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Abstract14

The recently identified Prompt Elasto-Gravity Signals (PEGS), generated by large earth-15

quakes, propagate at the speed of light and are sensitive to the earthquake magnitude16

and focal mechanism. These characteristics make PEGS potentially very advantageous17

for earthquake and tsunami early warning. PEGS-based early warning does not suffer18

from the saturation of magnitude estimations problem that P-wave based early warn-19

ing algorithms have, and could be faster than Global Navigation Satellite Systems (GNSS)-20

based systems while not requiring a priori assumptions on slip distribution. We use a21

deep learning model called PEGSNet to track the temporal evolution of the magnitude22

of the 2010 Mw 8.8 Maule, Chile earthquake. The model is a Convolutional Neural Net-23

work (CNN) trained on a database of synthetic PEGS – simulated for an exhaustive set24

of possible earthquakes distributed along the Chilean subduction zone – augmented with25

empirical noise. The approach is multi-station and leverages the information recorded26

by the seismic network to estimate as fast as possible the magnitude and location of an27

ongoing earthquake. Our results indicate that PEGSNet could have estimated that the28

magnitude of the Maule earthquake was above 8.7, 90 seconds after origin time. Our of-29

fline simulations using real data and noise recordings further support the instantaneous30

tracking of the source time function of the earthquake and show that deploying seismic31

stations in optimal locations could improve the performance of the algorithm.32

Plain Language Summary33

Tsunami early warning requires the fast and reliable estimation of an earthquake34

magnitude provided by the Earthquake Early Warning (EEW) systems. EEW systems35

are currently limited by the propagation speed of P-waves, which they rely on as nat-36

ural information carriers. Even more problematic, EEW systems based on the first seis-37

mic arrivals tend to saturate with earthquake magnitude, and can become unreliable for38

magnitudes above 8. The recent discovery of Prompt Elasto-Gravity Signals (PEGS),39

which comprise gravitational changes generated by earthquakes, has raised hope to over-40

come these limitations because they travel at the speed of light, much faster than P-waves.41

We re-train the previously developed deep learning model PEGSNet to track the mag-42

nitude evolution of big earthquakes in the Chilean subduction zone from PEGS. Given43

the scarcity of big earthquakes, we simulate signals to train the model using synthetic44

sources and the seismic stations available in 2010 and 2021, augmented with empirical45

noise recorded by those stations. PEGSNet tracks the moment release 90 s after the ori-46

gin time. PEGSNet’s performance is limited by the seismic network configuration, the47

number of stations and noise level in the data. Deployment of seismic stations at opti-48

mal locations could greatly enhance early warning performance.49

1 Introduction50

Earthquakes redistribute Earth’s mass, which produces changes in the gravitational51

field that lead to Prompt Elasto-Gravity Signals (PEGS) (Harms et al., 2015; Harms,52

2016; Montagner et al., 2016; Heaton, 2017; Vallée et al., 2017). These signals precede53

conventional seismic waves and their amplitude depends on the earthquake source pa-54

rameters, such as magnitude or focal mechanism (Vallée et al., 2017; Juhel et al., 2019;55

Vallée & Juhel, 2019; Zhang et al., 2020). These characteristics underlie the impact of56

their discovery and eventually their potential contribution to tsunami early warning (Juhel57

et al., 2018; Allen & Melgar, 2019; Shimoda et al., 2021; Licciardi et al., 2022; Zhang et58

al., 2022), since forecasting tsunami waves relies on the rapid estimation of earthquake59

magnitude (Melgar & Bock, 2013; Melgar et al., 2016; Setiyono et al., 2017) provided60

by Earthquake Early Warning (EEW) systems.61

Conventional EEW systems have several limitations in estimating the final mag-62

nitude of an earthquake. Many EEW systems are designed to work with the first sec-63
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onds of P-waves to forecast quickly the magnitude and source information once an earth-64

quake occurred (Allen & Kanamori, 2003; Wu & Zhao, 2006), but the onset does not con-65

tain enough information to predict how large an earthquake is going to be (Meier et al.,66

2016). Additionally, EEW algorithms use the data of accelerometers that record the very67

low-frequency displacements with low fidelity (Boore & Bommer, 2005; C. Ruhl et al.,68

