five climate models and a multi-236 

model ensemble mean with observed data (see Figure S1 in Supporting Information S1). The 237 

Taylor diagrams present correlation coefficients (R), central root mean square error (RMS), and 238 

standard deviation (SD) for each climate model, the multi-model ensemble average, and the 239 

observations in a single plot, illustrating the level of agreement between the model datasets and 240 

the observations. Furthermore, we assessed the model dataset's performance at a monthly scale 241 

by calculating precipitation for each month and comparing it to the observed data (see Figure 242 

S2 in Supporting Information S1). The closer the model data align with the observations, the 243 

higher their accuracy. By employing the Taylor diagram method, we comprehensively 244 

evaluated the accuracy of the CA climate model and its performance at the monthly scale. This 245 

approach enables the selection of the most suitable dataset, serving as the best alternative to 246 

observed data for characterizing future EPEs (see Figure S3 in Supporting Information S1). 247 

2.4 Definition and Characteristics of Extreme Precipitation Events 248 

The hazard metric employed in this study is the annual number of days with extreme 249 

precipitation, which serves as an indicator of the frequency of such events. Extreme 250 

precipitation is defined as daily rainfall exceeding a specific threshold. Previous studies 251 

commonly utilized extreme precipitation indices with fixed absolute thresholds specific to the 252 

study area (Raymond et al., 2020). However, the hazard associated with extreme events is 253 

influenced by various factors such as event characteristics, geographical conditions, 254 
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infrastructure, and population awareness. For instance, even small amounts of precipitation in 255 

arid and semi-arid regions can lead to floods and landslides, rendering absolute thresholds 256 

insufficient for capturing the true hazard of extreme precipitation in these regions. Consequently, 257 

we employed relative thresholds, specifically the 95th percentile (Thackeray et al., 2022; 258 

Alexander et al., 2019) of wet days (precipitation > 1 mm/day) for each grid cell. Relative 259 

thresholds consider regional differences in precipitation by accounting for regional and seasonal 260 

factors, thereby determining location-specific thresholds based on the actual precipitation 261 

conditions at each location. This approach is more suitable for capturing regional spatial and 262 

temporal variability and assessing exposure changes due to the significant climatic variations 263 

across the globe (Liu et al., 2017). In this study, we introduced four extreme precipitation 264 

indices to characterize EPEs and analyze their variability (Chen et al., 2013; Gimeno et al., 265 

2022; Wang, 2005; Mondal et al., 2022): 266 

1. Total Extreme Precipitation (TEP) is defined as the cumulative annual precipitation (in mm) 267 

exceeding the threshold value. 268 

2. Extreme Precipitation Event Frequency (EPEF) corresponds to the number of days (in days) 269 

in a year associated with EPEs. 270 

3. Extreme Precipitation Event Intensity (EPEI) is defined as the average daily precipitation (in 271 

mm/day) per grid cell during an extreme precipitation event. 272 

4. Extreme Precipitation Event Impact Area (EPEA) corresponds to the maximum impacted 273 

area (in km²) by an extreme precipitation event. 274 

2.5 Cropland and Population exposure to Extreme Precipitation Events 275 

Population and cropland exposure in this study is quantified as the product of the number of 276 

days with extreme precipitation, the population exposed, and the cropland area within each grid 277 

cell (Zhang et al., 2022; Sun et al., 2023; Wang et al., 2023; Jones et al., 2015). The resulting 278 

units are person-days of exposure and square kilometers of cropland exposed. To account for 279 

interannual variability, exposure for future periods was determined by calculating a 20-year 280 

average of annual extreme precipitation days and utilizing population and cropland projections. 281 

The average annual exposure was then computed for each grid cell and aggregated to provide 282 

an overall assessment for CA. 283 

𝐸𝑝𝑜𝑝 =
∑ 𝐶𝑚×𝑃20

𝑚=1

20
                            (1) 284 

𝐸𝑐𝑟𝑜𝑝 =
∑ 𝐶𝑚×𝐺20

𝑚=1

20
                           (2) 285 

where 𝐸𝑝𝑜𝑝 and 𝐸𝑐𝑟𝑜𝑝 are indicates the 20 years mean of population exposure (person-days) 286 

and cropland exposure (km ² ), 𝑚  denotes the 𝑚 th year of the base period, 𝐶  and 𝑃 287 

represents the total number of annual EPEF and simulated population number in person, while 288 

cropland simulation denoted by 𝐺. 289 
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2.6 Relative Changes in Exposure 290 

