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Abstract11

Constitutive laws relating fluid potentials and fluxes in a nonlinear manner are common12

in several porous media applications, including biological and reactive flows, poromechan-13

ics, and fracture deformation. Compared to the standard, linear Darcy’s law, such en-14

hanced flux relations increase both the degree of nonlinearity, and, in the case of mul-15

tiphysics simulations, coupling strength between processes. While incorporating the non-16

linearities into simulation models is thus paramount for computational efficiency, cor-17

rect linearization, as is needed for incorporation in Newton’s method, is challenging from18

a practical perspective. The standard approach is therefore to ignore nonlinearities in19

the permeability during linearization. For finite volume methods, which are popular in20

porous media applications, complete linearization is feasible only for the simplest flux21

discretization, namely the two-point flux approximation. We introduce an approximated22

linearization scheme for finite volume methods that is exact for the two-point scheme23

and can be applied to more advanced and accurate discretizations, exemplified herein24

by a multi-point flux stencil. We test the new method for both nonlinear porous media25

flow and several multiphysics simulations. Our results show that the new linearization26

consistently outperforms the standard approach. Moreover our scheme achieves asymp-27

totic second order convergence of the Newton iterations, in contrast to the linear con-28

vergence obtained with the standard approach.29

1 Introduction30

The topic of this paper is porous media simulation models where the fluid flux is31

related to pressure through a nonlinear diffusion law. We will refer to constitutive laws32

that have permeability as a dynamic function of other variables as state-dependent per-33

meability relations. They are important in several porous media applications, including34

well-established models such as Richards’ equation in hydrology (Richards, 1931) and35

the cubic relation between fracture aperture and permeability (Boussinesq, 1868). Other36

constitutive relations of relevance to this work are power laws and the Kozeny-Carman37

relation between porosity and permeability (Hommel et al., 2018), and bulk permeabil-38

ity as a function of the effective pressure (Shapiro, 2015). These examples illustrate that39

constitutive permeability relations appear in both single-physics models that are essen-40

tially of nonlinear diffusion type and complex multiphysics problems where the perme-41

ability in modeled as functionally dependent on several primary variables.42

In numerical simulations, the cost of linearization, and of solving the resulting lin-43

ear problem, will typically dominate the overall cost of simulation, thus the solution strat-44

egy for nonlinear terms is critical for simulation efficiency. Common approaches for solv-45

ing nonlinear systems can be divided into three classes: The simplest approach is the straight-46

forward application of Newton’s method, which achieves second order convergence rate47

in the asymptotic limit, but is only locally convergent (Deuflhard, 2005). Methods in the48

second class attempt to achieve global convergence by combining Newton’s method with49

schemes such as line searches (Dennis Jr & Schnabel, 1996), trust region approaches (Jenny50

et al., 2009; Wang & Tchelepi, 2013; Møyner, 2017), fixed-point methods (Radu et al.,51

2015), and acceleration methods (Anderson, 1965; Walker & Ni, 2011; Jiang & Tchelepi,52

2019). Some of these techniques can be applied at the start of a nonlinear solve when53

the approximated solution is presumed to be outside the Newton convergence region, but54

then apply Newton’s method to achieve second order convergence for the last iterations,55

e.g., (List & Radu, 2016; Both et al., 2019). Finally, in multiphysics problems, the prob-56

lem may be split into smaller blocks that each represent one or several physical processes,57

and Newton’s method applied successively to each of these blocks (Jenny et al., 2006;58

Li et al., 2021).59

Independent of which of the above strategies is applied, it is highly desirable that60

the linearization scheme is implemented so that second order accuracy can be achieved61
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asymptotically. This depends on the Jacobian containing sufficiently accurate (ideally62

exact) representations of the multivariate derivatives of the residual equations. Depend-63

ing on the design of the simulation software, correctly implementing the derivatives in-64

volves tedious work, and including new nonlinearities, for instance in the form of per-65

meability relations, can be a tremendous technical challenge. While these technicalities66

can be partly relieved by employing automatic differentiation to construct the deriva-67

tives, as is increasingly being done in simulation software (Krogstad et al., 2015; Zhou68

et al., 2011; Rasmussen et al., 2021), a simpler alternative is to ignore or approximate69

derivatives in the linearization scheme. The resulting scheme can be considered a quasi-70