2017). Overcoming these limitations is essential to prevent the underestimation of earth-69

quake magnitude and impending hazards. For instance, during the 2011 Tohoku-Oki,70

Japan earthquake (Mw 9.0), the magnitude was estimated as Mw 8.1 at 116.8 s after the71

origin time (Hoshiba et al., 2011), which caused an underestimation of the subsequent72

tsunami amplitude (Hoshiba & Ozaki, 2014). Global Navigation Satellite Systems (GNSS)73

have been leveraged to overcome the drawbacks of earthquake and tsunami early warn-74

ing (Bock & Melgar, 2016). GNSS-based algorithms can potentially solve the magnitude75

underestimation problem (Minson et al., 2014; C. Ruhl et al., 2017) but still use infor-76

mation (co-seismic ground deformation) travelling at the speed of P-waves (Minson et77

al., 2018; McGuire et al., 2021). GNSS-based algorithms that can accurately estimate78

the final rupture size also require the use of a priori constraints and inversion regular-79

ization that may be unpractical in real-time scenarios (McGuire et al., 2021).80

PEGS present the fundamental property to propagate faster than seismic waves.
In detail, they are the result of a direct gravity perturbation and an induced elastic re-
sponse. The direct contribution consists of gravity perturbations (∆g) caused by tran-
sient volumetric deformation and propagates at the speed of light; they arrive everywhere
before any seismic wave. These gravity perturbations simultaneously act as secondary
sources of elastic deformation in the whole Earth, inducing slight ground acceleration
(ü). Due to the virtually instantaneous effect of the direct gravity perturbation, the in-
duced ground acceleration also arrives before P-waves. The PEGS recorded by seismome-
ters (acceleration a) prior to the direct seismic wave arrival, is the sum of the direct grav-
ity perturbation and the induced ground acceleration (Vallée et al., 2017):

a = ∆g+ ü. (1)

In practice, ∆g and ü have opposite directions and similar magnitude, weakening the81

signal a (Heaton, 2017; Vallée et al., 2017).82

The amplitudes of PEGS grow with the magnitude of the earthquake and depends83

on how fast the seismic moment rises (Vallée et al., 2017; Vallée & Juhel, 2019). Thus,84

it is unlikely to observe PEGS if the earthquake has low magnitude or if it ruptures slowly.85

For this reason, PEGS have only been identified for a handful of events (Vallée & Juhel,86

2019). Though PEGS have shown strong potential to overcome the drawbacks of EEW87

systems, their extremely weak amplitudes (in the order of a few nanometers per second88

squared) have prevented operational applications. In this context, Licciardi et al. (2022)89

designed a deep convolutional neural network (CNN) called PEGSNet, to estimate earth-90

quake location and to track the temporal evolution of the magnitude Mw(t) of large earth-91

quakes in Japan based solely on PEGS. The CNN is trained on a database made of syn-92

thetic PEGS waveforms plus real noise. Motivated by the success of PEGSNet in esti-93

mating the magnitude of the 2011 Mw 9.0 Tohoku-Oki earthquake in real time (Licciardi94

et al., 2022), we test here the portability of this algorithm to another region prone to mega-95

earthquakes: Chile. We first re-train PEGSNet on the seismic network that recorded the96

2010 Mw 8.8 Maule earthquake in order to assess its performance in rapidly estimating97

the magnitude of this mega-earthquake. We then re-train the algorithm on the seismic98

network presently available in order to assess how PEGSNet would perform currently99

for an earthquake in Chile.100

2 Data101

Given the limited number of PEGS observations, we create a synthetic database102

to train the CNN. We compute the theoretical waveforms at the location of the avail-103
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able stations generated by 500,000 sources with different locations, source time functions,104

seismic moments and focal mechanisms. The waveform computation uses a pre-constructed105

moment tensor database, which uses normal mode theory to build Green’s functions be-106

tween sources and receivers (Juhel et al., 2019). To make the synthetic signals realistic,107

we then add empirical noise (i.e. actual noise recorded at each station) to the modeled108

waveforms.109

We use two seismic networks that were functional during 11 months in two differ-110

ent time periods: 2009-2010 and 2021-2022, referred to hereafter as the 2010 network and111

the 2021 network, respectively. The 2010 network is composed of 21 stations selected from112

those available through IRIS in Chile, Argentina and Brazil. These seismic stations recorded113

the 2010 Maule earthquake, allowing us to test PEGSNet on data from the earthquake.114

