References
Anderson, M.J. (2008)
Animal-sediment relationships re-visited: Characterising species’
distributions along an environmental gradient using canonical analysis
and quantile regression splines. Journal of Experimental Marine
Biology and Ecology , 366, 16–27.
Araújo, M.B., Cabeza, M., Thuiller, W., Hannah, L. & Williams, P.H.
(2004) Would climate change drive species out of reserves? An assessment
of existing reserve-selection methods. Global Change Biology , 10,
1618–1626.
Austin, M. (2007) Species distribution models and ecological theory: A
critical assessment and some possible new approaches. Ecological
Modelling , 200, 1–19.
Beguería, S. & Vicente-Serrano, S.M. (2017) SPEI: calculation of the
standardised precipitation-evapotranspiration index.
Belsey, D.A. (1991) Conditioning diagnostics, collinearity and
weak data in regression , Wiley.
Bezeng, B.S., Morales-Castilla, I., van der Bank, M., Yessoufou, K.,
Daru, B.H. & Davies, T.J. (2017) Climate change may reduce the spread
of non-native species. Ecosphere , 8, e01694.
BirdLife International and Handbook of the Birds of the World (2016)
Bird species distribution maps of the world. Version 6.0.
Bissinger, J.E., Montagnes, D.J.S., Harples, J. & Atkinson, D. (2008)
Predicting marine phytoplankton maximum growth rates from temperature:
Improving on the Eppley curve using quantile regression. Limnology
and Oceanography , 53, 487–493.
de Boer, W.F., van Langevelde, F., Prins, H.H.T., de Ruiter, P.C.,
Blanc, J., Vis, M.J.P. et al. (2013) Understanding spatial
differences in African elephant densities and occurrence, a
continent-wide analysis. Biological Conservation , 159, 468–476.
Brennan, A., Cross, P.C. & Creel, S. (2015) Managing more than the
mean: using quantile regression to identify factors related to large elk
groups. Journal of Applied Ecology , 52, 1656–1664.
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B.,
Pellissier, L., Yoccoz, N.G. et al. (2012) Measuring ecological
niche overlap from occurrence and spatial environmental data: Measuring
niche overlap. Global Ecology and Biogeography , 21, 481–497.
Brooks, J.R., Barnard, H.R., Coulombe, R. & McDonnell, J.J. (2010)
Ecohydrologic separation of water between trees and streams in a
Mediterranean climate. Nature Geoscience , 3, 100–104.
Burnham, K.P. & Anderson, D.R. (2002) Model Selection and
Multimodel Inference: A Practical Information-Theoretic Approach , 2nd
edn. Springer-Verlag, New York.
Burril, E.A., Wilson, A.M., Turner, J.A., Pugh, S.A., Menlove, J.,
Christiansen, G. et al. (2018) The Forest Inventory and Analysis
Database: database description and user guide version 8.0 for Phase 2.
Cade, B.S. & Noon, B.R. (2003) A gentle introduction to quantile
regression for ecologists. Frontiers in Ecology and the
Environment , 1, 412–420.
Cade, B.S., Noon, B.R. & Flather, C.H. (2005) Quantile regression
reveals hidden bias and uncertainty in habitat models. Ecology ,
86, 786–800.
Cade, B.S., Terrell, J.W. & Schroeder, R.L. (1999) Estimating effects
of limiting factors with regression quantiles. Ecology , 80,
311–323.
Carrascal, L.M., Villén-Pérez, S. & Palomino, D. (2016) Preferred
temperature and thermal breadth of birds wintering in peninsular Spain:
the limited effect of temperature on species distribution. PeerJ ,
4, e2156.
Carroll, M.J., Dennis, P., Pearce-Higgins, J.W. & Thomas, C.D. (2011)
Maintaining northern peatland ecosystems in a changing climate: effects
of soil moisture, drainage and drain blocking on craneflies.Global Change Biology , 17, 2991–3001.
Carvalho, L., McDonald, C., de Hoyos, C., Mischke, U., Phillips, G.,
Borics, G. et al. (2013) Sustaining recreational quality of
European lakes: minimizing the health risks from algal blooms through
phosphorus control. Journal of Applied Ecology , 50, 315–323.
Dallas, T., Decker, R.R. & Hastings, A. (2017) Species are not most
abundant in the centre of their geographic range or climatic niche.Ecology Letters , 20, 1526–1533.
Didham, R.K. (2006) Modelling and predicting invertebrate abundance
along environmental gradients. The Weta , 31, 1–10.
Ehrlén, J. & Morris, W.F. (2015) Predicting changes in the distribution
and abundance of species under environmental change. Ecology Letters,
18, 303–314.
