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Key Points: 17 

• CryoSat-2 summer sea-ice thickness (SIT) is assimilated into a coupled ice-ocean model 18 

for the first time. 19 

• The discontinuity brought by assimilating biweekly CryoSat-2 SIT is overcome by 20 

implementing an incremental analysis update scheme. 21 

• Significant improvements in sea-ice estimates are obtained in the areas where the sea ice 22 

is roughest and experiences strong deformation. 23 

  24 
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Abstract 25 

Rapidly shrinking Arctic sea ice has had significant impacts on the Arctic Ocean and many outer 26 

Arctic regions. It is therefore urgently needed to reliably estimate Arctic sea-ice thickness (SIT) 27 

by combined use of available observation and numerical modeling. Here, for the first time, we 28 

assimilate the latest CryoSat-2 summer SIT data into a coupled ice-ocean model. In particular, an 29 

Incremental Analysis Update scheme is implemented to overcome the discontinuity brought by 30 

assimilating biweekly SIT and daily sea ice concentration data. Along with an improvement in 31 

sea ice volume, our SIT estimates have smaller errors than that without SIT assimilation in areas 32 

where the sea ice is roughest and experiences strong deformation, e.g., around the Fram Strait 33 

and Greenland. This study suggests that the newly-developed CryoSat-2 SIT product, when 34 

assimilated properly with our approach, has great potential for Arctic sea ice simulation and 35 

prediction.   36 

Plain Language Summary 37 

In this study, we incorporate the latest biweekly summer sea-ice thickness (SIT) and daily sea-38 

ice concentration (SIC) data from satellite observations into an ice-ocean model to improve the 39 

model estimates. Data assimilation (DA) is used here for combining observational data with 40 

model simulation. Summer SIT was not assimilated into ice-ocean models before this study. We 41 

find better results when we use SIC and summer SIT observations simultaneously with the DA 42 

technique than using SIC only. Significant improvements in the SIT field are found in the areas 43 

where the sea ice is roughest and experiences strong deformation. This study provides a 44 

promising perspective for applying the latest satellite observations of summer SIT to sea ice 45 

estimating and forecasting. 46 

1 Introduction 47 

Coinciding with a four-fold Arctic warming ratio compared to the globe on average 48 

(Chylek et al., 2022; Rantanen et al., 2022), Arctic sea ice has declined sharply during the 49 

satellite era (Kwok, 2018; Stroeve & Notz, 2018). The substantial sea ice loss has significantly 50 

influenced the Earth system (Bailey et al., 2021; Cohen et al., 2021; Liu et al., 2022; Qi et al., 51 

2022). For instance, Arctic sea ice reduction is likely linked to extreme events in the middle and 52 

lower latitudes (Bailey et al., 2021; Cohen et al., 2021; Liu et al., 2022). Although the ongoing 53 

decline has made commercial trans-Arctic transit more feasible in the summer, the changing and 54 
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mobile sea ice impacts maritime activities (e.g., Eicken, 2013; Min, et al., 2022). For instance, 55 

local variations in sea-ice thickness (SIT) can affect the safety and route-planning decisions of 56 

maritime navigators. Consequently, there is a great need and interest in reliable measurements, 57 

simulations and forecasts of Arctic sea ice.  58 

Sophisticated year-round sea-ice concentration (SIC) monitoring has been developed for 59 

several decades (e.g., Comiso et al., 1997; Lavergne et al., 2019; Spreen et al., 2008). SIT data 60 

like SMOS (Kaleschke et al., 2012; Tian-Kunze et al., 2014), CryoSat-2 (Laxon et al., 2013; 61 

Ricker et al., 2014), and ICESat-2 (Kwok et al., 2020; Petty et al., 2020) were enhanced over the 62 

year, but have been only available during winter. Recently, a pan-Arctic summer SIT product 63 

derived from CryoSat-2 has become available (Landy et al., 2022). The most recent CryoSat-2 64 

summer SIT data not only offers the first look at Arctic SIT from the perspective of satellite 65 

remote sensing but also unlocks opportunities for constructing a more reliable SIT reanalysis by 66 

assimilating this data into dynamical models and generating sea-ice forecasts (Landy et al., 2022). 67 