The 2021 network contains 33 stations available via IRIS in Chile and Argentina. While115

there was no big earthquake between 2021 and 2022, we can evaluate on synthetic wave-116

forms how PEGSNet would perform with the 2021 network configuration. The setup of117

the stations and synthetic sources is displayed in Figure 1.118

For both networks, we select stations within a 2,000 km radius from all synthetic119

epicentres. According to Juhel et al. (2019), stations located in the P-wave extensional120

direction of the radiation pattern record strong gravity perturbation when deployed at121

distances between 1, 000 and 2, 000 km away from the epicentre of a large earthquake,122

due to the growing density anomaly generated by the rupture itself and the larger vol-123

ume perturbed by the propagating seismic waves. At further distances, the perturba-124

tion decays, while at shorter distances the PEGS are rapidly hidden by the P-wave ar-125

rival.126

2.1 Synthetics PEGS database127

We compute synthetic PEGS following the method of Juhel et al. (2019). It requires
as inputs the earthquake centroid location, station locations, focal mechanism, Source
Time Function (STF) and seismic moment (M0). We consider 994 source locations, equally
spaced along the 20 km and 30 km iso-depths of the Chilean subduction megathrust, as
shown in Figure 1. The longitude, latitude, depth, strike and dip angles of all sources
are consistent with the Slab2.0 model (Hayes et al., 2018). Rake angles for each source
are drawn from a normal distribution with mean 90◦ and standard deviation 10◦, and
magnitudes from a uniform distribution between 6.0 and 10.0. Moment is calculated as
M0 = 101.5Mw+9.1 (in Newton-meters). We draw the STF from the empirical model
proposed by Meier et al. (2017):

STF (t) = M0
f(t)∫
f(t) dt

, (2)

where

f(t) = t exp{−0.5(λt)2}[1 +N(t)], (3a)

λ = 107.24−0.41 log(M0)+ϵ, (3b)

N(t) = 0.38
n(t)

σ
, (3c)

The random variable ϵ accounts for variability in the STF duration for a given M0 and128

is drawn from a Gaussian distribution with zero mean and standard deviation of 0.15.129

The random component N(t) models the fluctuations observed in real STFs. n(t) is the130

time integral of a Gaussian noise time series with zero mean and standard deviation σ.131

Examples of STFs for different magnitudes are plotted in Figure 2.132

The resulting synthetics are three-component (Z, N and E) acceleration waveforms133

depicting the PEGS generated by earthquakes of large magnitude that might potentially134

occur in the Chilean subduction megathrust. They are sampled at 1 Hz and stored in135

windows of 700 s duration, centered at the origin time.136

–4–



manuscript submitted to JGR: Solid Earth

Longitude

L
a
ti
tu
d
e

Figure 1. Two seismic networks and earthquake sources used in this work. The yellow dots

indicate the location of the synthetic sources. Blue triangles represent the stations of the 2010

network, purple triangles those of the 2021 network, and orange triangles the stations that belong

to both networks. The red star represents the 2010 Mw 8.8 Maule earthquake epicenter.
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Figure 2. Source time functions used to generate the synthetic PEGS database, correspond-

ing to magnitudes between 7.0 and 9.6.

