loading page

Generating interpretable rainfall-runoff models automatically from data
  • Travis Adrian Dantzer,
  • Branko Kerkez
Travis Adrian Dantzer
University of Michigan-Ann Arbor

Corresponding Author:dantzert@umich.edu

Author Profile
Branko Kerkez
University of Michigan-Ann Arbor
Author Profile


A sudden surge of data has created new challenges in water management, spanning quality control, assimilation, and analysis. Few approaches are available to integrate growing volumes of data into interpretable results. Process-based hydrologic models have not been designed to consume large amounts of data. Alternatively, new machine learning tools can automate data analysis and forecasting, but their lack of interpretability and reliance on very large data sets limits the discovery of insights and may impact trust. To that end, we present a new approach, which seeks to strike a middle ground between process-, and data-based modeling. The contribution of this work is an automated and scalable methodology that discovers differential equations and latent state estimations within hydrologic systems using only rainfall and runoff measurements. We show how this enables automated tools to learn interpretable models of 6 to 18 parameters solely from measurements. We apply this approach to nearly 400 stream gaging sites across the US, showing how complex catchment dynamics can be reconstructed solely from rainfall and runoff measurements. We also show how the approach discovers surrogate models that can replicate the dynamics of a much more complex process-based model, but at a fraction of the computational complexity. We discuss how the resulting representation of watershed dynamics provides insight and computational efficiency to enable automated predictions across large sensor networks.
07 Sep 2023Submitted to ESS Open Archive
11 Sep 2023Published in ESS Open Archive