Newton approach, in the sense that the Jacobian matrix is not the true derivative of the71

residual equations. Relying on such approximated Jacobian matrices can significantly72

simplify implementation, thus adaptation, of new physical models, but as with any quasi-73

Newton method, second order convergence can in general not be achieved (Nocedal &74

Wright, 1999). A critical question in employing Newton’s method in multiphysics sim-75

ulations, in particular when considering non-standard effects such as nonlinear perme-76

ability relations, is therefore whether the derivatives can be computed with sufficient ac-77

curacy to preserve second order convergence, and whether the speedup gained is worth78

the additional implementation effort.79

Since linearization is applied to the discretized system, the question of how to cal-80

culate or approximate derivatives is closely linked to the discretization methods in use.81

Specifically, for state-dependent permeability relations, the discretization of diffusion terms82

must be differentiated with respect to the relevant primary variables. This can readily83

be done for methods based on variational formulations, including primal and mixed fi-84

nite elements. However, in finite volume methods, which are commonly applied for com-85

plex applications, the permeability enters the discretization in non-trivial ways, and ex-86

act derivatives can be obtained only in some cases. Specifically, it is relatively straight-87

forward to differentiate the two-point flux approximation (TPFA) (Aziz & Settari, 1979)88

with respect to permeability. While robust, this scheme is well known to suffer from in-89

consistencies and grid orientation effects, see e.g. (Zhou et al., 2011). More advanced fi-90

nite volume methods, in this paper exemplified by the so-called multi-point flux approx-91

imation (MPFA) methods (Aavatsmark, 2002; Edwards & Rodgers, 1998), amend these92

shortcomings. However, the more complex discretization stencils in such methods are93

not readily differentiated, raising the question of whether fast Newton convergence can94

be achieved when the discretizations are applied to (multiphysics) problems with state-95

dependent permeability relations. As an alternative, some versions of nonlinear finite vol-96

ume methods, e.g. (Su et al., 2018), can be applied within Newton’s method. However,97

few applications of nonlinear methods to multiphysics problems have been reported, see98

(Schneider et al., 2018) for an exception, and we are not aware of any application of non-99

linear finite volume methods to problems with state-dependent permeability.100

In the present work, we study multiphysics problems involving state-dependent per-101

meability. We restrict ourselves to fully coupled solution strategies based on implicit tem-102

poral discretization and finite volume approximations of spatial derivatives. We thus dis-103

regard approaches based on decoupling or tailoring of the nonlinear solver, however, the104

techniques we introduce can also be applied to such approaches. We consider both TPFA105

and MPFA methods. For the more complex MPFA scheme it is not practical to calcu-106

late exact derivatives, and we therefore show how to approximate the derivatives by a107

TPFA approach. Our suggested method is easy to implement and can readily be applied108

to multiphysics problems. We illustrate this by presenting simulations of four problems109

of high application relevance: A nonlinear diffusive flow problem, a reactive transport110

problem where permeability is altered by chemical dissolution, poromechanical simula-111

tions where the permeability changes due to porosity changes, and hydro-mechanical sim-112

ulations for fractured porous media, with the fracture permeability changing due to frac-113

ture deformation. In all cases, we show that our formulation is superior to the standard114

treatment of permeability updates, leading to much reduced simulation time. All sim-115
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ulations are run using PorePy, an open-source simulation toolbox for multiphysics prob-116

lems in fractured porous media (Keilegavlen et al., 2021), see Section 6.117

The rest of the paper is structured as follows: Section 2 presents the model equa-118

tions for fluid flow and the three multiphysics example models. In Section 3, we describe119

the finite volume flux discretizations and our proposed method for including permeabil-120

ity updates. Section 4 contains results for validation and application simulations, while121

we offer a summary and conclusions in Section 5.122

2 Example model problems123

In this section we introduce four model problems that motivate our study of solvers124

that deal with state-dependent permeability. These are a nonlinear stationary diffusion125

problem and three multiphysics problems which each illustrate different mechanisms lead-126

ing to dynamic and nonlinear permeability, which in turn impact the entire nonlinear127

system of equations. We use the four problems to validate and illustrate our discretiza-128

tion scheme in Section 4.129

For all applications, we model the fluid flux q using nonlinear version of Darcy’s
law:

q = −K(ξ)∇p, (1)

with p representing the potential. Throughout this work we will use the fluid pressure
as the potential, and we will assume a constant fluid viscosity of 1. The permeability K
depends on the system state, represented here by a generic variable ξ. For single physics
nonlinear diffusion ξ = p, while for the multiphysics problems considered in the follow-
ing sections more advanced dependencies will be introduced. In the case ξ = p, a state-
dependent diffusion problem can be obtained by combining Eq. (1) with a conservation
equation, which reads:

∂ϕρ

∂t
+∇ · (ρq) = f. (2)

Here, ϕ is a porosity, t the time variable and f a fluid source term. The fluid density is

ρ = ρ0e
c(p−p0), (3)

with c and ρ0 denoting compressibility and reference density, respectively. For simplic-130

ity, we shall sometimes consider an incompressible fluid, i.e., c = 0. Setting c = 0 in131

(2) gives a nonlinear stationary diffusion model.132

2.1 Reactive transport133

As our first multiphysics application we consider reactive transport with mineral134

dissolution. We represent this by a kinetic reaction system of two components, denoted135

A and B, represented by the pore volume fractions cA and cB , where A is aqueous and136

B is a mineral. Conservation of the two components is modeled as137

∂ϕcAρA
∂t

+∇ · (qcAρA) = r (4)

∂cBρB
∂t

= −r (5)

Here, the reaction term is r = r0

(
cA/KA − 1

)
with r0 denoting a constant reference138

reaction rate, the Darcy velocity q is computed using Eq. (1) and KA denotes the con-139

centration at which component A is in equilibrium. The component densities are rep-140

resented by ρA and ρB , and are taken as constant in this work. For simplicity, we as-141

sume the fluid density function is independent of cA so that water conservation is de-142

scribed by (2).143
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The porosity will change with the concentration of the mineral B, i.e.

ϕ = ϕ0(1− cB), (6)

where ϕ0 is the reference porosity at cB = 0. The permeability will also be altered by
the reactions, commonly modeled by the power law

K = K0

( ϕ

ϕ0

)η

, (7)

with K0 denoting the permeability at the reference porosity and the exponent η an ap-144

plication dependent fitting parameter (Hommel et al., 2018). The presence of q in Eq.145

(4) and the permeability’s porosity dependence result in a two-way coupled problem.146

2.2 Poroelasticity147

A common model for coupled flow and mechanical deformation in a porous medium148

is described by the equations which read (Coussy, 2004)149

∇ · (Cϵ− Iαp) = fs (8)
∂ρϕ

∂t
−∇ · (ρK∇p) = ff (9)

Here, ϵ = (∇u + (∇u)T )/2 is the symmetric strain tensor, u is the displacement vec-
tor, and the Darcy velocity q is explicitly represented in the equations for illustrative pur-
poses. Furthermore, C represents the stiffness matrix, I the identity tensor, α is the Biot
coefficient, fm is body forces, and fs denotes fluid source terms. The porosity depends
on both fluid pressure and the displacement (Coussy, 2004)

ϕ = ϕ0 + (1− α)
α− ϕ0

Ks
(p− p0) + α∇ · (u− u0), (10)

with Ks denoting the bulk modulus and where ϕ0, p0, and u0 represent porosity, pres-150

sure, and displacement in a reference state. The permeability will change together with151

the porosity, modeled herein by setting η = 3 in Eq. (7), resulting in the Kozeny-Carman152

relation. The Biot coefficient α thus acts as a control on the direct contribution from the153

mechanical deformation to the (nonlinear) permeability change.154

2.3 Fractured poroelastic medium with dynamic fracture aperture155

As a final example application, we consider the extension of poroelasticity to frac-156

tured media. Several models exist for deformation of fractured media, we consider a sim-157

ple version which nevertheless illustrates the importance of dynamic permeability effects158

in the fracture, through the dependency of fracture aperture.159

We consider a domain with a single fracture, which is modeled as a lower-dimensional
inclusion embedded in the simulation domain; extensions to networks of intersecting frac-
tures is straightforward, see for instance (Stefansson et al., 2021). Flow and deforma-
tion of the host medium are again modeled as a poroelastic system, i.e., by Eqs. (8) -
(10). Fluid flow in the fracture and between fracture and matrix are modeled by Darcy-
type laws on the form (Martin et al., 2005; Nordbotten et al., 2019)

q∥ = −K∥∇∥pf , q±⊥ = κ⊥(p
±
⊥ − pf ), (11)

In these equations, subscripts ∥ and ⊥ represent the tangential and normal direction to
the fracture, respectively, while superscript ± indicates the two sides of the fracture; we
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refer to (Nordbotten et al., 2019) for more details. The fracture permeability is related
to the fracture aperture a through the so-called cubic law,

