References
  1. Maxmen, A., 2021. One million coronavirus sequences: popular genome site hits mega milestone. Nature 593, 21.
  2. Mavian, C., Marini, S., Prosperi, M., Salemi, M., 2020. Authors’ Reply to: Errors in Tracing Coronavirus SARS-CoV-2 Transmission Using a Maximum Likelihood Tree. Comment on ”A Snapshot of SARS-CoV-2 Genome Availability up to April 2020 and its Implications: Data Analysis”. JMIR Public Health Surveill 6, e24661.
  3. Tegally, H., Moir, M., Everatt, J., Giovanetti, M., Scheepers, C., Wilkinson, E., Subramoney, K., Makatini, Z., Moyo, S., Amoako, D.G., Baxter, C., Althaus, C.L., Anyaneji, U.J., Kekana, D., Viana, R., Giandhari, J., Lessells, R.J., Maponga, T., Maruapula, D., Choga, W., Matshaba, M., Mbulawa, M.B., Msomi, N., consortium, N.-S., Naidoo, Y., Pillay, S., Sanko, T.J., San, J.E., Scott, L., Singh, L., Magini, N.A., Smith-Lawrence, P., Stevens, W., Dor, G., Tshiabuila, D., Wolter, N., Preiser, W., Treurnicht, F.K., Venter, M., Chiloane, G., McIntyre, C., O’Toole, A., Ruis, C., Peacock, T.P., Roemer, C., Kosakovsky Pond, S.L., Williamson, C., Pybus, O.G., Bhiman, J.N., Glass, A., Martin, D.P., Jackson, B., Rambaut, A., Laguda-Akingba, O., Gaseitsiwe, S., von Gottberg, A., de Oliveira, T., 2022. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat Med 28, 1785-1790.
  4. Velazquez-Salinas, L., Zarate, S., Eberl, S., Gladue, D.P., Novella, I., Borca, M.V., 2020. Positive Selection of ORF1ab, ORF3a, and ORF8 Genes Drives the Early Evolutionary Trends of SARS-CoV-2 During the 2020 COVID-19 Pandemic. Frontiers in Microbiology 11.
  5. Martin, D.P., Weaver, S., Tegally, H., San, J.E., Shank, S.D., Wilkinson, E., Lucaci, A.G., Giandhari, J., Naidoo, S., Pillay, Y., Singh, L., Lessells, R.J., Ngs, S.A., UK, C.-G., Gupta, R.K., Wertheim, J.O., Nekturenko, A., Murrell, B., Harkins, G.W., Lemey, P., MacLean, O.A., Robertson, D.L., de Oliveira, T., Kosakovsky Pond, S.L., 2021. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 184, 5189-5200 e5187.
  6. Velazquez-Salinas, L., 2022. The complex evolutionary dynamics of SARS-CoV-2, a big challenge to control the pandemic of COVID-19. J Med Virol 94, 5082-5085.
  7. O’Toole, A., Pybus, O.G., Abram, M.E., Kelly, E.J., Rambaut, A., 2022. Pango lineage designation and assignment using SARS-CoV-2 spike gene nucleotide sequences. BMC Genomics 23, 121.
  8. Weaver, S., Shank, S.D., Spielman, S.J., Li, M., Muse, S.V., Kosakovsky Pond, S.L., 2018. Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Mol Biol Evol 35, 773-777.
  9. Zhang, Y., Zhang, T., Fang, Y., Liu, J., Ye, Q., Ding, L., 2022. SARS-CoV-2 spike L452R mutation increases Omicron variant fusogenicity and infectivity as well as host glycolysis. Signal Transduct Target Ther 7, 76.
  10. Liu, L., Iketani, S., Guo, Y., Chan, J.F., Wang, M., Liu, L., Luo, Y., Chu, H., Huang, Y., Nair, M.S., Yu, J., Chik, K.K., Yuen, T.T., Yoon, C., To, K.K., Chen, H., Yin, M.T., Sobieszczyk, M.E., Huang, Y., Wang, H.H., Sheng, Z., Yuen, K.Y., Ho, D.D., 2022. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676-681.
  11. Maaroufi, H., 2022. The N764K and N856K mutations in SARS-CoV-2 Omicron S protein generate potential cleavage sites for SKI-1/S1P protease. bioRxiv, 2022.2001.2021.477298.
  12. Oulas, A., Zanti, M., Tomazou, M., Zachariou, M., Minadakis, G., Bourdakou, M.M., Pavlidis, P., Spyrou, G.M., 2021. Generalized linear models provide a measure of virulence for specific mutations in SARS-CoV-2 strains. PLoS One 16, e0238665.