To determine the relative contributions of climatic, population, and cropland to the total 291 

exposure. The variations in climatic, population, and cropland exposures were decomposed 292 

with respect to the climatic effect, population effect, cropland effect, and the interaction effect, 293 

respectively (Chen et al., 2020; Jones et al., 2015). Generally, the influence of population and 294 

cropland was estimated by holding climate constant while changing population. Similarly, the 295 

population and cropland were set as constant while computing the climate effect. The 296 

interaction effect was intended to describe the regions with a growing population and cropland 297 

approaches toward EPEF under changing climate. The changes in climate, population, and 298 

cropland exposure were decomposed using Equation 3 and Equation 4. 299 

∆𝐸𝑝𝑜𝑝 = 𝐶𝑟 × ∆𝑃 + 𝑃𝑟 × ∆𝐶 + ∆𝑃 × ∆𝐶                     (3) 300 

∆𝐸𝑐𝑟𝑜𝑝 = 𝐶𝑟 × ∆𝐺 + 𝐺𝑟 × ∆𝐶 + ∆𝐺 × ∆𝐶                    (4) 301 

where ∆𝐸𝑝𝑜𝑝 and ∆𝐸𝑐𝑟𝑜𝑝 are the total changes in population and cropland exposures, 𝐶𝑟, 𝑃𝑟, 302 

and 𝐺𝑟  indicates the total annual EPEF, population, and cropland for the reference period 303 

(2021-2040), respectively. Whereas ∆𝐶 , ∆𝑃 , and ∆𝐺  are the changes in annual EPEF, 304 

population, and cropland, respectively. Hence, the population effect is 𝐶𝑟 × ∆𝑃, the cropland 305 

effect is 𝐶𝑟 × ∆𝐺 , the climate effects are represented by 𝑃𝑟 × ∆𝐶  and 𝐺𝑟 × ∆𝐶 , and the 306 

interaction effects are the ∆𝑃 × ∆𝐶 and ∆𝐺 × ∆𝐶. To calculate the percentage change for each 307 

effect, we divide the above equation by the exposure in the reference period. 308 

3. Results 309 

3.1 Future Changes in Cropland and Population 310 

The spatial distribution of the projected changes in CA cropland and the temporal 311 

characteristics of cropland area changes under three future scenarios (SSP1-2.6, SSP3-7.0, and 312 

SSP5-8.5), and four defined time periods are presented in Figure 2. Examining the spatial 313 

distribution (Figure 2a-l), cropland in CA displays a high degree of consistency across all 314 

scenarios, primarily concentrated in northern Kazakhstan, southern Tajikistan, and northern 315 

Kyrgyzstan. The line graph depicts the temporal changes in cropland area, indicating a 316 

decreasing trend in recent years for both the SSP1-2.6 and SSP3-7.0 scenarios. Conversely, the 317 

SSP5-8.5 scenario demonstrates a pattern of increasing and then decreasing cropland in CA. In 318 

terms of overall change in cropland area, the largest area is projected under the SSP5-8.5 319 

scenario, followed by SSP1-2.6, with SSP3-7.0 exhibiting the smallest cultivated area. 320 

Assessing the rate of change reveals that the SSP3-7.0 scenario has the highest rate, followed 321 

by SSP1-2.6, while SSP5-8.5 exhibits the lowest rate. Between 2041-2060, noticeable changes 322 

in cropland area are observed in the border regions of northern and eastern Kazakhstan, 323 

Tajikistan, and Kyrgyzstan under the SSP1-2.6 (Figure 2b) and SSP3-7.0 scenarios (Figure 2f). 324 

In the SSP3-7.0 scenario, the most pronounced change in cultivated area within CA is evident, 325 

with a decrease from 330,000 km² in 2021-2040 (Figure 2e) to 290,000 km² in 2041-2060 326 

