References
Adrover, M. F., Shin, J. H., Quiroz, C., Ferre, S., Lemos, J. C., &
Alvarez, V. A. (2020). Prefrontal Cortex-Driven Dopamine Signals in the
Striatum Show Unique Spatial and Pharmacological Properties.Journal of Neuroscience, 40 (39), 7510-7522.
doi:10.1523/JNEUROSCI.1327-20.2020
An, S., Li, X., Deng, L., Zhao, P., Ding, Z., Han, Y., Luo, Y., Liu, X.,
Li, A., Luo, Q., Feng, Z., & Gong, H. (2021). A Whole-Brain
Connectivity Map of VTA and SNc Glutamatergic and GABAergic Neurons in
Mice. Frontiers in Neuroanatomy, 15 , 818242.
doi:10.3389/fnana.2021.818242
Anzalone, A., Lizardi-Ortiz, J. E., Ramos, M., De Mei, C., Hopf, F. W.,
Iaccarino, C., Halbout, B., Jacobsen, J., Kinoshita, C., Welter, M.,
Caron, M. G., Bonci, A., Sulzer, D., & Borrelli, E. (2012). Dual
control of dopamine synthesis and release by presynaptic and
postsynaptic dopamine D2 receptors. Journal of Neuroscience,32 (26), 9023-9034. doi:10.1523/JNEUROSCI.0918-12.2012
Aracil-Fernandez, A., Trigo, J. M., Garcia-Gutierrez, M. S.,
Ortega-Alvaro, A., Ternianov, A., Navarro, D., Robledo, P., Berbel, P.,
Maldonado, R., & Manzanares, J. (2012). Decreased cocaine motor
sensitization and self-administration in mice overexpressing cannabinoid
CB(2) receptors. Neuropsychopharmacology, 37 (7),
1749-1763. doi:10.1038/npp.2012.22
Arndt, D. L., Arnold, J. C., & Cain, M. E. (2014). The effects of
mGluR2/3 activation on acute and repeated amphetamine-induced locomotor
activity in differentially reared male rats. Experimental and
Clinical Psychopharmacology, 22 (3), 257-265.
doi:10.1037/a0035273
Atigari, D. V., Uprety, R., Pasternak, G. W., Majumdar, S., & Kivell,
B. M. (2019). MP1104, a mixed kappa-delta opioid receptor agonist has
anti-cocaine properties with reduced side-effects in rats.Neuropharmacology, 150 , 217-228.
doi:10.1016/j.neuropharm.2019.02.010
Atwood, B. K., Kupferschmidt, D. A., & Lovinger, D. M. (2014). Opioids
induce dissociable forms of long-term depression of excitatory inputs to
the dorsal striatum. Nature Neuroscience, 17 (4),
540-548. doi:10.1038/nn.3652
Atwood, B. K., Lovinger, D. M., & Mathur, B. N. (2014). Presynaptic
long-term depression mediated by Gi/o-coupled receptors. Trends in
Neurosciences, 37 (11), 663-673. doi:10.1016/j.tins.2014.07.010
Augier, E., Dulman, R. S., Rauffenbart, C., Augier, G., Cross, A. J., &
Heilig, M. (2016). The mGluR2 Positive Allosteric Modulator, AZD8529,
and Cue-Induced Relapse to Alcohol Seeking in Rats.Neuropsychopharmacology, 41 (12), 2932-2940.
doi:10.1038/npp.2016.107
Bamford, N. S., Wightman, R. M., & Sulzer, D. (2018). Dopamine’s
Effects on Corticostriatal Synapses during Reward-Based Behaviors.Neuron, 97 (3), 494-510. doi:10.1016/j.neuron.2018.01.006
Bauzo, R. M., Kimmel, H. L., & Howell, L. L. (2009). Interactions
between the mGluR2/3 agonist, LY379268, and cocaine on in vivo
neurochemistry and behavior in squirrel monkeys. Pharmacology
Biochemistry and Behavior, 94 (1), 204-210.
doi:10.1016/j.pbb.2009.08.011
Beckstead, M. J., Grandy, D. K., Wickman, K., & Williams, J. T. (2004).
Vesicular dopamine release elicits an inhibitory postsynaptic current in
midbrain dopamine neurons. Neuron, 42 (6), 939-946.
doi:10.1016/j.neuron.2004.05.019
Bello, E. P., Mateo, Y., Gelman, D. M., Noain, D., Shin, J. H., Low, M.
J., Alvarez, V. A., Lovinger, D. M., & Rubinstein, M. (2011). Cocaine
supersensitivity and enhanced motivation for reward in mice lacking
dopamine D2 autoreceptors. Nature Neuroscience, 14 (8),
1033-1038. doi:10.1038/nn.2862
Benoit-Marand, M., Ballion, B., Borrelli, E., Boraud, T., & Gonon, F.