K∥ =
a3

12
. (12)

Mass conservation for the host medium is modeled by (2), while in the fracture, the equa-
tion reads

∂(ρa)

∂t
+∇ · (ρq∥)− ρ(q+⊥ + q−⊥) = f (13)

where the last term of the left-hand side describes inflow into fracture from the host do-160

main.161

The aperture can change due to mechanical deformation of the fracture. A wide
range of models have been proposed to incorporate such effects under various circum-
stances, see e.g. (Barton et al., 1985; Willis-Richards et al., 1996). As a simple but il-
lustrative example, consider the effective traction T on the fracture wall,

T = n · (Cϵ− Ipm)− pfI · n. (14)

When the normal component of the effective traction is tensile, the fracture walls are pushed
apart, leading to an increasing aperture

a = [u]n + a0 [u] = u+ − u−, (15)

where u± is the displacement on the opposing fracture walls, subscript n denotes the nor-162

mal component and a0 is a residual hydraulic aperture. Changes in the aperture are cou-163

pled through the fracture permeability to the pressure equation in the fracture, with cou-164

pling of the fracture pressure back to the effective normal traction as shown by the last165

term of Eq. (14).166

In the normal direction to the fracture, its deformation is restricted by

[u]n ≥ 0 [u]nTn = 0 Tn ≤ 0. (16)

Denoting the friction coefficient by F , we model the tangential (τ) deformation using
a Coulomb type friction law, see e.g.,(Hüeber & Wohlmuth, 2005):

||Tτ || ≤ −FTn (17)

||Tτ || < −FTn ⇒ [u]τ = 0 (18)

||Tτ || = −FTn ⇒ ∃ ζ ∈ R+ : [u]τ = ζTτ . (19)

These equations are supplemented by a condition of force balance on the fracture walls,
i.e.,

T+ + T− = 0 (20)

where again superscripts are used to denote quantities on the two opposing sides of the167

fracture.168

3 Discretization169

In this section, we briefly introduce two finite volume methods for diffusive terms.170

Then, we show how to extend them for state-dependent permeability.171

3.1 Finite Volume Methods172

Consider a grid and let Γj denote a generic face in the grid. A cell-centered finite
volume discretization approximates the flux through Γj as

qj =
∑
i∈Tj

tj,ipi, (21)
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where Tj represents a set of cells in the vicinity of face j, pi is the pressure in cell i and
the coefficients tj,i are called transmissibilities. The choice of a specific discretization method
fixes Tj and determines how the transmissibilities are computed. As an example, in TPFA,
Tj contains the two immediate neighbors of face j, denoted L and R, and

tj,L =
αLαR

αL + αR
, αi = |Γj |

nj ·Ki

dj,i · dj,i
· dj,i, tj,R = −tj,L. (22)

Here, i ∈ L,R, nj is the normal vector of Γj pointing from cell L to R and dj,L is the173

distance between the centers of cell L and Γj etc. We have defined a positive flux go-174

ing from cell L to R and α{L,R} are known as the half transmissibilities.175

In MPFA methods Tj is larger, for the standard MPFA-O method (specifically the176

MPFA O(0)-method, see (Aavatsmark, 2002)) it consists of all cells sharing at least one177

vertex with Γj . This makes the construction of the transmissibilities more involved, specif-178

ically the construction requires the inversion of a local matrix as detailed in e.g. (Aavatsmark,179

2002; Edwards & Rodgers, 1998), and it is therefore not practical to express the trans-180

missibilities explicitly as functions of the permeability.181

Equipped with a flux discretization on the form (21) for all faces in a grid, the in-
tegral form of the flux divergence in (2), stated for a cell ωk with boundary ∂ωk and outer
normal vector n, reads ∫

∂ωk

q · ndS ≈
∑
j∈Fk

qj =
∑
j∈Fk

∑
i∈Tj

tj,ipi, (23)

with Fk denoting the set of faces of ωk.182

3.2 Discrete state-dependent permeability183

The discretization defined by Eq. (21) is routinely applied both to stand-alone dif-
fusion problems and multiphysics problems that include diffusion as part of larger prob-
lems, both linear and nonlinear. In cases where the permeability depends on the state
variable ξ, we have

t = t (K (ξ)) . (24)