2.2 Empirical noise database137

For both configurations, 2010 and 2021, the noise database is extracted from 11138

months of continuous recordings, from May 2009 to April 2010 and from February 2021139

to January 2022, respectively. The database is composed of 1-hour long traces that we140

pre-process as follows: instrumental response, mean and linear trend removal, and dec-141

imation to 1 Hz. We filter the recordings and synthetic waveforms as indicated in Vallée142

et al. (2017), using a 2.0 mHz high-pass, Butterworth, 2 poles, causal filter and a 30.0143

mHz low-pass, Butterworth, 6 poles, causal filter. Then, we extract data windows (mainly144

composed of noise) of 700 s from the 1-hour-long traces at randomly selected starting145

times.146

Finally, we randomly add these noise samples to the synthetic PEGS and store each147

waveform as a 700 s long time series, centered on the earthquake origin time. We cal-148

culate the P-wave arrival time corresponding to each event-station pair in the synthetic149

waveform database, then set the signal to zero after the P-wave arrival time, to use only150

information contained in PEGS.151

The database is divided into three parts: training, validation and test sets that com-152

prise 80%, 10% and 10% of the database, respectively. As in Licciardi et al. (2022), we153

clip traces at ±10 nm/s2 to eliminate high amplitudes and to limit the influence of high154

levels of noise. We scale amplitudes by 10 nm/s2 to facilitate the convergence of the op-155

timizer and to preserve information on the relative amplitudes of the PEGS. Addition-156

ally, we set to zero the amplitudes of the traces of 5% of the stations, randomly selected,157

for each event to simulate missing data and to limit over-fitting.158
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3 PEGSNet159

3.1 Architecture160

PEGSNet is a CNN that combines convolutional layers and fully connected layers161

in sequence (Fig. 3), adopting a multi-station approach (Licciardi et al., 2022). We work162

with image-like inputs to train PEGSNet. Data are organised as images of size (M,N,c).163

M (= 315) is the number of samples in 315 s long trace time windows, N is the num-164

ber of stations and c (= 3) is the number of components: vertical, east and north. The165

three outputs of the model are latitude (ϕ), longitude (λ) and moment magnitude (Mw(t))166

at the time t of the last sample of the window.167

The original architecture of PEGSNet designed by Licciardi et al. (2022) consists168

of eight convolutional blocks, but in this work, we use seven since the number of stations169

is less than that used in the cited work. Each block has one convolutional layer with rec-170

tified linear unit (ReLu) activation function and one dropout layer. Each convolutional171

layer has 32 filters from block 1 to block 4, 64 filters in blocks 5 and 6, 128 filters in block172

7. Each convolutional layer uses a fixed kernel size of 3 × 3 and also a spatial dropout173

with a fixed rate of 4%. From block 4 we add maximum pooling layers to reduce the di-174

mension of the input features by a factor of 4. This output is flattened and fed to a se-175

quence of two dense layers of size 512 and 256, with a ReLu activation function and a176

spatial dropout with a rate of 4%. The output layer consists of three neurons that per-177

form regression through a hyperbolic tangent activation function (Figure 3 a). The num-178

ber of parameters in the network is 1,535,139.179

3.2 Training and testing180

The labeled ϕ and λ correspond to the true values used for the computation of the181

synthetic PEGS of each event. The labeled Mw(t) is the moment magnitude used to cal-182

culate the synthetic PEGS at the time of the last waveform sample t. We extract the183

data of a determined running time window that starts at a random time t1 and has a184

length of 315 s. Then, we assign the value of Mw(t1 + 315s) as the corresponding la-185

bel (Fig. 3 b and c). In other words, PEGSNet is given a 315s snapshot of the network’s186

seismograms, and has to output the magnitude at the end of this snapshot. The loss be-187

tween the ground truth and the predicted values is minimized during training (200 epochs188

and batches of size 512) by measuring the mean absolute error. At the end of each epoch,189

the model is evaluated on the validation set. The model whose loss value is the lowest190

on the validation set is selected as the final model and is evaluated once again on the test191

set. We train PEGSNet twice: once on the 2010 and once on the 2021 networks.192

The process of testing is as follows: for each sample in the test set, a 315 s-long win-193

dow [t1, t2 = t1 + 315s] slides through the data with a time step of 1 s. The starting194

window ends at the earthquake origin time t0 (t2 = t0 and t1 = t0 − 315s) and the195

final window starts at the earthquake origin time (t2 = t0 + 315s and t1 = t0). In be-196

tween, PEGSNet reconstructs the STF by predicting Mw(t2) at each time step of 1 s.197