Farias, A.A., Soares, C.P.B., Leite, H.G. & da Silva, G.F. (2021)
Quantile regression: prediction of growth and yield for a eucalyptus
plantation in northeast Brazil. European Journal of Forest Research,
140, 983–989.
Fornaroli, R., Cabrini, R., Sartori, L., Marazzi, F., Vracevic, D.,
Mezzanotte, V. et al. (2015) Predicting the constraint effect of
environmental characteristics on macroinvertebrate density and diversity
using quantile regression mixed model. Hydrobiologia, 742, 153–167.
Gibbons, D.W., Donald, P.F., Bauer, H.-G., Fornasari, L. & Dawson, I.K.
(2007) Mapping avian distributions: the evolution of bird atlases. Bird
Study, 54, 324–334.
Greenberg, J.A., Santos, M.J., Dobrowski, S.Z., Vanderbilt, V.C. &
Ustin, S.L. (2015) Quantifying Environmental Limiting Factors on Tree
Cover Using Geospatial Data. PLOS ONE, 10, e0114648.
Hiddink, J.G. & Kaiser, M.J. (2005) Implications of Liebig’s law of the
minimum for the use of ecological indicators based on abundance.Ecography , 28, 264–271.
Holt, R.D. (1987) Population dynamics and evolutionary processes: the
manifold roles of habitat selection. Evolutionary Ecology , 1,
331–347.
Howard, C., Stephens, P.A., Pearce‐Higgins, J.W., Gregory, R.D. &
Willis, S.G. (2014) Improving species distribution models: the value of
data on abundance. Methods in Ecology and Evolution , 5, 506–513.
Howard, C., Stephens, P.A., Pearce-Higgins, J.W., Gregory, R.D. &
Willis, S.G. (2015) The drivers of avian abundance: patterns in the
relative importance of climate and land use. Global Ecology and
Biogeography , 24, 1249–1260.
Huston, M.A. (2002) Introductory essay: critical issues for
improving predictions . Predicting Species Occurrences: Issues of
Accuracy and Scale , Island Press, Covelo, California.
IUCN (2019) Guidelines for Using the IUCN Red List Categories and
Criteria. Version 14.
Jarema, S.I., Samson, J., Mcgill, B.J. & Humphries, M.M. (2009)
Variation in abundance across a species’ range predicts climate change
responses in the range interior will exceed those at the edge: a case
study with North American beaver. Global Change Biology , 15,
508–522.
Johnston, A., Fink, D., Reynolds, M.D., Hochachka, W.M., Sullivan, B.L.,
Bruns, N.E. et al. (2015) Abundance models improve spatial and
temporal prioritization of conservation resources. Ecological
Applications , 25, 1749–1756.
Kearney, M. & Porter, W. (2009) Mechanistic niche modelling: combining
physiological and spatial data to predict species’ ranges. Ecology
Letters , 12, 334–350.
Kim, D.-S. (1999) A Standardization Technique to Reduce the Problem of
Multicollinearity in Polynomial Regression Analysis. Bulletin of
the International Statistical Institute , 52nd Session.
Kneib, T. (2013) Beyond mean regression. Statistical Modelling ,
13, 275–303.
Koenker, R. (2019) quantreg: quantile regression.
Konrad, C.P., Brasher, A.M.D. & May, J.T. (2008) Assessing streamflow
characteristics as limiting factors on benthic invertebrate assemblages
in streams across the western United States. Freshwater Biology ,
53, 1983–1998.
Lancaster, J. & Belyea, L.R. (2006) Defining the limits to local
density: alternative views of abundance-environment relationships.Freshwater Biology , 51, 783–796.
Liebig, J.V. (1840) Die organische Chemie in Chemie in ihrer
Anwendung auf Agricultur und Physiologie (Organic chemistry in its
applications to agriculture and physiology). , Friedrich Vieweg und Sohn
Publ. Co., Braunschweig, Germany.
McClain, C. & Rex, M. (2001) The relationship between dissolved oxygen
concentration and maximum size in deep-sea turrid gastropods: an
application of quantile regression. Marine Biology , 139,
681–685.
Milne, A.E., Wheeler, H.C. & Lark, R.M. (2006) On testing biological
data for the presence of a boundary. Annals of Applied Biology ,
149, 213–222.
Neter, J. (1996) Applied linear statistical models , McGraw-Hill
Education.
Orsini, N. & Bottai, M. (2011) Logistic Quantile Regression in Stata.The Stata Journal: Promoting communications on statistics and
Stata , 11, 327–344.
Pigeon, K.E., Cardinal, E., Stenhouse, G.B. & Côté, S.D. (2016) Staying
cool in a changing landscape: the influence of maximum daily ambient
temperature on grizzly bear habitat selection. Oecologia , 181,
1101–1116.
R Core Team (2019) R: A language and environment for statistical
computing , R Foundation for Statistical Computing, Vienna, Austria.