For clarity of presentation, we let K be a scalar so that differentiation is well defined.
The below reasoning can be extended to anisotropic and full permeability tensors by dif-
ferentiating with respect to individual tensor components, which is straightforward but
tedious. When applying Newton’s method to nonlinear problems that include Eq. (21),
we need the differential, which reads

dqj =
∑
i∈Tj

(
tj,idpi +

∂tj,i
∂Ki

∂Ki

∂ξ
dξ

)
. (25)

While the first term is standard, the second term represents the dependency of the trans-184

missibilities on the cell-wise permeability Ki, which in turn is a function of ξ. For most185

finite volume discretizations, a direct relation between transmissibility and permeabil-186

ity is not available, thus computing
∂tj,i
∂K is not a practical option. The simpler option187

is therefore to ignore the second term in Newton linearization schemes and rather use188

an approximated Jacobian. As discussed in the introduction and demonstrated in Sec-189

tion 4, this approximation can reduce the performance of the nonlinear solver, substan-190

tially increasing the computational cost of simulations.191

From Eq. (22), we see that for TPFA, the term
∂tj,i
∂K can be expressed in closed form192

using the chain rule. If the diffusion term is discretized with TPFA and the second term193

of Eq. (25) is included, the resulting Jacobian matrix is exact. For other schemes (rep-194

resented herein by the MPFA method), including a TPFA-based representation of the195
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second term of Eq. (25) will only give an approximation of the true derivative of the dis-196

cretized flux. Nevertheless, the approximated scheme will contain information of how dif-197

fusion changes with permeability. Thus, compared to the standard approach of ignor-198

ing the effect of permeability changes on the Newton search direction, there is reason to199

hope that the new approach will result in overall lower computational cost, also for other200

finite volume methods than TPFA.201

3.3 Discretization of remaining terms202

For the simulations presented in Section 4, the reminder of the terms in the gov-203

erning equations are discretized by well-estabilshed methods; for completeness, we give204

a brief summary of the approaches below. The primary variable of the discrete fluxes205

discussed above is cell-center pressure in the porous matrix. In the case involving frac-206

tures, we also have cell pressures in the lower-dimensional grid representing the fracture207

and fracture-matrix interface fluxes representing q±⊥ of Eq. (11). The fracture applica-208

tion also requires discrete fracture tractions and interface displacements, as well as ma-209

trix displacements which are also used in mono-dimensional poroelasticity. For more in-210

formation, we refer to (Stefansson et al., 2021). In the reactive transport application,211

CA and CB are also represented by cell-center values. The governing equations are all212

solved fully coupled using a Newton-Raphson method, with suitable adjustment in the213

case of contact mechanics as outlined below.214

All volume terms are discretized in the standard finite volume manner, i.e. treated215

as cell-wise constant and integrated over the cell yielding a cell volume factor. The ad-216

vective terms are discretized using first-order upstream weighting. The upstream direc-217

tion is computed from the fluid fluxes at the previous nonlinear iteration, while the flux218

magnitudes are treated fully implicitly. We discretize the poroelastic system with the219

finite volume multi-point stress approximation scheme (Nordbotten, 2016; Keilegavlen220

& Nordbotten, 2017), which can be considered a vector extension of the MPFA scheme.221

The fracture contact mechanics relations of Eqs. (16) and (17) are reformulated
as two complementary functions depending on cell-wise fracture contact traction and frac-
ture wall displacements (Hüeber & Wohlmuth, 2005):

Cn = −Tn − 1

F
max(0, bf ) (26)

and

Cτ = max(||Tτ + c̃[u̇]τ ||(−Tτ ) + max(0, bf (Tτ + c̃[u̇]τ )). (27)

Here bf = −F (Tn+c̃[u]n) is the friction bound, u̇ indicates the increment of u between222

successive time steps and c denotes a numerical constant. The constraints are imposed223

by setting C = 0 and including the two sets of equations in the global equation sys-224

tem, solved using a semi-smooth Newton-Raphson algorithm (Hüeber & Wohlmuth, 2005;225

Berge et al., 2020) assembled using PorePy’s automatic differentiation capability. The226

resulting linear systems are solved with a direct banded solver (Bollhöfer et al., 2020).227

4 Results228

In this section, we compare the proposed method to that of standard finite volume229

schemes in terms of the convergence properties of the nonlinear system. We include the230

two-point and multi-point method with and without transmissibility differentiation, yield-231

ing four combinations which we will refer to as TPD, MPD, TP and MP, respectively.232