(2011). Inhibition of dopamine uptake by D2 antagonists: an in vivo
study. Journal of Neurochemistry, 116 (3), 449-458.
doi:10.1111/j.1471-4159.2010.07125.x
Berizzi, A. E., Perry, C. J., Shackleford, D. M., Lindsley, C. W.,
Jones, C. K., Chen, N. A., Sexton, P. M., Christopoulos, A., Langmead,
C. J., & Lawrence, A. J. (2018). Muscarinic M(5) receptors modulate
ethanol seeking in rats. Neuropsychopharmacology, 43 (7),
1510-1517. doi:10.1038/s41386-017-0007-3
Berke, J. D. (2018). What does dopamine mean? Nature
Neuroscience, 21 (6), 787-793. doi:10.1038/s41593-018-0152-y
Buckholtz, J. W., Treadway, M. T., Cowan, R. L., Woodward, N. D., Li,
R., Ansari, M. S., Baldwin, R. M., Schwartzman, A. N., Shelby, E. S.,
Smith, C. E., Kessler, R. M., & Zald, D. H. (2010). Dopaminergic
network differences in human impulsivity. Science,329 (5991), 532. doi:10.1126/science.1185778
Budygin, E. A., Oleson, E. B., Lee, Y. B., Blume, L. C., Bruno, M. J.,
Howlett, A. C., Thompson, A. C., & Bass, C. E. (2016). Acute Depletion
of D2 Receptors from the Rat Substantia Nigra Alters Dopamine Kinetics
in the Dorsal Striatum and Drug Responsivity. Frontiers in
Behavioral Neuroscience, 10 , 248. doi:10.3389/fnbeh.2016.00248
Byun, N. E., Grannan, M., Bubser, M., Barry, R. L., Thompson, A.,
Rosanelli, J., Gowrishankar, R., Kelm, N. D., Damon, S., Bridges, T. M.,
Melancon, B. J., Tarr, J. C., Brogan, J. T., Avison, M. J., Deutch, A.
Y., Wess, J., Wood, M. R., Lindsley, C. W., Gore, J. C., Conn, P. J., &
Jones, C. K. (2014). Antipsychotic drug-like effects of the selective M4
muscarinic acetylcholine receptor positive allosteric modulator
VU0152100. Neuropsychopharmacology, 39 (7), 1578-1593.
doi:10.1038/npp.2014.2
Cachope, R., Mateo, Y., Mathur, B. N., Irving, J., Wang, H. L., Morales,
M., Lovinger, D. M., & Cheer, J. F. (2012). Selective activation of
cholinergic interneurons enhances accumbal phasic dopamine release:
setting the tone for reward processing. Cell Reports,2 (1), 33-41. doi:10.1016/j.celrep.2012.05.011
Campos-Jurado, Y., Marti-Prats, L., Zornoza, T., Polache, A., Granero,
L., & Cano-Cebrian, M. J. (2017). Regional differences in mu-opioid
receptor-dependent modulation of basal dopamine transmission in rat
striatum. Neuroscience Letters, 638 , 102-108.
doi:10.1016/j.neulet.2016.12.024
Canseco-Alba, A., Schanz, N., Sanabria, B., Zhao, J., Lin, Z., Liu, Q.
R., & Onaivi, E. S. (2019). Behavioral effects of psychostimulants in
mutant mice with cell-type specific deletion of CB2 cannabinoid
receptors in dopamine neurons. Behavioural Brain Research,360 , 286-297. doi:10.1016/j.bbr.2018.11.043
Caprioli, D., Justinova, Z., Venniro, M., & Shaham, Y. (2018). Effect
of Novel Allosteric Modulators of Metabotropic Glutamate Receptors on
Drug Self-administration and Relapse: A Review of Preclinical Studies
and Their Clinical Implications. Biological Psychiatry,84 (3), 180-192. doi:10.1016/j.biopsych.2017.08.018
Cardozo, D. L., & Bean, B. P. (1995). Voltage-dependent calcium
channels in rat midbrain dopamine neurons: modulation by dopamine and
GABAB receptors. Journal of Neurophysiology, 74 (3),
1137-1148. doi:10.1152/jn.1995.74.3.1137
Charbogne, P., Kieffer, B. L., & Befort, K. (2014). 15 years of genetic
approaches in vivo for addiction research: Opioid receptor and peptide
gene knockout in mouse models of drug abuse. Neuropharmacology,76 Pt B (0 0), 204-217. doi:10.1016/j.neuropharm.2013.08.028
Cheer, J. F., Wassum, K. M., Sombers, L. A., Heien, M. L., Ariansen, J.
L., Aragona, B. J., Phillips, P. E., & Wightman, R. M. (2007). Phasic
dopamine release evoked by abused substances requires cannabinoid
receptor activation. Journal of Neuroscience, 27 (4),
791-795. doi:10.1523/JNEUROSCI.4152-06.2007
Chefer, V. I., Czyzyk, T., Bolan, E. A., Moron, J., Pintar, J. E., &
Shippenberg, T. S. (2005). Endogenous kappa-opioid receptor systems
regulate mesoaccumbal dopamine dynamics and vulnerability to cocaine.Journal of Neuroscience, 25 (20), 5029-5037.
doi:10.1523/JNEUROSCI.0854-05.2005
Collins, A. L., Aitken, T. J., Greenfield, V. Y., Ostlund, S. B., &
Wassum, K. M. (2016). Nucleus Accumbens Acetylcholine Receptors Modulate
Dopamine and Motivation. Neuropsychopharmacology,41 (12), 2830-2838. doi:10.1038/npp.2016.81
Congar, P., Bergevin, A., & Trudeau, L. E. (2002). D2 receptors inhibit
the secretory process downstream from calcium influx in dopaminergic
neurons: implication of K+ channels. Journal of Neurophysiology,87 (2), 1046-1056. doi:10.1152/jn.00459.2001
Courtney, N. A., Mamaligas, A. A., & Ford, C. P. (2012). Species
differences in somatodendritic dopamine transmission determine
D2-autoreceptor-mediated inhibition of ventral tegmental area neuron
firing. Journal of Neuroscience, 32 (39), 13520-13528.