4 PEGSNet performance in Chile in 2010198

4.1 Overall performance199

PEGSNet estimates the latitude ϕ and longitude λ of synthetic earthquakes, with200

errors on the order of 0.5◦ [55 km] for latitude and 0.2◦ [22 km] for longitude, after 120201

sec (see supplementary material Fig. S1). These results should not be over-interpreted202

since we implicitly provide the P-wave arrival times to PEGSNet by setting waveforms203

to 0 after the P arrival, making the location problem relatively trivial. We therefore mainly204

focus our analysis on the magnitude estimation.205

–7–



manuscript submitted to JGR: Solid Earth

N

32

M

64

M
/2

N/2

64
M
/4

N/4

128
M
/8

N/8

51
2

25
6

3

323232
Cv1 Cv2 Cv3 Cv4

Conv5

Conv6

Conv7 Dense1 Dense2 Output

M

N

Convolutional layer

ReLu activation

Spatial dropout layer

Maxpooling layer

Dense layer

Time after origin [s]

0

5

10

15

20
-300 -200 -100 0 100 200 300

S
ta

ti
o
n
 I
D

1.0

0.5

0.0

0.5

1.0

S
ca

le
d
 a

m
p
lit

u
d
e

0 100
Time after origin [s]

6

7

8

9

10

M
w

Mw (T2)

200 300

T1 T2 Mw label

a

b c

Figure 3. a PEGSNet architecture: The input data is a three-channel image (each channel

corresponds to each component Z, N and E), of shape MxN, where M is the number of sam-

ples and N the number of seismic stations. b One example of the input data from the training

database (vertical component only). The shaded area represents the input data for PEGSNet.

The beginning of the input window T1 is randomly selected and T2 = T1 + 315 s. c The blue line

corresponds to the moment Mw(t) for the selected event. The label assigned is Mw(T2) at the

end of the window.
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a b

Figure 4. a Accuracy of the predictions on the test set as a function of time and magnitude.

In each bin (pixel), the color represents the number of predictions whose distance to the ground

truth is less than 0.4 magnitude units, divided by the total number of samples in the bin. The

dashed lines represent the average values of the true Mw(t) for events with the final magnitude

indicated by the corresponding number. b Density map of the average residuals between the true

and predicted magnitudes as a function of time and magnitude.

We simulate a real-time scenario on each sample of the test set, by analyzing the206

data with a running time window of 315 s. Each window is fed to PEGSNet which es-207

timates Mw(t), the magnitude at the time of the last sample of the time window. Then,208

the window is shifted in steps of 1 s as PEGSNet progressively reconstructs the STF. We209

can evaluate how reliable the results are through accuracy maps (Fig. 4). We define ac-210

curacy as the number of successful predictions divided by the total number of samples,211

with a prediction considered successful when its difference with the ground truth is less212

than 0.4 magnitude units. The maps in Fig. 4 are calculated using all the samples of the213

test set. The outcome indicates that the model can track the moment released by earth-214

quakes with magnitude equal to or higher than 8.8 with accuracy above 60% (Fig. 4a)215

and errors below 0.37 (Fig. 4b), starting at 100 s after origin time. Earthquakes of mag-216

nitudes between 8.2 and 8.7 can be estimated with accuracy between 33% and 54% and217

errors above 0.42, 100 s after origin time.218

4.2 Performance on Mw 8.8 earthquakes219

We test PEGSNet’s performance on Mw 8.8 synthetic earthquakes distributed ev-220

erywhere along the Chilean subduction fault. Figure 5a shows the probability density221

of the magnitude estimation on the test set for all the predictions of events with final222

magnitude Mw = 8.8±0.5. Following the red solid line, which is the mode of the pre-223

dictions, we see a clear underestimation of the magnitude before 100 s (when the true224

Mw is generally below 8.7 in our STF database) followed by a sudden jump after which225

the model starts tracking the evolution of the magnitude. This indicates that PEGSNet226

does not detect PEGS when the earthquake magnitude is below 8.7 and that estimations227

below that magnitude threshold should be interpreted as an absence of detected signal.228

Above this value, estimations start to be reliable, indicating the ongoing occurrence of229

a very large (Mw ≥ 8.7), likely tsunamigenic, earthquake.230
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Figure 5. a Probability density of the magnitude estimation on Mw 8.8 synthetic earthquakes

distributed everywhere along the Chilean subduction fault, with the 2010 network. The solid red

line is the mode of the distribution. The red dashed lines limit the range between the 95 and 25

interquartiles. The solid black line is the median of the ground truth, and the dashed black lines

limit the range between the 95 and 5 interquartiles. b Same as a for the 2021 network.