We reiterate that TPD and MPD both apply a TPFA-based approximation of the sec-233

ond term in Eq. (25), the methods only differ in how the transmissibilities in the first234

term is computed.235
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All simulations use the open-source software framework PorePy (Keilegavlen et al.,236

2021), and the simulations can be reproduced in a Docker container that can be found237

at (Stefansson & Keilegavlen, 2023).238

4.1 Fluid flow239

First, we perform tests for a range of spatial meshes, thus demonstrating robust-
ness with respect to factors which may impair convergence. Throughout this section, we
consider a fluid mass balance problem defined by Eqs. (1) and (2). We consider an in-
compressible fluid, thus the first term in (2) is dropped, and let the permeability depend
on the potential only, i.e. ξ = p. Specifically, we consider the function

K(p) =
√
p+ 10−2, (28)

with the constant 10−2 avoiding negative values due to numerical rounding errors. We240

consider the manufactured solution p = x(1−x)y(1−y) and apply the resulting source241

function and homogeneous Dirichlet conditions at the boundary of a unit square domain.242

In the first comparison, we use Cartesian meshes with 10, 100 and 500 cells in each243

dimension and employ the TP and TPD discretizations. We do not include the MP ver-244

sions, since they reduce to their TP equivalents on Cartesian meshes for isotropic per-245

meability, see (Aavatsmark, 2002). The plots of residual errors in Fig. 4.1 consistently246

show linear convergence of the reference method and quadratic convergence of the new247

method. Throughout this section, we use the cell-wise discrete l2 norm normalized by248

the square root of the length of the residual vector. Similarly, we compute permeabil-249

ity errors as the l2 norm of the difference between cell-wise permeability at each itera-250

tion and the permeability values in the converged state normalized using the square root251

of the number of cells. This error is also plotted in Fig. 4.1, demonstrating correlation252

between the reduction rate of, respectively, the nonlinear residuals and permeability er-253

rors.254

Next, we apply all four methods to a randomly perturbed structured mesh and an255

unstructured simplicial mesh, see Fig. 4.1. The discrepancy between TPFA and MPFA256

means the MPD combination degrades from a full Newton scheme to a Quasi-Newton257

scheme as discussed in Section 3.2. Thus, quadratic convergence in Newton’s method can-258

not be expected for the latter combination. This is reflected in the difference between259

results for MPD and TPD in the bottom left convergence plots in Fig. 4.1. Neverthe-260

less, MPD achieves significant improvement over the lagged permeability update in MP.261

Furthermore, for the TPD combination, quadratic convergence is retained. We note that262

compromising consistency using TPFA as the base discretization may in certain cases263

be expedient for its ease of implementation and simulation speed.264

Thirdly, we show results for anisotropically distorted meshes considering only MPFA265

schemes. Fixing the number of cells to 50 in the x direction, we impose grid anisotropy266

by using 200 and 1000 cells in the y direction before randomly perturbing the nodes (see267

rightmost close-up in Fig. 2). The perturbation distance is drawn uniformly from [−dx/4, dx/4]268

and [−dy/4, dy/4], with dx and dy denoting average cell lengths in the two spatial di-269

mensions. Since permeability anisotropy and grid aspect ratio have an indistinguishable270

effect in TPFA and MPFA methods, see e.g. (Aavatsmark, 2002), this is equivalent to271

solving a problem with anisotropic permeability. As evident from Fig. 1, convergence272

deteriorates somewhat with increasing anisotropy, as can be expected since the TPFA-273

style approximation of the derivatives deviates increasingly from the true MPFA deriva-274

tives. Still, significant improvement from the reference method is achieved even for the275

most extreme anisotropy ratio.276
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Figure 1. Convergence rates for different cell sizes (top left), different mesh types and dis-

cretization schemes (bottom left) and varying degree of mesh anisotropy (bottom right). For the

mesh refinement study, the permeability error is also shown (top right). We use solid lines for TP

and MP and dashed lines for TPD and MPD. The bottom left plot contains results for tetrahe-

dral and pertubed Cartesian meshes, the former of which are identified with triangular markers.