(Figure 2f), primarily driven by the reduction of cultivated land in northern Kazakhstan. 327 
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Subsequently, the area increases to 310,000 km² in 2081-2100 (Figure 2h). Understanding and 328 

accounting for these divergences between projected SSPs is crucial to comprehensively 329 

investigate the impact of future climate risks, such as EPEs, on cropland. 330 

 331 

Figure 2. Spatial distributions of 20-year average cropland area share and projected cropland 332 

for four defined future periods under SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios. Line plots 333 

depict the total cropland area of Central Asia (CA) for the period 2020-2100. 334 

The spatial and temporal changes in the population of CA under future scenarios and four 335 

selected time periods are shown in Figure 3. CA exhibits a highly heterogeneous spatial 336 

distribution of population density, making it one of the regions with notable variation globally. 337 

The spatial map (Figure 3a-l) reveals that the distribution of population in CA aligns closely 338 

with the distribution of cropland across all scenarios, concentrating primarily in northern 339 

Kazakhstan, southeastern Uzbekistan, northwestern Tajikistan, and western Kyrgyzstan. The 340 

line graph illustrates that under the SSP3 scenario, the population is projected to consistently 341 

increase in each future time period. In contrast, the populations under the SSP1 and SSP5 342 

scenarios display a pattern of growth followed by a decline. These findings indicate that the 343 

population size of CA exhibits greater variability under future scenarios. Regarding population 344 

size, SSP3 exhibits the largest population, followed by SSP1, while SSP5 has the smallest 345 

population. Spatially, the distribution of population in CA is highly uneven. Although 346 

Kazakhstan boasts the largest land area, its population size falls significantly behind that of 347 
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Tajikistan and Uzbekistan. In fact, the population in CA is predominantly concentrated in 348 

Tajikistan and Uzbekistan. Under the SSP1 and SSP5 scenarios, the population size peaks in 349 

2040 at 70 and 65 million people, respectively, before gradually decreasing in subsequent years. 350 

In the SSP3 scenario, the population of CA reaches its maximum, steadily increasing over time 351 

to approximately 100 million people by 2100. 352 

 353 

Figure 3. Spatial distributions of 20-year average number of population and projected 354 

population for four defined future periods under SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios. 355 

Line plots depict the total population of Central Asia (CA) for the period 2020-2100. 356 

3.2 Characteristics of extreme precipitation events under different future scenarios 357 

The projected changes in the characteristics of EPEs in CA for the period 2020-2100 are 358 

presented in Figure 4. The findings highlight that higher emission scenarios will intensify EPEs, 359 

leading to potentially catastrophic consequences for the economy and society. The analysis 360 

reveals varying increases in EPEs under the SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios 361 

(Figure 4a). Overall, SSP5-8.5 exhibits the highest magnitude of extreme precipitation, 362 

approaching a maximum value of 60 mm, followed by SSP3-7.0, with the smallest impact 363 

observed under SSP1-2.6. Moreover, the severity of EPEs amplifies over time. Examining the 364 

frequency characteristics of EPEs (Figure 4b), a similar pattern emerges as observed in extreme 365 

precipitation. Under the medium and high emission scenarios (SSP3-7.0 and SSP5-8.5), EPEs 366 

occur more frequently compared to the SSP1-2.6 scenario. Notably, the increase in event 367 
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frequency is more pronounced in SSP3-7.0 and SSP5-8.5, exhibiting a clear upward trend over 368 

time. The SSP5-8.5 scenario presents an especially drastic rise in extreme precipitation 369 

frequency (Figures 4b and 4c). Regarding the intensity of EPEs (Figure. 4c), distinct variations 370 

are observed across different scenarios. The SSP5-8.5 scenario exhibits significantly higher 371 

intensity compared to SSP3-7.0 and SSP1-2.6. These findings emphasize that what was once 372 

considered rare in the past may become the norm in the future under high emission scenarios. 373 

In summary, increasing emission scenarios will result in more frequent and prolonged EPEs in 374 

CA in the coming decades. These findings underscore the urgent need for proactive measures 375 

to mitigate the potential impacts of these events on the region. 376 

 377 

Figure 4. Projected temporal changes in extreme precipitation events characteristics from 2020 378 

to 2100 under the SPP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios over Central Asia (CA). (a) TEP, 379 