4.3 Playback of the Maule Earthquake231

In order to validate the performance of PEGSNet, we use the actual Maule earth-232

quake recordings. The processing of the raw data is the same as the one described in the233

Data section. We feed the model with the processed signals. The model outputs mag-234

nitude estimations every second starting at the origin time of the earthquake and using235

the previous 315 s of data, as described in the PEGSNet architecture section. We com-236

pare the results to the STF extracted from the SCARDEC database (Vallée & Douet,237

2016) (Fig. 6). We observe a clear underestimation of the earthquake magnitude in the238

first 90 s. After 90 s, the model starts approaching the correct magnitude evolution.239

We also compare our result to estimations obtained by other early warning algo-240

rithms such as G-larmS (C. J. Ruhl et al., 2019) and M-LARGE (Lin et al., 2021). The241

G-larmS estimation of the STF approaches the real STF before PEGSNet’s (Fig. 6). This242

belated stabilization is mainly due to the small number of stations available for PEGSNet.243

The same model trained with data recorded by a higher number of stations can give bet-244

ter results, as seen in the Tohoku earthquake case (Licciardi et al., 2022). G-larmS is cou-245

pled to the seismic point-source algorithm of ShakeAlert (C. Ruhl et al., 2017; C. J. Ruhl246

et al., 2019), which is an EEW system that uses a combination of the amplitude and fre-247

quency content of the first seconds of the P-wave arrival to estimate source parameters248

(C. Ruhl et al., 2017). Therefore, G-LarmS relies on prior constraints. M-LARGE is a249

deep learning model that characterizes earthquake magnitude in real time using data from250

more than 120 stations of the Chilean HR-GNSS network (Lin et al., 2021). M-LARGE251

takes 40 s to reach values within a range of 8.8±0.3. However, at that time the earth-252
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Figure 6. PEGSNet performance on real data for the Maule earthquake. The red curve shows

the magnitude estimated by PEGSNet as a function of time using the recordings of the Maule

earthquake. It is compared to the STF of the Maule earthquake in the SCARDEC database

(Vallée & Douet, 2016) and to the estimations obtained by the G-larmS and M-LARGE algo-

rithms. The golden dashed lines indicate ±0.3 magnitude units around the SCARDEC STF.

quake is still ongoing and the final magnitude value is not yet reached (see the golden253

curve in Fig. 6). For both G-larmS and M-LARGE, the results rely on using a priori as-254

sumptions on the slip distribution (McGuire et al., 2021) and are in contradiction with255

statistical analysis of earthquake source time functions (Meier et al., 2017). On the con-256

trary, our approach requires no such a priori constraints and achieves similar theoret-257

ical performance only by leveraging signals travelling faster than seismic waves.258

We perform two additional tests to assess the reliability of the model. In the first259

test, we generate synthetic PEGS using the SCARDEC STF of the Maule earthquake260

(Vallée & Douet, 2016) and add 1,000 different windows of noise recordings randomly261

taken from the test set. We then feed the model with these waveforms. The estimations262

indicate an accurate magnitude estimation starting a little after 100 s (Fig. 7). The sec-263

ond test consists in feeding the model with the 1,000 windows of noise, to check that the264

estimations of Mw do not exceed 8.7, which is the sensitivity level of PEGSNet (Fig. 8).265

The median of the magnitude estimations tends to remain constant at around 7.2, this266

value is considered the baseline corresponding to no PEGS detection.267

5 PEGSNet performance in Chile in 2021268

5.1 Overall performance269

The results on the synthetic test set for the location, ϕ and λ, with the 2021 net-270

work are displayed in the supporting information (Fig. S2). The estimations of latitudes271

have errors up to 0.37◦ (41 km) and the ones of longitudes present up to 0.1◦ (11 km),272