  13. Benvenuto, D., Angeletti, S., Giovanetti, M., Bianchi, M., Pascarella, S., Cauda, R., Ciccozzi, M., Cassone, A., 2020. Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy. J Infect 81, e24-e27.
  14. Wertheim, J.O., Murrell, B., Smith, M.D., Kosakovsky Pond, S.L., Scheffler, K., 2015. RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32, 820-832.
  15. Hachmann, N.P., Miller, J., Collier, A.Y., Barouch, D.H., 2022. Neutralization Escape by SARS-CoV-2 Omicron Subvariant BA.4.6. N Engl J Med 387, 1904-1906.
  16. Wang, R., Chen, J., Wei, G.W., 2021. Mechanisms of SARS-CoV-2 Evolution Revealing Vaccine-Resistant Mutations in Europe and America. J Phys Chem Lett 12, 11850-11857.
  17. Smith, M.D., Wertheim, J.O., Weaver, S., Murrell, B., Scheffler, K., Kosakovsky Pond, S.L., 2015. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32, 1342-1353.
  18. Murrell, B., Weaver, S., Smith, M.D., Wertheim, J.O., Murrell, S., Aylward, A., Eren, K., Pollner, T., Martin, D.P., Smith, D.M., Scheffler, K., Kosakovsky Pond, S.L., 2015. Gene-wide identification of episodic selection. Mol Biol Evol 32, 1365-1371.
  19. Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K., Kosakovsky Pond, S.L., 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8, e1002764.
  20. Khare, S., Gurry, C., Freitas, L., Schultz, M.B., Bach, G., Diallo, A., Akite, N., Ho, J., Lee, R.T., Yeo, W., Curation Team, G.C., Maurer-Stroh, S., 2021. GISAID’s Role in Pandemic Response. China CDC Wkly 3, 1049-1051.
  21. Colson, P., Gautret, P., Delerce, J., Chaudet, H., Pontarotti, P., Forterre, P., Tola, R., Bedotto, M., Delorme, L., Bader, W., Levasseur, A., Lagier, J.C., Million, M., Yahi, N., Fantini, J., La Scola, B., Fournier, P.E., Raoult, D., 2022. The emergence, spread and vanishing of a French SARS-CoV-2 variant exemplifies the fate of RNA virus epidemics and obeys the Mistigri rule. J Med Virol.
  22. Hachim, A., Kavian, N., Cohen, C.A., Chin, A.W.H., Chu, D.K.W., Mok, C.K.P., Tsang, O.T.Y., Yeung, Y.C., Perera, R., Poon, L.L.M., Peiris, J.S.M., Valkenburg, S.A., 2020. ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nat Immunol 21, 1293-1301.
  23. Moody, R., Wilson, K.L., Boer, J.C., Holien, J.K., Flanagan, K.L., Jaworowski, A., Plebanski, M., 2021. Predicted B Cell Epitopes Highlight the Potential for COVID-19 to Drive Self-Reactive Immunity. Front Bioinform 1, 709533.
  24. Silvas, J.A., Vasquez, D.M., Park, J.G., Chiem, K., Allue-Guardia, A., Garcia-Vilanova, A., Platt, R.N., Miorin, L., Kehrer, T., Cupic, A., Gonzalez-Reiche, A.S., Bakel, H.V., Garcia-Sastre, A., Anderson, T., Torrelles, J.B., Ye, C., Martinez-Sobrido, L., 2021. Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. J Virol 95, e0040221.
  25. Li, J.Y., Liao, C.H., Wang, Q., Tan, Y.J., Luo, R., Qiu, Y., Ge, X.Y., 2020. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res 286, 198074.
  26. Geng, H., Subramanian, S., Wu, L., Bu, H.F., Wang, X., Du, C., De Plaen, I.G., Tan, X.D., 2021. SARS-CoV-2 ORF8 Forms Intracellular Aggregates and Inhibits IFNgamma-Induced Antiviral Gene Expression in Human Lung Epithelial Cells. Front Immunol 12, 679482.
  27. Chou, J.M., Tsai, J.L., Hung, J.N., Chen, I.H., Chen, S.T., Tsai, M.H., 2022. The ORF8 Protein of SARS-CoV-2 Modulates the Spike Protein and Its Implications in Viral Transmission. Front Microbiol 13, 883597.
  28. Kosakovsky Pond, S.L., Frost, S.D., 2005. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22, 1208-1222.