Data assimilation (DA) is highly effective in enhancing sea-ice estimates because the 68 

model initialization can be adjusted and the model state can continuously be constrained to 69 

reality by integrating new observations (Blockley & Peterson, 2018; Day et al., 2014; Massonnet 70 

et al., 2015). The assimilation of winter SIT, for instance, can provide improved initial 71 

conditions for the summer season and hence has the potential to lower uncertainty in both sea-ice 72 

estimates and forecasts (e.g., Blockley & Peterson, 2018; Day et al., 2014; Mignac et al., 2022; 73 

Xie et al., 2018; Yang et al., 2014; Yang et al., 2019). In particular, to improve the ice-thickness 74 

estimates, a year-round Combined Model and Satellite Thickness (CMST) reanalysis has been 75 

developed by assimilating the CryoSat-2 and SMOS thickness data throughout the freezing 76 

season  Mu, Losch, et al., 2018). Although CMST has been systematically evaluated and widely 77 

used (e.g., Li et al., 2022; Min et al., 2019; Min et al., 2021; Mu, Losch, et al., 2018; Zhou et al., 78 

2021), the SIT is only corrected indirectly in summer through the positive covariance between 79 

SIC, which is assimilated, and SIT, which is not during the summer months. Moreover, the 80 

weekly mean SIT from CryoSat-2 is simply assimilated every day of the week during the cold 81 

season ( Mu, Losch, et al., 2018; Mu, Yang, et al., 2018), which may introduce unphysical 82 

“jumps” at the transition of different weeks and seasons (i.e., winter-summer and summer-83 

winter). To date, there has not been a study focusing on the impact and approach of assimilating 84 
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satellite-based summer SIT. Given the current availability of summer SIT data, we conduct a DA 85 

experiment by simultaneously assimilating summer SIC and SIT. 86 

This study aims to explore whether the assimilation of CryoSat-2 summer SIT data can 87 

better constrain modeled SIC and SIT and thus improve sea-ice estimates. We applied an 88 

Incremental Analysis Update (IAU) scheme for CryoSat-2 summer SIT assimilation to ensure 89 

the physical development of sea-ice volume (SIV) and SIT with CryoSat-2 observations 90 

available at a lower biweekly time interval compared to daily SIC observations. We further 91 

compare our outputs with CMST and different independent data to assess the overall 92 

improvement by assimilating summer SIT.  93 

2 Materials and Methods 94 

2.1 Satellite-retrieved observations  95 

The pan-Arctic year-round CryoSat-2 SIT dataset has been generated by combining deep 96 

learning radar waveform classification with numerical radar simulations (Landy et al., 2022). In 97 

summary, a one-dimensional convolutional neural network (CNN) has been applied to classify 98 

leads from sea-ice returns in radar altimeter waveforms (Dawson et al., 2022). A series of 99 

numerical waveform simulations based on the Facet-Based Echo Model (Landy et al., 2020; 100 

Landy et al., 2019), which integrates melt ponds, are then used to calibrate a radar range bias that 101 

causes the CryoSat-2 freeboards to be underestimated. The SIT is derived from CryoSat-2 radar 102 

freeboards assuming hydrostatic equilibrium and accounting for snow loading, with snow depth 103 

and density estimates obtained from SnowModel-LG (https://nsidc.org/data/nsidc-104 

0758/versions/1; Stroeve et al., 2020). The innovative dataset provides SIT and its uncertainty 105 

with a temporal resolution of 15 or 16 days and a spatial resolution of 80 km. Large uncertainties 106 

still remain, nevertheless, close to the coast of northern Greenland and the Fram Strait when 107 

compared to airborne electromagnetic (AEM) thickness observations (Landy et al., 2022). More 108 

details about data processing can be found in Dawson et al. (2022) and Landy et al. (2022).  109 

 The SIC data used in this study is computed at the French Research Institute for 110 