(b) EPEF, (c) EPEI. Bubble size indicates the EPEA. 380 

Figure 5 presents the spatial distribution of predicted regional average changes in extreme 381 

precipitation event characteristics (extreme precipitation amount, frequency, and intensity) for 382 

the entire South Asia region during the period 2020-2100, under three future scenarios: SSP1-383 
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2.6, SSP3-7.0, and SSP5-8.5. The box plots in the Figures illustrate the variations across these 384 

scenarios. The spatial distribution of extreme precipitation amounts (Figures 5a, 5d, and 5g), 385 

frequencies (Figures 5b, 5e, and 5h), and intensities (Figures 5c, 5f, and 5i) exhibits a similar 386 

pattern for all three scenarios. EPEs are widespread throughout the CA region, excluding central 387 

Kazakhstan and northern Uzbekistan. The primary areas experiencing EPEs in CA are the 388 

southern Tien Shan Mountains and northern Kazakhstan. Under different future climate 389 

scenarios, the range of EPEs in CA expands, with higher values of extreme precipitation and 390 

intensity occurring in the border regions of Tajikistan, Kyrgyzstan, and Uzbekistan. 391 

Additionally, elevated values of extreme precipitation frequency are observed in the northern 392 

part of Kazakhstan, alongside the southeastern region of CA. In summary, EPEs in CA 393 

concentrate in densely populated areas and regions with significant cropland distribution. This 394 

exacerbates the impact of extreme precipitation on both the population and cropland in CA. 395 

 396 

Figure 5. Projected spatial changes in extreme precipitation events characteristics under the 397 

SPP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios over Central Asia (CA). (a, d, and g) TEP, (b, e, 398 

and h) EPEF, (c, f, and, i) EPEI. 399 

Figure 6 illustrates the spatial distribution of future trends in the characteristics of EPEs in CA, 400 

projected for the period 2020-2100, under three future scenarios: SSP1-2.6, SSP3-7.0, and 401 

SSP5-8.5. In the SSP1-2.6 scenario (Figures. 6a-c), most of CA exhibits a drying trend, with 402 

notable wetting areas concentrated in the northern part of CA, northern Kazakhstan, and the 403 

southern Tien Shan Mountains. Conversely, the SSP3-7.0 scenario (Figures. 6d-f) reveals an 404 

expansion of wetting areas across a large portion of CA, resulting in significant wetting effects. 405 

Under the SSP5-8.5 scenario (Figure. 6g-i), extreme precipitation, as well as the frequency and 406 

intensity of EPEs, demonstrate a substantial increase over the majority of CA, particularly in 407 

mountainous regions. The findings indicate that the overall increase in EPEs in CA exceeds 90% 408 

in the medium and long term under the SSP3-7.0 and SSP5-8.5 scenarios. In general, it can be 409 

inferred that the projected future changes in extreme precipitation in CA, specifically under the 410 

SSP5-8.5 scenario, are significant, ranging from 80% to 90%, with the highest magnitudes 411 

observed in mountainous regions and the lowest in plains. 412 
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 413 

Figure 6. Projected spatial changes of trends in extreme precipitation events characteristics 414 

under the SPP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios over Central Asia (CA). (a, d, and g) 415 

TEP, (b, e, and h) EPEF, (c, f, and, i) EPEI. 416 

3.3 Cropland and Population Exposures to Extreme Precipitation Events 417 

The spatial distribution of cropland exposure to EPEs under the three SSP scenarios (SSP1-2.6, 418 

SSP3-7.0, and SSP5-8.5) and the four defined time periods across CA are presented in Figure 419 

7. Additionally, it illustrates the temporal variation in total cropland exposure to EPEs. In the 420 

SSP1-2.6 scenario, regions such as northern Kazakhstan, northern Kyrgyzstan, and northern 421 

Tajikistan exhibit faster increases in medium- and long-term cropland exposure to EPEs, 422 

affecting an area of over 250,000 km² (Figures 7a-d). However, under the same scenario, a more 423 

prolonged and detrimental surge in cropland exposed to extreme precipitation risk is expected 424 

in northern and eastern Kazakhstan in the long term. Under the SSP3-7.0 scenario (Figures 7e-425 

h), cropland exposure increases more rapidly in the northeastern regions of Kazakhstan and the 426 

border areas of Tajikistan and Kyrgyzstan. In the case of SSP5-8.5, higher cropland exposure 427 

is observed during the long-term period compared to the other time periods (Figures 7i-l). 428 