4.2 Multiphysics applications277

We now present three examples of multiphysics applications involving state-dependent278

permeability. Compared to nonlinear diffusion, the multiphysics models contain addi-279

tional nonlinearities to the permeability relation, implying that the observed convergence280

rates are affected by other parts of the solution scheme in addition to the handling of281

the nonlinear flux. While the models have a wide range of highly relevant applications,282

the parameters, which are listed in Table 1, are exemplary and do not correspond to par-283

ticular applications. Having demonstrated robustness with respect to mesh size in the284

previous section, we apply relatively coarse meshes throughout this section. All grids are285

Cartesian, meaning that the MPFA and TPFA schemes are equivalent, and we show only286

results for TP and TPD.287

We assign homogeneous Dirichlet boundary conditions for all primary variables,288

and a source or sink at the domain center acts as the driving force. Initial conditions are289

zero where not otherwise stated. We use an implicit Euler discretization, consider a sin-290

gle time step and solve the resulting system of equations monolithically.291

4.2.1 Reactive transport292

Our first application example considers reactive transport as described in Section293

2.1. The simulation domain is a unit cube discretized with a Cartesian grid consisting294

–10–



manuscript submitted to Water Resources Research

Figure 2. Close-up of a simplex mesh (left) and perturbed meshes with no anisotropy (center)

and the anisotropy ratio 50/1000 (right).

Table 1. Parameters used for the application simulations in Sec. 4.2.

Parameter 4.2.1 4.2.2 4.2.3

Reference porosity ϕ0 5× 10−2

Reference density ρ0 1 kgm−3

K0 1× 10−4 m2 1× 10−5 m2

ρA = ρB 1 kgm−3 - -

Compressibility c 0Pa−1 1× 10−3 Pa−1 1× 10−3 Pa−1

Reaction rate r0 4× 10−1 s−1 - -

Equilibrium constant KA 2× 10−1 - -

Simulation time & time step 1 s 1× 105 s 1× 105 s

Biot coefficient α - 0.25 to 1 0.2

Lamé parameters µ and λ - 1× 103 Pa and 1× 103 Pa

Gap g - - 1× 10−2 m

Friction coefficient F - - 1

Residual aperture a0 - - 1× 10−1 m

Numerical constant c̃ - - 1

Fluid source −1× 103 kg s−1 10 kg s−1 10 kg s−1 to 40 kg s−1

of 153 = 3375 3d cells. We assign a sink term in the cell at the center of the domain,295

resulting in flow from the boundary to the center. The initial state is in equilibrium, with296

CA = 0.2, CB = 0.2 and p = 0Pa matching the Dirichlet boundary pressure. The297

boundary solute concentration equals 0.4 (twice the initial concentration) causing pre-298

cipitation. The precipitation in turn reduces porosity and thereby permeability accord-299

ing to Eqs. (6) and (7). The changes to concentration, volume fraction, porosity and per-300

meability are illustrated in Fig. 3.301

We consider a series of simulations varying the exponent η of the porosity-permeability302

relationship in Eq. (7), with the higher values corresponding to a stronger nonlinearity.303

The range of values explored are identified as relevant for precipitation and dissolution304

processes, see Bernabe et al. (Bernabé et al., 2003). We provide solution plots in Fig.305

3. These show that the dynamics are mainly localized close to the domain boundary, as306

may be expected in a problem dominated by advection.307
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Figure 3. Solution plots for η=5 (top) and convergence rates (bottom) for the reactive trans-

port simulation. We show solute concentration (CA) and precipitate volume fraction (CB) to the

left and permeability (K) and porosity changes (ϕ) to the right. The simulation domain has been

sliced to expose the solution in the interior and different quantities are shown for each half of the

slice using separate color maps.

Figure 3 also contains convergence rates demonstrating considerable improvement308

and asymptotically quadratic behavior for the TPD scheme. In the case η = 0, the per-309

meability is constant, and the two schemes are equivalent, as evident from the coincid-310

ing residual plots. For nonzero values of the exponent η the residual produced by TPD311

are consistently lower than that of the non-differentiated scheme. The TP residuals de-312

viate considerably in later iterations and the residual reduction is only linear. For the313

highest value η = 8, convergence is lost altogether.314

4.2.2 Poroelasticity315

In poroelasticity, porosity changes caused by pressure and deformation translate316

into permeability changes, as described in Section 2.2. We again consider the unit cube,317

with the same spatial grid as in Section 4.2.1 and with a source in the middle of the do-318

main. Fluid injection elevates the pressure and thereby induces displacement in the vicin-319

ity of the injection point as shown at the top left in Fig. 4 The displacement in turn in-320

fluences the permeability through Eqs. (7) and (10). The effect is illustrated in Fig. 5.321