Exploitation of the Sea (IFREMER) and reprocessed by the Integrated Climate Data Center. 111 

Together with the ARTIST Sea Ice algorithm (Kaleschke et al., 2001; Spreen et al., 2008), this 112 

SIC dataset is derived from brightness temperatures measured with the 85-GHz Special Sensor 113 

Microwave / Imager (SSM/I) and/or Special Sensor Microwave / Imager Sounder (SSM/IS) 114 
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channels. A 5-day median filter is used to reduce unrealistic short-term SIC variations resulting 115 

from weather influence (Kern et al., 2010). The spatial resolution of the daily SIC data is 12.5 116 

km.  117 

2.2 Reference observations 118 

The sea-ice extents (SIEs) estimated from CMST and our experiments are evaluated 119 

using the SIC observation that is processed by the NASA team algorithm and distributed by 120 

National Snow and Ice Data Center (NSIDC, DiGirolamo et al., 2022). This independent SIC 121 

dataset is used to ensure we are not assimilating and testing against the same observations. 122 

Moreover, to validate the SIT results, we use a set of independent fixed mooring and airborne sea 123 

ice thickness observations (see Fig. 1 for geographic locations of surveys and deployment 124 

positions). Sea ice drafts were obtained from upward-looking sonars (ULS) provided by the 125 

Beaufort Gyre Experiment Program (BGEP) in 2015.  Data from three different moorings are 126 

hereafter referred to as BGEP_A, BGEP_B and BGEP_D. According to Melling et al. (1995), 127 

the error associated with ULS sea ice draft observations is about 0.1 m. In addition, we used draft 128 

data based on an Acoustic Doppler Current Profiler (ADCP) deployed by the Alfred Wegener 129 

Institute (AWI) in the western Laptev Sea area in 2014.  Following Belter et al. (2021), the 130 

uncertainties are relatively high (±0.96 m) but consistent. To simplify the comparison between 131 

model SIT and observations, the observed sea ice draft is converted to thickness by multiplying 132 

by a factor of 1.1 (Nguyen et al., 2011).  133 

In addition to the moored observations, SIT from airborne electromagnetic (AEM) 134 

surveys (IceBird campaign) conducted by AWI in Fram Strait and northern Greenland (Krumpen 135 

et al., 2019) are used as a reference dataset for our model results. The applied surveys were 136 

conducted between 24 July and 1 August 2016 during the IceBird campaign. For more details on 137 

the methodology, we refer to Krumpen et al. (2020). According to Pfaffling et al. (2007), AEM 138 

observations are estimated to have an uncertainty of ±0.1 m over flat ice, although the accuracy 139 

may be affected by the presence of melt ponds. As the footprint of airborne measurements is in 140 

the range of tens of meters, all AEM-based SIT are averaged onto the CroSat-2 grids for 141 

comparison, following Landy et al. (2022). As the numerical model carries the effective/mean 142 

ice thickness (volume over an area), all field observations are multiplied by the local NSIDC SIC 143 
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to obtain the observed mean thickness to facilitate the comparison between the model and 144 

observations following Yang et al. (2015). 145 

2.3 Sea-ice data assimilation system 146 

The DA system is further developed based on the CMST system. I.e., the Massachusetts 147 

Institute of Technology general circulation model (MITgcm, Marshall et al., 1997) and the 148 

Parallel Data Assimilation Framework (PDAF, Nerger & Hiller, 2013) are employed. The sea ice 149 

dynamics use a viscous plastic rheology (Hibler, 1979; Zhang & Hibler, 1997), with a one-layer, 150 

zero-heat capacity formulation applied in the thermodynamics (Parkinson & Washington, 1979; 151 

Semtner, 1976). 50 vertical model layers are used in the ocean model, with 28 layers located in 152 

the top 1000 m. An Arakawa C grid with a variable horizontal resolution with an average 153 

spacing of 18 km, is used to discretize both the ocean and sea ice models. The experiments are 154 

based on a regional MITgcm configuration with open boundaries located around 55°N in the 155 