Analyzing the 2021-2040 time period, cropland exposure under the low emission scenario is 429 

approximately 45.6 million km², significantly higher than the 34.8 million km² and 38.8 million 430 

km² under the medium and high emission scenarios, respectively. Total cropland exposure 431 

increases significantly over time, with the exposure in the SSP5-8.5 scenario reaching 56.8 432 

million km² by 2081-2100, notably higher than the exposure in the SSP3-7.0 scenario (48.4 433 

million km²) and the SSP1-2.6 scenario (44.6 million km²). Interestingly, large-scale population 434 

exposure is not projected in central Kazakhstan, northern Uzbekistan, northern Turkmenistan, 435 

Tajikistan, and southeastern Kyrgyzstan. This can be attributed to the absence of future EPEs 436 

in these regions and the fact that most of these areas are characterized by desert and alpine 437 

mountain landscapes with limited cropland distribution. Regional sums indicate that cropland 438 

exposure to EPEs increases by 25.7%, from 119.2 million km² in 2021-2040 to 149.8 million 439 

km² in 2081-2100, with the highest exposure observed in the SSP5-8.5 scenario at 440 

approximately 190.7 million km², followed by SSP1-2.6 (182.1 million km²) and SSP3-7.0 441 

(164.2 million km²). Regarding the time period, the highest cropland exposure to EPEs is 442 

projected for 2081-2100. Differences in population exposure to EPEs under the same scenarios 443 

may be attributed to variations in the frequency of such events. These findings align with the 444 
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spatial distribution of cropland exposed to EPEs in the selected scenarios. 445 

 446 

Figure 7. Projected changes in cropland exposure to extreme precipitation events under the 447 

SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios and four-time periods across Central Asia (CA). 448 

Bar plots depict the total area affected by extreme precipitation events for four different time 449 

periods and across CA.  450 

The spatial pattern of projected changes in population exposure to EPEs in CA across four time 451 

periods under three future scenarios are shown in Figure 8. In all three scenarios, population 452 

exposure shows a slight increase in the short term (Figure 8a, Figure 8e, and Figure 8i). 453 

However, over time, population exposure gradually rises under the high emission scenario. The 454 

areas with high population exposure in CA are concentrated in northwestern Tajikistan, western 455 

Kyrgyzstan, and southeastern Uzbekistan, with a smaller distribution in the northern part of 456 

Kazakhstan. Bar charts represent the total population exposure in CA for all three scenarios and 457 

four time periods. In the SSP1-2.6 scenario, population exposure exhibits a decreasing trend 458 

over time. Under the SSP3-7.0 scenario, population exposure to EPEs exceeds 48.1 billion 459 

person-days, with the most significant change occurring in northwestern Tajikistan, western 460 

Kyrgyzstan, and southeastern Uzbekistan. In these regions, exposure increases by 92.6%, 461 

resulting in a total population exposure of around 8.1 billion person-days in 2021-2040, 462 

escalating to approximately 15.6 billion person-days in 2081-2100. Population exposure under 463 
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the SSP5-8.5 scenario and the SSP1-2.6 scenario is roughly comparable, with population 464 

exposure under the SSP1-2.6 scenario being higher than that under the SSP5-8.5 scenario until 465 

the 2061-2080 time period. In conclusion, the main factor contributing to the increase in 466 

population exposure to EPEs in CA is future population growth. It is noteworthy that large-467 

scale population exposure is not observed in central Kazakhstan, northern Uzbekistan, northern 468 

Turkmenistan, Tajikistan, and southeastern Kyrgyzstan, likely due to the presence of 469 

uninhabited areas in these regions. The highly heterogeneous population distribution in CA, 470 

with population densities reaching up to 70 persons/km², exacerbates population exposure to 471 

EPEs to some extent. 472 

Regional aggregations consistently demonstrate an increase in population exposure to EPEs 473 

across all scenarios, with the highest exposure observed under the SSP3-7.0 scenario at 474 

approximately 48.1 billion person-days, followed by SSP1-2.6 and SSP5-8.5. Regarding the 475 

time periods, total population exposure increases by 29.6% from 2021-2040 to 2081-2100. 476 