doi:10.1523/JNEUROSCI.2745-12.2012
Cover, K. K., Gyawali, U., Kerkhoff, W. G., Patton, M. H., Mu, C.,
White, M. G., Marquardt, A. E., Roberts, B. M., Cheer, J. F., & Mathur,
B. N. (2019). Activation of the Rostral Intralaminar Thalamus Drives
Reinforcement through Striatal Dopamine Release. Cell Reports,26 (6), 1389-1398 e1383. doi:10.1016/j.celrep.2019.01.044
Covey, D. P., Bunner, K. D., Schuweiler, D. R., Cheer, J. F., & Garris,
P. A. (2016). Amphetamine elevates nucleus accumbens dopamine via an
action potential-dependent mechanism that is modulated by
endocannabinoids. European Journal of Neuroscience,43 (12), 1661-1673. doi:10.1111/ejn.13248
Crawford, J. T., Roberts, D. C., & Beveridge, T. J. (2013). The group
II metabotropic glutamate receptor agonist, LY379268, decreases
methamphetamine self-administration in rats. Drug and Alcohol
Dependence, 132 (3), 414-419.
doi:10.1016/j.drugalcdep.2013.07.024
Cui, Y., Ostlund, S. B., James, A. S., Park, C. S., Ge, W., Roberts, K.
W., Mittal, N., Murphy, N. P., Cepeda, C., Kieffer, B. L., Levine, M.
S., Jentsch, J. D., Walwyn, W. M., Sun, Y. E., Evans, C. J., Maidment,
N. T., & Yang, X. W. (2014). Targeted expression of mu-opioid receptors
in a subset of striatal direct-pathway neurons restores opiate reward.Nature Neuroscience, 17 (2), 254-261. doi:10.1038/nn.3622
D’Souza, M. S., Liechti, M. E., Ramirez-Nino, A. M., Kuczenski, R., &
Markou, A. (2011). The metabotropic glutamate 2/3 receptor agonist
LY379268 blocked nicotine-induced increases in nucleus accumbens shell
dopamine only in the presence of a nicotine-associated context in rats.Neuropsychopharmacology, 36 (10), 2111-2124.
doi:10.1038/npp.2011.103
Dall, C., Weikop, P., Dencker, D., Molander, A. C., Wortwein, G., Conn,
P. J., Fink-Jensen, A., & Thomsen, M. (2017). Muscarinic receptor M(4)
positive allosteric modulators attenuate central effects of cocaine.Drug and Alcohol Dependence, 176 , 154-161.
doi:10.1016/j.drugalcdep.2017.03.014
Darcq, E., & Kieffer, B. L. (2018). Opioid receptors: drivers to
addiction? Nature Reviews: Neuroscience, 19 (8), 499-514.
doi:10.1038/s41583-018-0028-x
de Jong, J. W., Fraser, K. M., & Lammel, S. (2022). Mesoaccumbal
Dopamine Heterogeneity: What Do Dopamine Firing and Release Have to Do
with It? Annual Review of Neuroscience, 45 , 109-129.
doi:10.1146/annurev-neuro-110920-011929
De Klippel, N., Sarre, S., Ebinger, G., & Michotte, Y. (1993). Effect
of M1- and M2-muscarinic drugs on striatal dopamine release and
metabolism: an in vivo microdialysis study comparing normal and
6-hydroxydopamine-lesioned rats. Brain Research,630 (1-2), 57-64. doi:10.1016/0006-8993(93)90642-z
De Luca, M. A., Bimpisidis, Z., Melis, M., Marti, M., Caboni, P.,
Valentini, V., Margiani, G., Pintori, N., Polis, I., Marsicano, G.,
Parsons, L. H., & Di Chiara, G. (2015). Stimulation of in vivo dopamine
transmission and intravenous self-administration in rats and mice by
JWH-018, a Spice cannabinoid. Neuropharmacology, 99 ,
705-714. doi:10.1016/j.neuropharm.2015.08.041
Dencker, D., Weikop, P., Sorensen, G., Woldbye, D. P., Wortwein, G.,
Wess, J., & Fink-Jensen, A. (2012). An allosteric enhancer of M(4)
muscarinic acetylcholine receptor function inhibits behavioral and
neurochemical effects of cocaine. Psychopharmacology (Berl),224 (2), 277-287. doi:10.1007/s00213-012-2751-8
Di Chiara, G., & Imperato, A. (1988). Opposite effects of mu and kappa
opiate agonists on dopamine release in the nucleus accumbens and in the
dorsal caudate of freely moving rats. Journal of Pharmacology and
Experimental Therapeutics, 244 (3), 1067-1080. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/2855239
Escobar, A. D. P., Casanova, J. P., Andres, M. E., & Fuentealba, J. A.
(2020). Crosstalk Between Kappa Opioid and Dopamine Systems in
Compulsive Behaviors. Frontiers in Pharmacology, 11 , 57.
doi:10.3389/fphar.2020.00057
Fields, H. L., & Margolis, E. B. (2015). Understanding opioid reward.Trends in Neurosciences, 38 (4), 217-225.
doi:10.1016/j.tins.2015.01.002
Ford, C. P. (2014). The role of D2-autoreceptors in regulating dopamine
neuron activity and transmission. Neuroscience, 282 ,
13-22. doi:10.1016/j.neuroscience.2014.01.025
Ford, C. P., Mark, G. P., & Williams, J. T. (2006). Properties and
opioid inhibition of mesolimbic dopamine neurons vary according to
target location. Journal of Neuroscience, 26 (10),
2788-2797. doi:10.1523/JNEUROSCI.4331-05.2006
Foster, D. J., Bryant, Z. K., & Conn, P. J. (2021). Targeting
muscarinic receptors to treat schizophrenia. Behavioural Brain
Research, 405 , 113201. doi:10.1016/j.bbr.2021.113201
Foster, D. J., Gentry, P. R., Lizardi-Ortiz, J. E., Bridges, T. M.,
Wood, M. R., Niswender, C. M., Sulzer, D., Lindsley, C. W., Xiang, Z.,
& Conn, P. J. (2014). M5 receptor activation produces opposing
physiological outcomes in dopamine neurons depending on the receptor’s
location. Journal of Neuroscience, 34 (9), 3253-3262.
doi:10.1523/JNEUROSCI.4896-13.2014
Foster, D. J., Wilson, J. M., Remke, D. H., Mahmood, M. S., Uddin, M.