Atlantic and Pacific (Losch et al., 2010; Nguyen et al., 2011). Figure 1 depicts the model domain 156 

with an orange mesh. 157 

As with earlier DA studies (e.g., Mu, Losch, et al., 2018; Mu, Yang, et al., 2018; Yang et 158 

al., 2015), the coupled ice-ocean model is driven by atmospheric ensemble forecasts generated 159 

by the UK Met Office (UKMO) Ensemble Prediction System (EPS) and accessible from the 160 

THORPEX Interactive Grand Global Ensemble archive (TIGGE) (Bowler et al., 2008; Park et al., 161 

2008) in order to incorporate flow-dependent uncertainty in atmospheric forcing. Eleven sets of 162 

perturbed forecasts are employed to force an ensemble of eleven model states. Details about 163 

atmospheric data processing can be found in previous works (Mu, Losch, et al., 2018; Yang et 164 

al., 2015). 165 

For easy comparison with the previously developed CMST reanalysis, which only 166 

assimilates IFREMER SIC during summer, following Mu et al. (2018), the IFREMER SIC and 167 

CryoSat-2 SIT are assimilated into the ice-ocean model by using the local error-subspace 168 

transform Kalman filter (LESTKF) coded in PDAF (Nerger & Hiller, 2013; Nerger et al., 2012). 169 

The LESTKF is a highly efficient ensemble Kalman filter with very high-dimensional models 170 

(Nerger et al., 2012). SIC and SIT obtained from the forecast fields are stored together in the 171 

state vector. Then, in each analysis step, the LESTKF is used to correct the state vector by only 172 

taking into account the sea-ice data observed within a 126 km radius of each model point (Mu, 173 
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Losch, et al., 2018; Yang et al., 2015). The observations within the radius are weighted with 174 

distance from the grid point by a quasi-Gaussian weight function (Gaspari & Cohn, 1999). 175 

Model uncertainties are calculated from the ensemble of model states driven by the UKMO 176 

ensemble atmospheric forcing (Mu, Losch, et al., 2018; Yang et al., 2015). The observation error 177 

for SIC is set as a constant value of 0.25, while the variable SIT observation errors are provided 178 

by the CryoSat-2 dataset (Mu, Losch, et al., 2018; Yang et al., 2015).  179 

For consistent pan-Arctic temporal and spatial coverage, the CryoSat-2 SIT data is 180 

available twice per month at an interval of 15 or 16 days (Landy et al., 2022; Lawrence et al., 181 

2021). Therefore, the forecast interval between the analysis steps will be excessively long when 182 

assimilating CryoSat-2 data directly. The sparse analysis step typically creates unrealistically 183 

large “jumps” (increments) for the evolution of sea ice, leading to an unnatural development of 184 

SIV (figures are not shown). For forecasting systems that need daily updates, direct assimilation 185 

of this data is therefore inappropriate. Hence, an IAU strategy similar to previous studies (Bloom 186 

et al., 1996; Lellouche et al., 2013; Ourmières et al., 2006) is implemented to obtain smoother 187 

evolutions of sea ice. In brief, we run a 7-/8-day experiment that assimilates daily SIC and, when 188 

available, biweekly CryoSat-2 SIT. The SIT increment obtained at the analysis step that both SIC 189 

and SIT are assimilated is not applied immediately, but divided by each biweekly CryoSat-2’s 190 

number of days, and stored for the IAU to make daily updates. Finally, the DA system is 191 

restarted assimilating daily SIC and incorporating daily SIT increments and producing the 192 

analysis fields. This approach allows us to assimilate the rather infrequent biweekly summer SIT 193 

data in combination with the daily SIC data, while ensuring a gradual development of the sea ice 194 

fields over time. A detailed description of the IAU scheme developed in this study is provided in 195 