Population exposure to EPEs is highest in 2081-2100, followed by 2061-2080 and 2041-2060, 477 

with the lowest exposure occurring in 2021-2040. The disparities in population exposure under 478 

the same scenarios can be attributed to variations in the frequency of EPEs. These findings align 479 

with the spatial distribution of populations exposed to EPEs in the selected scenarios. In 480 

summary, population exposure to extreme precipitation is anticipated to undergo a substantial 481 

increase in response to future global warming. Even with early mitigation efforts, exposure 482 

levels are projected to rise across a significant portion of CA. This increase in exposure is 483 

largely attributable to the uneven distribution of populations in the region and poses significant 484 

threats to societies, ecosystems, and human well-being in the future. To effectively mitigate 485 

these threats, a thorough understanding of exposure changes is crucial for driving mitigation 486 

actions and addressing their underlying causes. 487 
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 488 

Figure 8. Projected changes in population exposure to extreme precipitation events under the 489 

SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios and four-time periods across Central Asia (CA). 490 

Bar plots represent the total number of people affected by extreme precipitation events for four 491 

different time periods and across CA. 492 

3.4 Exploring the Importance of Relative Changes in Exposure 493 

To investigate the relative importance of different factors, we conducted a detailed analysis to 494 

determine the contribution of population and cropland exposure to the interaction components 495 

of CA. This analysis focused on climatic effects, population, cropland, and their interaction 496 

effects under three emission scenarios in the mid- to late 21st century. Examining the influences 497 

on cropland exposure (Figure 9), we observed consistent variation in the relative importance of 498 

climate change, cropland change, and their interaction effects across scenarios. These findings 499 

suggest that the increase in cropland exposure in CA is primarily controlled by the climate 500 

component. Under the SSP1-2.6 scenario, the relative changes in the cropland, climate, and 501 

interaction components of CA cropland exposure were 15.78%, 82.6%, and 1.61%, respectively. 502 

In this scenario, negative impacts from the population and interaction components are evident, 503 

with the increase in population exposure solely driven by the climate component. This is 504 

primarily due to the projected shrinkage of the cultivated area by the end of the 21st century, 505 

which, combined with the substantial impacts of climate change, counteracts the negative 506 
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increase. Notably, the climate component consistently outweighs the cropland component, but 507 

the change in the cropland component and the cropland-climate interaction component is 508 

increasing while the climate component is weakening. This is demonstrated by the fact that 509 

relative to the base period, from 2081-2100, the cropland and climate interaction components 510 

increase from 2.43% to 13.42%, and the cropland component increases from 15.78% to 26.35%, 511 

whereas the climate component decreases from 82.6% to 70.73% (see Table S2 in the 512 

Supporting Information). Interestingly, across all scenarios, the climate component tends to 513 

decrease over time, while the population and interaction effects tend to increase. Nevertheless, 514 

the climate effect consistently dominates in all scenarios, despite its decreasing trend. 515 

 516 

Figure 9. Different factors of the effects driving projected changes in cropland exposure to 517 

EPEF over Central Asia (CA) under SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios and three-518 

time periods. 519 

Changes in population exposure to EPEs are influenced not only by variations in climatic 520 

factors but also by alterations in population size and its spatial distribution. Figure 10 depict 521 

the overall changes in population exposure and its contributing factors across CA for different 522 
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climate scenarios and three distinct time periods. The relative importance of climate change, 523 

population change, and their interaction effects exhibits significant variation throughout CA. 524 

Under the SSP1-2.6 scenario, changes in population exposure are primarily driven by 525 

demographic factors. In contrast, under both the SSP3-7.0 and SSP5-8.5 scenarios, climatic 526 

factors play a dominant role in determining population exposure. However, it is worth noting 527 

that the decline in climatic factors is more rapid under the SSP5-8.5 scenario compared to the 528 

SSP3-7.0 scenario. Importantly, population and climate interaction effects demonstrate a 529 

substantial increase across all scenarios, with their significance intensifying as emissions rise. 530 

For instance, the population and climate interaction effects experience an increase of 2.76%, 531 

6.43%, and 11.62% for the SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios, respectively (see 532 

Table S3 in the Supporting Information). 533 

 534 

Figure 10. Different factors of the effects driving projected changes in population exposure to 535 

EPEF over Central Asia (CA) under SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios and three-536 

time periods. 537 
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4. Conclusions and Discussions 538 