J., Wess, J., Patel, S., Marnett, L. J., Niswender, C. M., Jones, C. K.,
Xiang, Z., Lindsley, C. W., Rook, J. M., & Conn, P. J. (2016).
Antipsychotic-like Effects of M4 Positive Allosteric Modulators Are
Mediated by CB2 Receptor-Dependent Inhibition of Dopamine Release.Neuron, 91 (6), 1244-1252.
doi:10.1016/j.neuron.2016.08.017
French, E. D., Dillon, K., & Wu, X. (1997). Cannabinoids excite
dopamine neurons in the ventral tegmentum and substantia nigra.Neuroreport, 8 (3), 649-652.
doi:10.1097/00001756-199702100-00014
Garrison, A. T., Orsi, D. L., Capstick, R. A., Whomble, D., Li, J.,
Carter, T. R., Felts, A. S., Vinson, P. N., Rodriguez, A. L., Han, A.,
Hajari, K., Cho, H. P., Teal, L. B., Ragland, M. G., Ghamari-Langroudi,
M., Bubser, M., Chang, S., Schnetz-Boutaud, N. C., Boutaud, O., Blobaum,
A. L., Foster, D. J., Niswender, C. M., Conn, P. J., Lindsley, C. W.,
Jones, C. K., & Han, C. (2022). Development of VU6019650: A Potent,
Highly Selective, and Systemically Active Orthosteric Antagonist of the
M(5) Muscarinic Acetylcholine Receptor for the Treatment of Opioid Use
Disorder. Journal of Medicinal Chemistry, 65 (8),
6273-6286. doi:10.1021/acs.jmedchem.2c00192
Gessa, G. L., Melis, M., Muntoni, A. L., & Diana, M. (1998).
Cannabinoids activate mesolimbic dopamine neurons by an action on
cannabinoid CB1 receptors. European Journal of Pharmacology,341 (1), 39-44. doi:10.1016/s0014-2999(97)01442-8
Gould, R. W., Gunter, B. W., Bubser, M., Matthews, R. T., Teal, L. B.,
Ragland, M. G., Bridges, T. M., Garrison, A. T., Winder, D. G.,
Lindsley, C. W., & Jones, C. K. (2019). Acute Negative Allosteric
Modulation of M(5) Muscarinic Acetylcholine Receptors Inhibits Oxycodone
Self-Administration and Cue-Induced Reactivity with No Effect on
Antinociception. ACS Chemical Neuroscience, 10 (8),
3740-3750. doi:10.1021/acschemneuro.9b00274
Gray, A. M., Rawls, S. M., Shippenberg, T. S., & McGinty, J. F. (1999).
The kappa-opioid agonist, U-69593, decreases acute amphetamine-evoked
behaviors and calcium-dependent dialysate levels of dopamine and
glutamate in the ventral striatum. Journal of Neurochemistry,73 (3), 1066-1074. doi:10.1046/j.1471-4159.1999.0731066.x
Graziane, N. M., Polter, A. M., Briand, L. A., Pierce, R. C., & Kauer,
J. A. (2013). Kappa opioid receptors regulate stress-induced cocaine
seeking and synaptic plasticity. Neuron, 77 (5), 942-954.
doi:10.1016/j.neuron.2012.12.034
Gunter, B. W., Gould, R. W., Bubser, M., McGowan, K. M., Lindsley, C.
W., & Jones, C. K. (2018). Selective inhibition of M(5) muscarinic
acetylcholine receptors attenuates cocaine self-administration in rats.Addiction Biology, 23 (5), 1106-1116.
doi:10.1111/adb.12567
Han, X., Liang, Y., Hempel, B., Jordan, C. J., Shen, H., Bi, G. H., Li,
J., & Xi, Z. X. (2023). Cannabinoid CB1 Receptors Are Expressed in a
Subset of Dopamine Neurons and Underlie Cannabinoid-Induced Aversion,
Hypoactivity, and Anxiolytic Effects in Mice. Journal of
Neuroscience, 43 (3), 373-385.
doi:10.1523/JNEUROSCI.1493-22.2022
Hillemacher, T., Heberlein, A., Muschler, M. A., Bleich, S., &
Frieling, H. (2011). Opioid modulators for alcohol dependence.Expert Opinion on Investigational Drugs, 20 (8),
1073-1086. doi:10.1517/13543784.2011.592139
Holroyd, K. B., Adrover, M. F., Fuino, R. L., Bock, R., Kaplan, A. R.,
Gremel, C. M., Rubinstein, M., & Alvarez, V. A. (2015). Loss of
feedback inhibition via D2 autoreceptors enhances acquisition of cocaine
taking and reactivity to drug-paired cues.Neuropsychopharmacology, 40 (6), 1495-1509.
doi:10.1038/npp.2014.336
Jin, X., Semenova, S., Yang, L., Ardecky, R., Sheffler, D. J., Dahl, R.,
Conn, P. J., Cosford, N. D., & Markou, A. (2010). The mGluR2 positive
allosteric modulator BINA decreases cocaine self-administration and
cue-induced cocaine-seeking and counteracts cocaine-induced enhancement
of brain reward function in rats. Neuropsychopharmacology,35 (10), 2021-2036. doi:10.1038/npp.2010.82
Johnson, K. A. (2021). Classic and modern approaches to investigating
interactions between dopamine systems and metabotropic glutamate
receptors. In M. F. B. Olive, B.T.; Leyrer-Jackson, J.M. (Ed.),Metabotropic Glutamate Receptor Technologies , (pp. 135-172). New
York, N.Y.: Humana Press.