Text S1 and Figure S1 in Supporting Information S1. 196 

2.4 Experiment design 197 

The beginning of 2016 experienced record-low monthly SIE but the summer extent 198 

exceeded most seasonal forecasts (Petty et al., 2017; Petty et al., 2018). Due to the 199 

unconsolidated summer ice cover in 2016, modeling and forecasting sea ice conditions during 200 

this summer are expected to be exceptionally challenging (Petty et al., 2017; Petty et al., 2018). 201 

Therefore, we carried out the DA experiment from May 23 to September 30, 2016. The 202 

performance of our experiments during the year 2016 is, therefore, a performance assessment 203 
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indicator of this system. Given that CMST data is already well-validated and applied (e.g., Li et 204 

al., 2022; Min et al., 2019; Min et al., 2021; Mu, Losch, et al., 2018; Zhou et al., 2021), 205 

following Yang et al (2019), restart files from this retrospective simulation (CMST) were used as 206 

the initial ice-ocean conditions for the DA experiments. 207 

 208 

Figure 1. The MITgcm model grid is shown in an orange net plotted at every 12 model grid 209 

points. The independent observations used to validate CryoSat-2, Combined Model and Satellite 210 

Thickness (CMST) and the analysis field (ANA) are presented in blue extra-large dots for two 211 

AWI Acoustic Doppler Current Profiler (ADCP) sensor deployments, in blue lines for the AWI 212 

airborne surveys (IceBird), and in black dot, triangle and square for Beaufort Gyre Exploration 213 

Program (BGEP) moorings A, B and D, respectively. The blue dots for two AWI ADCPs (Vilk1-214 

14 and Vilk3-14) are overlapped because of their near proximity.  215 

3 Results 216 

The spatial distributions of summer SIT are displayed in Figures 2a-2c and the daily 217 

evolution of SIE in Figure 2d and SIV in Figure 2e. Overall, the assimilation of summer SIT 218 

leads to a better agreement of the SIT and SIV estimated from our thickness analysis field 219 

(hereafter, ANA) with that from CryoSat-2 compared to CMST, which only assimilates SIC 220 

during the summer. Compared to CMST, the additional assimilation of summer SIT leads to an 221 

SIT distribution that is more similar to that from CryoSat-2 (Figures 2a-2c). The overestimation 222 

of the ice thickness by CMST is corrected particularly in the Fram Strait and in the Arctic Ocean 223 
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on the northern coast of the Canadian Arctic Archipelago and Greenland. These are regions 224 

where the sea ice experiences strong deformation and the ice surface is roughest (Farrell et al., 225 

2020; Kwok, 2015). Further, our results demonstrate relatively strong agreement with observed 226 

SIE and SIV during the entire summer season (Figures 2d-2e), both during the ice melting phase 227 

and freezing timing (mid-September). 228 

Root-mean-square error (RMSE), mean bias (MB), and correlation coefficient (CC), 229 

whose calculation methods are described in Text S2 in Supporting Information S1, are used to 230 

quantify comparisons between CMST, ANA, and observations. The CCs for SIE and SIV 231 

between ANA/CMST and observations are nearly equal. Statistically, the CC for SIE between 232 

ANA and NSIDC data is ~1, while for SIV, it is 0.97 between ANA and CryoSat-2 data. The 233 

RMSE for SIE calculated from ANA and observations is roughly 0.72×106 km2, although it is 234 

somewhat bigger when calculated using CMST and observations, where it is 0.74×106 km2.  In 235 

relation to the SIV calculated by CMST and ANA, the RMSEs are likewise decreased from 236 

2.43×103 km3 to 1.97×103 km3, demonstrating that the further assimilation of summer SIT 237 

improves the estimates for both SIE and SIV. We notice that the initial state from CMST still 238 

exhibits a large error in estimating SIV even though it has assimilated SIT and SIC throughout 239 

the cold season and assimilated SIC during the summer season. Besides, we hypothesize that 240 

there are two reasons why there is still a significant misfit between ANA and CryoSat-2 until the 241 

end of June. First, the DA system takes a certain period to spin up itself before leading to 242 

consistent improvements (Mu, Yang, et al., 2018). Second, around the end of May and June, 243 