The primary objective of this study is to examine the projected changes in EPEs in CA and their 539 

implications for population and cropland exposure. To achieve this objective, the study utilizes 540 

the state-of-the-art ISI-MIP multi-model ensemble mean, incorporating three Shared 541 

Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) and four 542 

predetermined time periods (2021-2040, 2041-2060, 2061-2080, and 2081-2100). The analysis 543 

employs daily precipitation data from the multi-model ensemble mean to assess the future 544 

variability characteristics of EPEs in CA. Furthermore, population and cropland datasets 545 

corresponding to different SSP scenarios are utilized to investigate the changes in population 546 

and cropland exposure resulting from EPEs in the region. This study aims to achieve several 547 

key objectives. Firstly, it seeks to investigate the evolving characteristics of EPEs in CA 548 

throughout the 21st century. Secondly, it aims to assess the impacts of these events on the 549 

population and cropland in the region. Lastly, the influence of different factors (i.e., population, 550 

cropland, climate, and interaction) on EPEF and changes in socioeconomic exposure was 551 

further investigated. The study aims to provide regional evidence that can support policymakers 552 

in the development of appropriate climate change adaptation and mitigation strategies for EPEs. 553 

Our study reveals three key findings. Firstly, the analysis demonstrates a broad consensus 554 

among climate models for various future scenarios, indicating a significant increase in 555 

population and cropland exposure to EPEs in CA throughout the 21st century. Contrary to the 556 

expectation of limited exposure due to scarce precipitation in the region, our findings suggest 557 

that the actual exposure is substantial. Consequently, policymakers and the research community 558 

need to acknowledge population and cropland changes as critical factors when assessing the 559 

risks associated with EPEs. Secondly, we identified that the highest exposure to extreme 560 

precipitation among the population in CA occurs under the SSP3-7.0 scenario, while the highest 561 

exposure for cropland is observed under the SSP5-8.5 scenario. Notably, both exposures exhibit 562 

a strong spatial similarity, primarily concentrating in the northern part of Kazakhstan and the 563 

southwestern part of CA. Lastly, our study highlights that EPEs in CA tend to concentrate on 564 

the windward slopes of the region's mountain ranges. These areas coincide with high population 565 

density and extensive distribution of cropland. The spatial exposure of population and cropland 566 

to extreme precipitation in CA displays a high degree of heterogeneity, warranting greater 567 

attention. Based on our findings, it is crucial to prioritize the reduction of greenhouse gas 568 

emissions to mitigate population and cropland exposure to extreme precipitation. Additionally, 569 

urgent action is required to design and implement effective adaptation measures that enhance 570 

preparedness and response to EPEs. 571 

Moreover, we extensively investigate the changes in socioeconomic exposure to EPEF and their 572 

diverse effects on both local and regional scales within CA. This investigation is based on 573 

defined time periods and three distinct SSP scenarios. Overall, across all three future scenarios, 574 

the augmentation of cropland exposure in CA can be attributed to climate effects; however, it 575 

is noteworthy that the influence of climate effects is diminishing, while the impact of cropland 576 

forcing and cropland-climate interactions is increasing. As for population exposure, the 577 

predominant cause of future increases within CA is climate effects; nevertheless, the interaction 578 

between population and climate exhibits a substantial rise with escalating emissions and the 579 
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passage of time. Consequently, while the risk of extreme precipitation in CA is still primarily 580 

determined by future increases in precipitation, the significance of population and cropland 581 

factors should not be overlooked. 582 

The future spatial and temporal patterns of EPEs in CA suggest that significant occurrences of 583 

such events are expected over most of CA under the SSP3-7.0 and SSP5-8.5 scenarios, with a 584 

notable expansion of extreme precipitation across the high mountainous regions. Recent studies 585 

on extreme climate projections in CA have been relatively scarce compared to other global 586 

regions and have primarily focused on the Paris Agreement targets (Zhang et al., 2022) and 587 

higher global warming scenarios (Zhang et al., 2020; Zhang et al., 2019). However, these 588 

studies have revealed that CA is transitioning from a warm and dry condition to a warm and 589 

relatively humid condition due to climate change and the intensification of the water cycle. 590 