Johnson, K. A., & Lovinger, D. M. (2016). Presynaptic G Protein-Coupled
Receptors: Gatekeepers of Addiction? Frontiers in Cellular
Neuroscience, 10 , 264. doi:10.3389/fncel.2016.00264
Johnson, K. A., & Lovinger, D. M. (2020). Allosteric modulation of
metabotropic glutamate receptors in alcohol use disorder: Insights from
preclinical investigations. Advances in Pharmacology,88 , 193-232. doi:10.1016/bs.apha.2020.02.002
Johnson, K. A., Mateo, Y., & Lovinger, D. M. (2017). Metabotropic
glutamate receptor 2 inhibits thalamically-driven glutamate and dopamine
release in the dorsal striatum. Neuropharmacology, 117 ,
114-123. doi:10.1016/j.neuropharm.2017.01.038
Johnson, K. A., Voyvodic, L., Loewinger, G. C., Mateo, Y., & Lovinger,
D. M. (2020). Operant self-stimulation of thalamic terminals in the
dorsomedial striatum is constrained by metabotropic glutamate receptor
2. Neuropsychopharmacology, 45 (9), 1454-1462.
doi:10.1038/s41386-020-0626-y
Johnson, S. W., & North, R. A. (1992). Opioids excite dopamine neurons
by hyperpolarization of local interneurons. Journal of
Neuroscience, 12 (2), 483-488.
doi:10.1523/JNEUROSCI.12-02-00483.1992
Jordan, C. J., & Xi, Z. X. (2021). Identification of the Risk Genes
Associated With Vulnerability to Addiction: Major Findings From
Transgenic Animals. Frontiers in Neuroscience, 15 ,
811192. doi:10.3389/fnins.2021.811192
Joseph, L., & Thomsen, M. (2017). Effects of muscarinic receptor
antagonists on cocaine discrimination in wild-type mice and in
muscarinic receptor M(1), M(2), and M(4) receptor knockout mice.Behavioural Brain Research, 329 , 75-83.
doi:10.1016/j.bbr.2017.04.023
Justinova, Z., Panlilio, L. V., Secci, M. E., Redhi, G. H., Schindler,
C. W., Cross, A. J., Mrzljak, L., Medd, A., Shaham, Y., & Goldberg, S.
R. (2015). The Novel Metabotropic Glutamate Receptor 2 Positive
Allosteric Modulator, AZD8529, Decreases Nicotine Self-Administration
and Relapse in Squirrel Monkeys. Biological Psychiatry,78 (7), 452-462. doi:10.1016/j.biopsych.2015.01.014
Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M., &
Watanabe, M. (2009). Endocannabinoid-mediated control of synaptic
transmission. Physiological Reviews, 89 (1), 309-380.
doi:10.1152/physrev.00019.2008
Karkhanis, A., Holleran, K. M., & Jones, S. R. (2017). Dynorphin/Kappa
Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and
Food Addiction. International Review of Neurobiology,136 , 53-88. doi:10.1016/bs.irn.2017.08.001
Karkhanis, A. N., Huggins, K. N., Rose, J. H., & Jones, S. R. (2016).
Switch from excitatory to inhibitory actions of ethanol on dopamine
levels after chronic exposure: Role of kappa opioid receptors.Neuropharmacology, 110 (Pt A), 190-197.
doi:10.1016/j.neuropharm.2016.07.022
Katsidoni, V., Kastellakis, A., & Panagis, G. (2013). Biphasic effects
of Delta9-tetrahydrocannabinol on brain stimulation reward and motor
activity. International Journal of Neuropsychopharmacology,16 (10), 2273-2284. doi:10.1017/S1461145713000709
Kivell, B., Uzelac, Z., Sundaramurthy, S., Rajamanickam, J., Ewald, A.,
Chefer, V., Jaligam, V., Bolan, E., Simonson, B., Annamalai, B.,
Mannangatti, P., Prisinzano, T. E., Gomes, I., Devi, L. A., Jayanthi, L.
D., Sitte, H. H., Ramamoorthy, S., & Shippenberg, T. S. (2014).
Salvinorin A regulates dopamine transporter function via a kappa opioid
receptor and ERK1/2-dependent mechanism. Neuropharmacology,86 , 228-240. doi:10.1016/j.neuropharm.2014.07.016
Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: a
neurocircuitry analysis. Lancet Psychiatry, 3 (8),
760-773. doi:10.1016/S2215-0366(16)00104-8
Kosillo, P., Zhang, Y. F., Threlfell, S., & Cragg, S. J. (2016).