90 s after the origin. These location results are better than with the 2010 network. This273

is because the estimations rely on the P-wave arrival times and the present network con-274

tains more stations closer to the earthquake source.275

According to the accuracy calculations, PEGSNet on the 2021 network can track276

the moment released by earthquakes with magnitude equal to or higher than 8.8 with277

an accuracy above 55% (Fig. 9 a) and errors below 0.46 (Fig. 9 b), 100 s after the ori-278

gin time. For earthquakes with magnitude between 8.2 and 8.7, the accuracy goes from279

30% to 47% and errors between 0.5 and 0.75, after 100 s from the origin time. We se-280

lect this time value in order to compare with the results obtained for the 2010 network,281
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Figure 7. Density plot of PEGSNet magnitude estimations from 1,000 synthetic signals made

of synthetic PEGS corresponding to the Maule earthquake source, augmented with 1,000 ran-

dom noise time windows. The blue solid line represents the true STF taken from the SCARDEC

database (Vallée & Douet, 2016), the same that we used to model the synthetics. The dashed

blue lines indicate ±0.4 magnitude units around the SCARDEC STF. The red solid line is the

median of the obtained distribution, the dotted red lines are the Q1-Q3 interquartile range and

the dashed red lines limit the 5th and 95th percentiles. The gray solid line represents the magni-

tude estimated by PEGSNet using real data (same as in Fig. 6).
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Figure 8. Magnitude estimations obtained by applying PEGSNet to noise: same as Fig. 7 but

removing the synthetic PEGS from the input data.
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a b

Figure 9. Same as Fig. 4 for the 2021 network.

which are better than in the present configuration. The reason is that the 2021 network282

is mainly parallel and close to the sources, where the expected PEGS amplitudes of sub-283

duction earthquakes are minimal (Fig. 10) (Vallée & Juhel, 2019). The leading contri-284

bution to the results is given by the only station located far from the trench, TRQA.285

This highlights that PEGSNet performance is not only sensitive to the number of286

stations but also to their spatial distribution. According to the results obtained, PEGSNet’s287

performance is more favorable with the contribution of stations located in the eastern288

part of the continent and far away from the sources, that is to say, in Argentina. For earth-289

quakes comparable in magnitude to the Maule event, the ideal observation location for290

PEGS is ≈ 800 to 1,500 km west of the source (Fig. 10). With potential sources distributed291

all along the Andean subduction fault, this defines a geographical band on where deploy-292

ing stations could dramatically benefit PEGS-based tsunami warning systems.293

5.2 Performance on Mw 8.8 earthquakes294

The probability density of the magnitude estimation on the test set for all the es-295

timations of events with final magnitude Mw = 8.8±0.5 are shown in Figure 5 b. Fol-296

lowing the mode (red solid line), we see that we also underestimate the magnitude, but297

this time until 70 s approximately, followed by a jump after which the model starts track-298

ing the evolution of the magnitude. This faster estimation compared to the 2010 case299

is because, in the 2021 scenario, there are more stations that are deployed close to the300

synthetic sources. This indicates that with the present seismic network, PEGSNet would301

output a faster magnitude estimation for a magnitude 8.8 event than with the seismic302

network available in 2010. However, for slightly smaller events (8.5 < Mw < 8.8), PEGSNet303

would perform better on the seismic network of 2010 than on the present one.304

6 Discussion305

6.1 Noise analysis306

To evaluate the influence of the noise amplitude on PEGSNet’s performance, we307

calculate the accuracy using different groups of samples of the test set, divided accord-308

ing to the noise level. We compute the standard deviation of a five-minute window of309
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Figure 10. Spatial distribution of the maximum PEGS amplitude for the Maule earthquake,

in the vertical component (at the P-wave arrival time). Turquoise and fuchsia triangles represent

stations of the 2010 and 2021 networks, respectively. Green triangles are the stations common to

the two networks
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data before the P-wave arrival for each sample of the test set, and subsequently the me-310

dian of the standard deviation over the whole seismic network. For both the 2010 and311