Ronquillo, C., Alves-Martins, F., Mazimpaka, V., Sobral-Souza, T.,
Vilela-Silva, B., G. Medina, N. et al. (2020) Assessing spatial
and temporal biases and gaps in the publicly available distributional
information of Iberian mosses. Biodiversity Data Journal , 8,
e53474.
Rosenzweig, M.L. & Winakur, J. (1969) Population Ecology of Desert
Rodent Communities: Habitats and Environmental Complexity.Ecology , 50, 558–572.
Sagarin, R.D. & Gaines, S.D. (2002) The “abundant centre”
distribution: to what extent is it a biogeographical rule? Ecology
Letters , 5, 137–147.
Scharf, F.S., Juanes, F. & Sutherland, M. (1998) Inferring ecological
relationships from the edges of scatter diagrams: comparison of
regression techniques. Ecology , 79, 448–460.
Schoener, T.W. (1974) Resource Partitioning in Ecological Communities.Science , 185, 27–39.
See, K.E., Ackerman, M.W., Carmichael, R.A., Hoffmann, S.L. & Beasley,
C. (2021) Estimating carrying capacity for juvenile salmon using
quantile random forest models. Ecosphere , 12.
Sheffield, J., Goteti, G. & Wood, E.F. (2006) Development of a 50-Year
High-Resolution Global Dataset of Meteorological Forcings for Land
Surface Modeling. Journal of Climate , 19, 3088–3111.
Soberón, J.M. (2010) Niche and area of distribution modeling: a
population ecology perspective. Ecography , 33, 159–167.
Sprengel, C. (1828) Von den Substanzen der Ackerkrume und des
Untergrundes (About the substances in the plow layer and the subsoil).Journal für Technische und Ökonomische Chemie , 423–474, and
42–99, 313–352, and 397–421.
Stanke, H., Finley, A.O., Weed, A.S., Walters, B.F. & Domke, G.M.
(2020) rFIA: An R package for estimation of forest attributes with the
US Forest Inventory and Analysis database. Environmental Modelling
& Software , 127, 104664.
Stralberg, D., Carroll, C., Pedlar, J.H., Wilsey, C.B., McKenney, D.W.
& Nielsen, S.E. (2018) Macrorefugia for North American trees and
songbirds: Climatic limiting factors and multi-scale topographic
influences. Global Ecology and Biogeography , 27, 690–703.
Strimas-Mackey, M., Hochachka, W.M., Ruiz-Gutierrez, V., Robinson, O.J.,
Miller, E.T., Auer, T. et al. (2020) Best Practices for
Using eBird Data v1.0 , Zenodo.
Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D. &
Kelling, S. (2009) eBird: A citizen-based bird observation network in
the biological sciences. Biological Conservation , 142,
2282–2292.
Sweka, J.A. & Mackey, G. (2010) A Functional Relationship Between
Watershed Size and Atlantic Salmon Parr Density. Journal of Fish
and Wildlife Management , 1, 3–10.
Symonds, M.R.E. & Moussalli, A. (2011) A brief guide to model
selection, multimodel inference and model averaging in behavioural
ecology using Akaike’s information criterion. Behavioral Ecology
and Sociobiology , 65, 13–21.
Thomson, J.D., Weiblen, G., Thomson, B.A., Alfaro, S. & Legendre, P.
(1996) Untangling Multiple Factors in Spatial Distributions: Lilies,
Gophers, and Rocks. Ecology , 77, 1698–1715.
Thornthwaite, C.W. (1948) An Approach toward a Rational Classification
of Climate. Geographical Review , 38, 55.
Vaz, S., Martin, C.S., Eastwood, P.D., Ernande, B., Carpentier, A.,
Meaden, G.J. et al. (2007) Modelling species distributions using
regression quantiles. Journal of Applied Ecology , 45, 204–217.
Villén-Pérez, S., Carrascal, L.M. & Palomino, D. (2022) Cambio
climático, hábitats y Red Natura 2000: el futuro de las aves comunes en
España , Uno Editorial, Madrid.
Villén‐Peréz, S., Heikkinen, J., Salemaa, M. & Mäkipää, R. (2020)
Global warming will affect the maximum potential abundance of boreal
plant species. Ecography , 43, 801–811.
Wilson, K.A., Westphal, M.I., Possingham, H.P. & Elith, J. (2005)
Sensitivity of conservation planning to different approaches to using
predicted species distribution data. Biological Conservation ,
122, 99–112.
Zang, C.S., Buras, A., Esquivel‐Muelbert, A., Jump, A.S., Rigling, A. &
Rammig, A. (2020) Standardized drought indices in ecological research:
Why one size does not fit all. Global Change Biology , 26,
322–324.