Cortical Control of Striatal Dopamine Transmission via Striatal
Cholinergic Interneurons. Cerebral Cortex, 26 (11),
4160-4169. doi:10.1093/cercor/bhw252
Kramer, P. F., Brill-Weil, S. G., Cummins, A. C., Zhang, R.,
Camacho-Hernandez, G. A., Newman, A. H., Eldridge, M. A. G., Averbeck,
B. B., & Khaliq, Z. M. (2022). Synaptic-like axo-axonal transmission
from striatal cholinergic interneurons onto dopaminergic fibers.Neuron, 110 (18), 2949-2960 e2944.
doi:10.1016/j.neuron.2022.07.011
Kruse, A. C., Kobilka, B. K., Gautam, D., Sexton, P. M., Christopoulos,
A., & Wess, J. (2014). Muscarinic acetylcholine receptors: novel
opportunities for drug development. Nature Reviews: Drug
Discovery, 13 (7), 549-560. doi:10.1038/nrd4295
Kupferschmidt, D. A., & Lovinger, D. M. (2015). Inhibition of
presynaptic calcium transients in cortical inputs to the dorsolateral
striatum by metabotropic GABA(B) and mGlu2/3 receptors. Journal of
Physiology, 593 (10), 2295-2310. doi:10.1113/JP270045
Kutlu, M. G., Zachry, J. E., Melugin, P. R., Cajigas, S. A., Chevee, M.
F., Kelly, S. J., Kutlu, B., Tian, L., Siciliano, C. A., & Calipari, E.
S. (2021). Dopamine release in the nucleus accumbens core signals
perceived saliency. Current Biology, 31 (21), 4748-4761
e4748. doi:10.1016/j.cub.2021.08.052
Labouesse, M. A., & Patriarchi, T. (2021). A versatile GPCR toolkit to
track in vivo neuromodulation: not a one-size-fits-all sensor.Neuropsychopharmacology, 46 (12), 2043-2047.
doi:10.1038/s41386-021-00982-y
Lacey, M. G., Mercuri, N. B., & North, R. A. (1987). Dopamine acts on
D2 receptors to increase potassium conductance in neurones of the rat
substantia nigra zona compacta. Journal of Physiology,392 , 397-416. doi:10.1113/jphysiol.1987.sp016787
Lee, F. J., Pei, L., Moszczynska, A., Vukusic, B., Fletcher, P. J., &
Liu, F. (2007). Dopamine transporter cell surface localization
facilitated by a direct interaction with the dopamine D2 receptor.EMBO Journal, 26 (8), 2127-2136.
doi:10.1038/sj.emboj.7601656
Li, X., D’Souza, M. S., Nino, A. M., Doherty, J., Cross, A., & Markou,
A. (2016). Attenuation of nicotine-taking and nicotine-seeking behavior
by the mGlu2 receptor positive allosteric modulators AZD8418 and AZD8529
in rats. Psychopharmacology (Berl), 233 (10), 1801-1814.
doi:10.1007/s00213-016-4220-2
Liechti, M. E., Lhuillier, L., Kaupmann, K., & Markou, A. (2007).
Metabotropic glutamate 2/3 receptors in the ventral tegmental area and
the nucleus accumbens shell are involved in behaviors relating to
nicotine dependence. Journal of Neuroscience, 27 (34),
9077-9085. doi:10.1523/JNEUROSCI.1766-07.2007
Liu, C., Cai, X., Ritzau-Jost, A., Kramer, P. F., Li, Y., Khaliq, Z. M.,
Hallermann, S., & Kaeser, P. S. (2022). An action potential initiation
mechanism in distal axons for the control of dopamine release.Science, 375 (6587), 1378-1385.
doi:10.1126/science.abn0532
Lovinger, D. M., Mateo, Y., Johnson, K. A., Engi, S. A., Antonazzo, M.,
& Cheer, J. F. (2022). Local modulation by presynaptic receptors
controls neuronal communication and behaviour. Nature Reviews:
Neuroscience, 23 (4), 191-203. doi:10.1038/s41583-022-00561-0
Luscher, C., Robbins, T. W., & Everitt, B. J. (2020). The transition to
compulsion in addiction. Nature Reviews Neuroscience,21 (5), 247-263. doi:10.1038/s41583-020-0289-z
Ma, Z., Gao, F., Larsen, B., Gao, M., Luo, Z., Chen, D., Ma, X., Qiu,
S., Zhou, Y., Xie, J., Xi, Z. X., & Wu, J. (2019). Mechanisms of
cannabinoid CB(2) receptor-mediated reduction of dopamine neuronal
excitability in mouse ventral tegmental area. EBioMedicine,42 , 225-237. doi:10.1016/j.ebiom.2019.03.040
Margolis, E. B., Hjelmstad, G. O., Bonci, A., & Fields, H. L. (2003).
Kappa-opioid agonists directly inhibit midbrain dopaminergic neurons.Journal of Neuroscience, 23 (31), 9981-9986.
doi:10.1523/JNEUROSCI.23-31-09981.2003
Margolis, E. B., Hjelmstad, G. O., Bonci, A., & Fields, H. L. (2005).
Both kappa and mu opioid agonists inhibit glutamatergic input to ventral
tegmental area neurons. Journal of Neurophysiology,93 (6), 3086-3093. doi:10.1152/jn.00855.2004
Margolis, E. B., & Karkhanis, A. N. (2019). Dopaminergic cellular and
circuit contributions to kappa opioid receptor mediated aversion.Neurochemistry International, 129 , 104504.
doi:10.1016/j.neuint.2019.104504
Martel, J. C., & Gatti McArthur, S. (2020). Dopamine Receptor Subtypes,
Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia.Frontiers in Pharmacology, 11 , 1003.
doi:10.3389/fphar.2020.01003
Martel, P., Leo, D., Fulton, S., Berard, M., & Trudeau, L. E. (2011).