2021 seismic networks, we then divide the test sets into 4 subsets defined by the three312

quartiles of the distribution: Q1, Q2 and Q3. The values of the three quartiles are dis-313

played in Figs. 11a and 12a for the 2010 and 2021 networks , respectively. In both cases,314

the accuracy of the estimations decreases when the level of noise increases. This is sum-315

marized in Table 1, where the accuracy values have been calculated for the events with316

magnitude equal to or higher than 8.8, after 100 s of the origin time. Even though the317

level of noise of the 2010 network is higher than the one of the 2021 network, the accu-318

racy of the estimations is better. These results come from the fact that 2010 network319

contains stations where the amplitudes of PEGS are large, while 2021 network stations320

are very close to the sources and the amplitudes of PEGS are small (Fig. 10). Thus, in321

our case study, the spatial configuration of the seismic network is more important than322

the number of stations and even than its level of noise.323
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Figure 11. a Frequency distribution of the median standard deviation of the noise (σ) for the

2010 network test set, using a 5-min window previous to the event. The dashed red lines indicate

the first (Q1), second (Q2) and third (Q3) quartiles. The bottom panels show the accuracy maps

computed using the samples of the test set for which (b) σ < Q1 and (c) σ > Q3.

6.2 Test on noiseless data324

To explore the theoretical limits of PEGSNet and find an upper limit in the per-325

formance, we train and test the model considering an idealized scenario of noiseless data.326

We use the synthetic PEGS database described previously, but do not add noise. The327

density plot of the residuals in Figure 14 shows again the evident difference in the time-328
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Figure 12. Same as Fig. 11 for the 2021 network.

2010 network 2021 network

σ Accuracy Misfit Accuracy Misfit

< Q1 62 % 0.35 59 % 0.39

> Q3 59 % 0.43 51 % 0.59

Table 1. Accuracy and misfit values calculated using the Mw ≥ 8.8 earthquakes 100 s after the

origin time and that belong to the first and fourth subset of the test set, for the 2010 and 2021

networks. The first subset (lowest level of noise) contains the samples for which σ < Q1. The

fourth subset (higher level of noise) contains the samples for which σ > Q3. Q1 and Q3 values

are indicated in panel a of Figures 11 and 12.

liness of the estimations between the two networks: the 2021 network provides earlier329

estimates than the 2010 network. The estimations based on the 2010 network start at330

around 20 s and have errors of ±0.2 after the first 50 s (Fig. 14 a). The estimations based331

on the 2021 network start within 10 s after origin time and have errors of ±0.2 but with332

higher dispersion up to around 60 s. According to the corresponding accuracy maps (Fig.333

13), the first estimates start earlier with the 2021 network but the accuracy is also poorer334

than with the 2010 network, as discussed in sections 4 and 5.335
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Figure 13. Accuracy map using the noise-free PEGS database, test set only. a and b corre-

spond to 2010 and 2021 networks, respectively.
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Figure 14. Density plot of the residuals between the predicted magnitude and the ground

truth as a function of time for the test set of the noise-free PEGS database. Panels a and b cor-

respond to the results using the 2010 and 2021 networks, respectively.
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7 Conclusion336

We trained PEGSNet, a Convolutional Neural Network that estimates the evolu-337

tion of an earthquake’s source time function based on Prompt Elasto-Gravity Signals,338

with data recorded by the seismic networks available in Chile in 2010 and 2021. The for-339

mer contains fewer stations and noisier data. Our study confirms that PEGS can be used340

for rapid estimation of the magnitude of large earthquakes, with performance compet-341

itive with GNSS-based algorithms for the 2010 Mw 8.8 Maule earthquake, but without342

requiring a priori assumptions on slip distribution. The model shows delayed estimations343

of moment release, but higher accuracy values when using the 2010 configuration. The344

2021 network provides accurate estimations sooner owing to its higher number of sta-345

tions and their proximity to the subduction sources. Nevertheless, this latter aspect played346

an adverse role in the model performance because the closer stations do not record the347

PEGS with the largest amplitudes, meaning that PEGSNet is more sensitive to the ge-348

ometry of the network than to the number of stations. These aspects give us a better349

outlook on the requirements for improving the performance of PEGS-based early warn-350

ing approaches, such as the deployment of seismic stations where the larger amplitudes351

of PEGS are expected, in particular in Argentina.352
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