CryoSat-2 exhibits substantially higher uncertainty than the model state, bringing our ANA 244 

closer to the model state. 245 
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 246 

Figure 2. Arctic sea-ice thickness averaged over September 1-15, 2016 from CryoSat-2, 247 

Combined Model and Satellite Thickness (CMST) and Analysis (ANA) are shown in (a), (b) and 248 

(c). Panels (d) and (e) present the developments of summer sea-ice extent (SIE) and volume 249 

(SIV), respectively. The vertical bar in (e) for CryoSat-2 is for uncertainty and the horizontal bar 250 

is the time span for biweekly CryoSat-2 data. Root-mean-square errors (RMSEs) shown in 251 

purple and green are for CMST against observations and ANA against observations, 252 

respectively. 253 

Because the sea-ice model’s parameterizations are imperfect and satellite measurements 254 

of ice thickness have significant uncertainties in coastal areas of thick MYI, the CMST analysis 255 

is most uncertain around the northern coast of the Canadian Arctic Archipelago and Greenland 256 

(Mu, Losch, et al., 2018). Comparisons between ANA, CMST, CryoSat-2, and airborne sea ice 257 

surveys (Figure 3) are conducted to determine differences in certain places where strong sea-ice 258 

deformation occurs. As shown in Figure 2b, CMST appears to estimate excessively thick ice in 259 

these regions, whereas CryoSat-2 measures thinner sea ice than airborne surveys, as shown in 260 
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Landy et al. (2022). The median values of airborne surveys, CMST and CryoSat-2 are 1.58 m, 261 

2.33 m and 0.9 m, respectively. With a median of 1.86 m, which is closest to that of the airborne 262 

surveys, ANA has the best agreement among CryoSat-2, CMST, and ANA. This likewise holds 263 

for the dominating probability density estimates for the observed and simulated SIT. The best 264 

agreement between airborne surveys and ANA is also verified by their lower and upper quartiles. 265 

Benefiting from the model dynamics and summer SIT assimilation, our ANA has reduced the 266 

overestimation of ice thickness in CMST, particularly in the Arctic coasts of north Greenland, 267 

while preventing the underestimation evident in CryoSat-2 observations.  268 

 269 

Figure 3. Comparison between observed sea-ice thickness (SIT) from the airborne surveys 270 

(IceBird) and CryoSat-2, simulated SIT from the Combined Model and Satellite Thickness 271 

(CMST) and Analysis (ANA). The raincloud plots show the distributions of observed and 272 

simulated SIT and their key summary statistics (i.e., lower and upper quartiles, medians, and 273 

outliers). The medians for IceBird observations, CMST, ANA and CryoSat-2 are represented by 274 

blue, green, gray and violet dashed lines, respectively. Translucent dots represent the observed 275 

and simulated SIT exactly. 276 

With sea-ice observations from BGEP moorings, the performance of CryoSat-2, CMST 277 

and ANA are assessed in the Beaufort Sea (Figure 4, Tables 1 and Table S1 in Supporting 278 

Information S1). The three datasets replicate the SIT developments that were measured by in-situ 279 

measurements (Figures 4a-4c). Compared to BGEP moorings, both CMST and ANA show 280 

comparatively small RMSE and MB. For the BGEP measurements, the RMSEs for ANA are up 281 
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to 0.05 m smaller than for CMST, while the MB is generally below 0.10 m and differs by up to 282 

0.06 m, indicating that the further assimilation of CryoSat-2 improves not only the estimate of 283 

Arctic SIV but also the local SIT. It should be noted that the growth in SIT at the location of 284 

BGEP_B during mid- to late-September (Fig. 4b) is only well captured by ANA, which 285 

integrates model dynamics with satellite SIT. 286 

Compared to AWI ADCPs (i.e., Vilk1-14 and Vilk3-14) deployed in the Laptev Sea, 287 

CryoSat-2, CMST and ANA have relatively larger deviations (Figures 4d-4e). The RMSEs for 288 