Role of Kv1 potassium channels in regulating dopamine release and
presynaptic D2 receptor function. PLoS One, 6 (5),
e20402. doi:10.1371/journal.pone.0020402
Mateo, Y., Johnson, K. A., Covey, D. P., Atwood, B. K., Wang, H. L.,
Zhang, S., Gildish, I., Cachope, R., Bellocchio, L., Guzman, M.,
Morales, M., Cheer, J. F., & Lovinger, D. M. (2017). Endocannabinoid
Actions on Cortical Terminals Orchestrate Local Modulation of Dopamine
Release in the Nucleus Accumbens. Neuron, 96 (5),
1112-1126 e1115. doi:10.1016/j.neuron.2017.11.012
Matthes, H. W., Maldonado, R., Simonin, F., Valverde, O., Slowe, S.,
Kitchen, I., Befort, K., Dierich, A., Le Meur, M., Dolle, P., Tzavara,
E., Hanoune, J., Roques, B. P., & Kieffer, B. L. (1996). Loss of
morphine-induced analgesia, reward effect and withdrawal symptoms in
mice lacking the mu-opioid-receptor gene. Nature,383 (6603), 819-823. doi:10.1038/383819a0
Mayfield, R. D., & Zahniser, N. R. (2001). Dopamine D2 receptor
regulation of the dopamine transporter expressed in Xenopus laevis
oocytes is voltage-independent. Molecular Pharmacology,59 (1), 113-121. doi:10.1124/mol.59.1.113
Mohebi, A., Pettibone, J. R., Hamid, A. A., Wong, J. T., Vinson, L. T.,
Patriarchi, T., Tian, L., Kennedy, R. T., & Berke, J. D. (2019).
Dissociable dopamine dynamics for learning and motivation.Nature, 570 (7759), 65-70. doi:10.1038/s41586-019-1235-y
Mohebi, A. C., V.L.; Berke, J.D. (2022). Cholinergic interneurons drive
motivation by promoting dopamine release in the nucleus accumbensbioRxiv doi:https://doi.org/10.1101/2022.11.06.515335
Negus, S. S., Mello, N. K., Portoghese, P. S., & Lin, C. E. (1997).
Effects of kappa opioids on cocaine self-administration by rhesus
monkeys. Journal of Pharmacology and Experimental Therapeutics,282 (1), 44-55. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/9223538
Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate
receptors: physiology, pharmacology, and disease. Annual Review of
Pharmacology and Toxicology, 50 , 295-322.
doi:10.1146/annurev.pharmtox.011008.145533
Nolan, S. O., Zachry, J. E., Johnson, A. R., Brady, L. J., Siciliano, C.
A., & Calipari, E. S. (2020). Direct dopamine terminal regulation by
local striatal microcircuitry. Journal of Neurochemistry,155 (5), 475-493. doi:10.1111/jnc.15034
Oleson, E. B., Beckert, M. V., Morra, J. T., Lansink, C. S., Cachope,
R., Abdullah, R. A., Loriaux, A. L., Schetters, D., Pattij, T., Roitman,
M. F., Lichtman, A. H., & Cheer, J. F. (2012). Endocannabinoids shape
accumbal encoding of cue-motivated behavior via CB1 receptor activation
in the ventral tegmentum. Neuron, 73 (2), 360-373.
doi:10.1016/j.neuron.2011.11.018
Pehrson, A. L., & Moghaddam, B. (2010). Impact of metabotropic
glutamate 2/3 receptor stimulation on activated dopamine release and
locomotion. Psychopharmacology (Berl), 211 (4), 443-455.
doi:10.1007/s00213-010-1914-8
Pentney, R. J., & Gratton, A. (1991). Effects of local delta and mu
opioid receptor activation on basal and stimulated dopamine release in
striatum and nucleus accumbens of rat: an in vivo electrochemical study.Neuroscience, 45 (1), 95-102.
doi:10.1016/0306-4522(91)90106-x
Perra, S., Clements, M. A., Bernier, B. E., & Morikawa, H. (2011). In
vivo ethanol experience increases D(2) autoinhibition in the ventral
tegmental area. Neuropsychopharmacology, 36 (5),
993-1002. doi:10.1038/npp.2010.237
Peters, K. Z., Cheer, J. F., & Tonini, R. (2021). Modulating the
Neuromodulators: Dopamine, Serotonin, and the Endocannabinoid System.Trends in Neurosciences, 44 (6), 464-477.
doi:10.1016/j.tins.2021.02.001
Peters, K. Z., Oleson, E. B., & Cheer, J. F. (2021). A Brain on
Cannabinoids: The Role of Dopamine Release in Reward Seeking and
Addiction. Cold Spring Harbor Perspectives in Medicine,11 (1)doi:10.1101/cshperspect.a039305
Polter, A. M., Bishop, R. A., Briand, L. A., Graziane, N. M., Pierce, R.