Supporting these findings, our study anticipates an increase in EPEs in the high mountain 591 

regions of CA (Yao et al., 2021; Zou et al., 2021; Zhang et al., 2019; Liu et al., 2022). Despite 592 

the significance of extreme precipitation, there are few studies assessing the changes in 593 

population and cropland exposure to climate extremes in CA. Limited information is available 594 

on the spatial and temporal variability of population and cropland exposure to extreme 595 

precipitation in CA under different future scenarios and time periods. Our study aims to bridge 596 

these research gaps by quantifying the exposure of CA populations and croplands to extreme 597 

precipitation under the SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios in the 21st century. Given 598 

that CA is predominantly agricultural with high population density and a strong dependence on 599 

the spatial distribution of water resources, the risks associated with extreme precipitation to the 600 

population and cropland in the region are heightened. The results of this study will stimulate 601 

further research into the internal mechanisms governing the interactions between climate 602 

change, land cover, and social activities. Moreover, our findings provide a scientific basis for 603 

mitigating the risks associated with extreme precipitation and ensuring sustainable economic 604 

and social development. 605 

Although this study estimated future population and cropland exposure to EPEs in CA, it has 606 

certain limitations that require attention in future research. One limitation is the lack of 607 

consideration for socioeconomic and demographic characteristics of the population, such as 608 

income, education level, and age, which could influence the extent of exposure to extreme 609 

precipitation in CA (Chambers, 2020; Watts et al., 2021; Park et al., 2022). We suggest that 610 

future studies estimating population exposure should incorporate a more precise classification 611 

of the age structure of the population. Currently, various studies have focused on exposure to 612 

climate extremes; however, there is no standardized definition of exposure. Some studies 613 

employ a method that multiplies the occurrence of extreme events by the population size to 614 

estimate population exposure to climate extremes (Batibeniz et al., 2020). Others define 615 

exposure as the area where extreme climate surpasses a hazard threshold during a specific time 616 

period (Zhang et al., 2018; Sun et al., 2017), while some adopt an intensity-area-duration 617 

approach to reflect changes in exposure to hazard events (Wen et al., 2019; Su et al., 2018; 618 

Wang et al., 2019). These different definitions result in variations in estimates of population 619 

exposure and the socioeconomic impacts of extreme weather events. Consequently, it is crucial 620 

to establish a scientifically grounded and uniform definition of population exposure to extreme 621 

events, considering factors such as hazard, exposure, and vulnerability, to accurately assess the 622 
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risk of disasters. In a warmer future, moderate increases in precipitation can have positive 623 

effects on livelihoods and economic development, leading to an anticipated rise in irrigation 624 

water demand in CA under future climate and socioeconomic scenarios (Tian et al., 2020). 625 

Therefore, future research should focus on climate sensitivity analysis for CA, aiming to 626 

quantify the net impacts of changes in water availability and use, particularly under critical 627 

levels of global warming. Such assessments are critical for effective climate change mitigation 628 

and adaptation strategies in the region. 629 

More frequent and intense EPEs pose a significant threat to both the global population and the 630 

global food supply (Thomas et al., 2015). This risk is particularly pronounced in arid and semi-631 

arid regions, where water resources play a crucial role as both a determining factor and a 632 

limiting factor for development (Gessner et al., 2013; Li et al., 2019). It is imperative to plan 633 

and implement adaptation and mitigation measures to address the adverse effects of climate 634 

extremes in CA. These measures should encompass various strategies at the individual, 635 

community, and national levels. Ensuring widespread education about extreme precipitation 636 

and its associated hazards, along with providing essential resources such as food, clothing, and 637 

medical insurance, can help mitigate the risks involved. Furthermore, the implementation of 638 

afforestation initiatives and sustainable water use policies may effectively mitigate the risks 639 

associated with extreme precipitation in the region. At the governmental level, there is a need 640 

for multilateral climate agreements and enhanced communication and cooperation among the 641 

five CA countries to collectively address the challenges posed by extreme climate hazards 642 

(Chen et al., 2021). Additionally, the increasing occurrence of extreme precipitation in arid and 643 

semi-arid zones may potentially alleviate water stress in these regions if properly harnessed. It 644 

is widely recognized that accelerated climate change can have catastrophic consequences, and 645 

exploring the utilization of extreme precipitation in arid zones from a new perspective 646 

represents an important avenue for future research. 647 
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