ANA versus Vilk1-14 and Vilk3-14 are 0.61 m and 0.78 m while the MBs are –0.39 m and –0.43 289 

m. Although the SIT as measured by AWI ADCPs is underestimated by our model outputs, the 290 

MB for ANA is within the AWI ADCPs’ uncertainty (±0.96 m). Further, the CryoSat-2 data 291 

shows an even larger underestimation. However, in contrast to the BGEP time series, the 292 

evolution of the SIT at the Vilk moorings was complex during summer 2016. The ice cover 293 

actually thickened between the start and end of the summer as highly-deformed ice was 294 

transiting the mooring locations (Belter et al., 2020). This demonstrates that ANA still functions 295 

in the Laptev Sea. Since the Laptev Sea is a crucial sea area affecting navigation safety (e.g., 296 

Min et al., 2022; Min et al., 2023), both observations and model simulations need to be further 297 

optimized for sea ice conditions in unusual years like 2016. 298 

Table 1. Main statistics [m] used to verify the sea-ice thickness of the Combined Model and 299 

Satellite Thickness (CMST) and Analysis (ANA) against in-situ measurements (i.e., BGEP_A, 300 

BGEP_B, BGEP_D, Vilk1-14 and Vilk3-14) over the summer period in 2016.  301 

In-situ 
observation 

RMSE MB 

CMST ANA CMST ANA 

BGEP_A 0.35 0.35 0.08 0.07 

BGEP_B 0.24 0.23 0.01 –0.05 

BGEP_D 0.40 0.35 0.09 0.03 

Vilk1-14 0.61 0.61 –0.40 –0.39 

Vilk3-14 0.76 0.78 –0.45 –0.43 

 302 
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 303 

Figure 4. Comparison of summer sea-ice thickness (SIT) from the Beaufort Gyre Exploration 304 

Program (BGEP) moorings, CryoSat-2, Combined Model and Satellite Thickness (CMST) and 305 

Analysis (ANA), during summer 2016. (a, b and c) are for SIT developments at BGEP_A, 306 

BGEP_B and BGEP_D. Panels (d) and (e) are for SIT developments at AWI Acoustic Doppler 307 

Current Profiler (ADCP) sensor deployments (Vilk1-14 and Vilk3-14) in the Laptev Sea. 308 

 309 
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4 Conclusions and discussions 310 

To investigate the impact of assimilating the recent CryoSat-2 summer SIT in estimating 311 

Arctic summer SIT, we have carried out a DA experiment including a novel IAU approach. This 312 

method guarantees a gradual development of the sea-ice fields over time while allowing the 313 

assimilation of the infrequent summer SIT data, which is only provided on a two-week basis, in 314 

conjunction with the daily SIC data. The model dynamics play an important role in the 315 

assimilation and have the potential to reduce the underestimation of SIT in satellite retrievals, 316 

especially along the Arctic coasts of Greenland (Landy et al., 2022), where the ice 317 

thermodynamically thickens as well as experiences deformation over many winter seasons 318 

(Kwok, 2015; Tschudi et al., 2016). Likewise, our ANA basically solves the overestimation of 319 

SIT estimated by CMST in those areas and thus provides a more reliable estimate of summer SIT. 320 

Moreover, in comparison to the CMST reanalysis, which did not assimilate this summer SIT data, 321 

the evolution of the SIV estimates agrees better with that derived from CryoSat-2.  322 

These findings demonstrate the benefits of assimilating CryoSat-2 summer SIT for 323 

estimating Arctic sea ice and hence improving the initial states for sea-ice forecasts. As a result, 324 

the sea-ice forecast, which is highly relevant for marine activities, can benefit greatly from the 325 

enhanced initial states (Xiu et al., 2022; Yang et al., 2019). Further, our IAU assimilation scheme 326 

can be well applied to summer sea ice assimilation, which is important for developing a sea-ice 327 

reanalysis that assimilates year-round satellite ice thickness and concentration. A continuous 328 

long-term ice thickness record with a finer temporal-spatial resolution that assimilates both year-329 

round SIC and SIT will be reconstructed in the future. 330 
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