In our simulation series, we vary the Biot coefficient α in the interval [0.25, 1].322

Convergence rates for the Newton schemes are summarized in Fig. 4, showing how323

the linear model convergence rate decreases with increasing α. The TPD version con-324
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Figure 4. Solution plots for α=0.6 (top) and convergence rates (bottom) for the poroelasticity

simulation. We show displacement magnitude (∥u∥) and pressure (p) to the left and permeability

(K) on a logarithmic scale and porosity (ϕ) to the right.

verges quadratically for all cases and is sensitive to α only in the pre-quadratic regime.325

In contrast, while competitive in the first iterations, the TP residuals deviate consider-326

ably in later iterations and the residual reduction is only linear. We interpret this as the327

permeability error dominating the residual only at the latter stage. We also note that328

while TP converges only linearly, the rate is sufficient to achieve convergence in approx.329

15 iterations.330

4.2.3 Deforming high-permeable fracture331

Finally, we expand the poroelastic simulation presented above by including a through-332

going horizontal fracture. The fracture introduces additional nonlinearities through the333

cubic law dependency of permeability on fracture opening defined in Eq. (12), as well334

as through the fracture contact mechanics relations of Eq. (17).335

The source location is at (0.5, 0.5, 0.5) as above, now corresponding to the center336

of the fracture. The fracture grid’s 225 cells conform to faces in the matrix grid, which337

consists of 3360 3d cells. As in the poroelastic simulation, fluid injection leads to elevated338

pressures, and thus alterations of the displacement and permeability fields. The elevated339

pressure in the fracture leads to significant increases in the fracture aperture.340

To control the size of the nonlinear update, we consider a series of simulations with341

four different injection rates. The residual convergence are shown at the bottom of Fig.342
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Figure 5. Solution plots for the second highest source rate (top) and convergence rates (bot-

tom) for the deforming fracture simulation. We show matrix displacement magnitude (∥u∥) and
fracture aperture (a) to the left and permeability in matrix (Km) and fracture (Kf ) to the right.

Convergence plot labels correspond to the four source rates in kg s−1.

5. The range is chosen such that the fracture cells remain almost in contact ([u]n = 0)343

for the lowest value and approximately half of the fracture cells are open ([u]n > 0) for344

the highest one. This corresponds to a transition from an almost constant fracture per-345

meability to a highly variable one.346

For the higher source rates, TP convergence rates are decidedly reduced compared347

to Section 4.2.2 due to the presence of the additional nonlinearities related to the frac-348

ture. The differentiated model converges rapidly and quadratically, albeit with some ini-349

tial iterations with residuals similar to the non-differentiated one. We attribute this to350

the residual at the initial stage being dominated by nonlinearities other than the per-351

meability. In particular, the contact mechanics cannot in general be expected to converge352

quadratically.353

5 Summary and conclusions354

This paper studies the solution of the nonlinear equation system arising in simu-355

lations where state-dependent diffusion tensors are discretized by finite volume meth-356

ods. In contrast to the common approach of ignoring dynamic permeability effects dur-357

ing linearization, we propose a linearization that includes the effect of permeability up-358

dates. The added term is derived based on the two-point flux approximation and thereby359
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easy to implement. Our approach can be applied independent of which finite volume method360

is used to discretize the diffusion problem: If the original method is also a two-point flux,361

our method renders an exact linearization. For other discretizations, herein exemplified362

by a multi-point flux approximation, the linearization is not exact, but its enhanced ap-363

proximation quality can improve the Newton convergence.364

As our illustrative examples, we consider multiphysics problems in which the per-365

meability depends (nonlinearly) on the primary variables. Our simulations illustrate slow366

convergence if the permeability update is neglected when solving the nonlinear problems.367

We achieve major improvements when the update is included both for the pure two-point368

scheme and for the combined scheme.This firstly demonstrates that state-dependent per-369

meability is a major source of nonlinearity in important multiphysics applications. Sec-370

ondly, it shows the effectiveness of the suggested approach and its potential for speed-371

ing up multiphysics simulations. Taken together, this shows that the new approach can372

be a useful addition to application-oriented simulations of multiphysics problems.373

6 Open Research374

The data and source code for the results presented herein is available, and the re-375

sults can be reproduced, using a Docker container available at https://dx.doi.org/376

10.5281/zenodo.7624095.377
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