C., & Kauer, J. A. (2014). Poststress block of kappa opioid receptors
rescues long-term potentiation of inhibitory synapses and prevents
reinstatement of cocaine seeking. Biological Psychiatry,76 (10), 785-793. doi:10.1016/j.biopsych.2014.04.019
Ponterio, G., Tassone, A., Sciamanna, G., Riahi, E., Vanni, V., Bonsi,
P., & Pisani, A. (2013). Powerful inhibitory action of mu opioid
receptors (MOR) on cholinergic interneuron excitability in the dorsal
striatum. Neuropharmacology, 75 , 78-85.
doi:10.1016/j.neuropharm.2013.07.006
Reeves, K. C., Shah, N., Munoz, B., & Atwood, B. K. (2022). Opioid
Receptor-Mediated Regulation of Neurotransmission in the Brain.Frontiers in Molecular Neuroscience, 15 , 919773.
doi:10.3389/fnmol.2022.919773
Rifkin, R. A., Moss, S. J., & Slesinger, P. A. (2017). G Protein-Gated
Potassium Channels: A Link to Drug Addiction. Trends in
Pharmacological Sciences, 38 (4), 378-392.
doi:10.1016/j.tips.2017.01.007
Sgroi, S., & Tonini, R. (2018). Opioidergic Modulation of Striatal
Circuits, Implications in Parkinson’s Disease and Levodopa Induced
Dyskinesia. Frontiers in Neurology, 9 , 524.
doi:10.3389/fneur.2018.00524
Shansky, R. M., & Murphy, A. Z. (2021). Considering sex as a biological
variable will require a global shift in science culture. Nature
Neuroscience, 24 (4), 457-464. doi:10.1038/s41593-021-00806-8
Shin, J. H., Adrover, M. F., Wess, J., & Alvarez, V. A. (2015).
Muscarinic regulation of dopamine and glutamate transmission in the
nucleus accumbens. Proceedings of the National Academy of Sciences
of the United States of America, 112 (26), 8124-8129.
doi:10.1073/pnas.1508846112
Smolders, I., Bogaert, L., Ebinger, G., & Michotte, Y. (1997).
Muscarinic modulation of striatal dopamine, glutamate, and GABA release,
as measured with in vivo microdialysis. Journal of
Neurochemistry, 68 (5), 1942-1948.
doi:10.1046/j.1471-4159.1997.68051942.x
Spanagel, R., Herz, A., & Shippenberg, T. S. (1992). Opposing tonically
active endogenous opioid systems modulate the mesolimbic dopaminergic
pathway. Proceedings of the National Academy of Sciences of the
United States of America, 89 (6), 2046-2050.
doi:10.1073/pnas.89.6.2046
Spodnick, M. B., Amirault, R. T., Towner, T. T., Varlinskaya, E. I.,
Spear, L. P., & Karkhanis, A. N. (2020). Adolescent Intermittent
Ethanol Exposure Effects on Kappa Opioid Receptor Mediated Dopamine
Transmission: Sex and Age of Exposure Matter. Brain Science,10 (8)doi:10.3390/brainsci10080472
Stamford, J. A., Kruk, Z. L., & Millar, J. (1991). Differential effects
of dopamine agonists upon stimulated limbic and striatal dopamine
release: in vivo voltammetric data. British Journal of
Pharmacology, 102 (1), 45-50.
doi:10.1111/j.1476-5381.1991.tb12130.x
Stein, C. (2016). Opioid Receptors. Annual Review of Medicine,67 , 433-451. doi:10.1146/annurev-med-062613-093100
Sulzer, D., Cragg, S. J., & Rice, M. E. (2016). Striatal dopamine
neurotransmission: regulation of release and uptake. Basal
Ganglia, 6 (3), 123-148. doi:10.1016/j.baga.2016.02.001
Teal, L. B., Gould, R. W., Felts, A. S., & Jones, C. K. (2019).
Selective allosteric modulation of muscarinic acetylcholine receptors
for the treatment of schizophrenia and substance use disorders.Advances in Pharmacology, 86 , 153-196.
doi:10.1016/bs.apha.2019.05.001
Threlfell, S., Clements, M. A., Khodai, T., Pienaar, I. S., Exley, R.,
Wess, J., & Cragg, S. J. (2010). Striatal muscarinic receptors promote
activity dependence of dopamine transmission via distinct receptor
subtypes on cholinergic interneurons in ventral versus dorsal striatum.Journal of Neuroscience, 30 (9), 3398-3408.
doi:10.1523/JNEUROSCI.5620-09.2010
Threlfell, S., Lalic, T., Platt, N. J., Jennings, K. A., Deisseroth, K.,
& Cragg, S. J. (2012). Striatal dopamine release is triggered by
synchronized activity in cholinergic interneurons. Neuron,75 (1), 58-64. doi:10.1016/j.neuron.2012.04.038
Tung, L. W., Lu, G. L., Lee, Y. H., Yu, L., Lee, H. J., Leishman, E.,
Bradshaw, H., Hwang, L. L., Hung, M. S., Mackie, K., Zimmer, A., &
Chiou, L. C. (2016). Orexins contribute to restraint stress-induced
cocaine relapse by endocannabinoid-mediated disinhibition of
dopaminergic neurons. Nature Communications, 7 , 12199.
doi:10.1038/ncomms12199
Tzavara, E. T., Bymaster, F. P., Davis, R. J., Wade, M. R., Perry, K.
W., Wess, J., McKinzie, D. L., Felder, C., & Nomikos, G. G. (2004). M4
muscarinic receptors regulate the dynamics of cholinergic and
dopaminergic neurotransmission: relevance to the pathophysiology and
treatment of related CNS pathologies. FASEB Journal,18 (12), 1410-1412. doi:10.1096/fj.04-1575fje
Underhill, S. M., & Amara, S. G. (2021). Acetylcholine Receptor
Stimulation Activates Protein Kinase C Mediated Internalization of the
Dopamine Transporter. Frontiers in Cellular Neuroscience,15 , 662216. doi:10.3389/fncel.2021.662216
Urban, N. B., & Martinez, D. (2012). Neurobiology of addiction: insight
from neurochemical imaging. Psychiatric Clinics of North America,35 (2), 521-541. doi:10.1016/j.psc.2012.03.011
Vilaro, M. T., Palacios, J. M., & Mengod, G. (1990). Localization of m5
muscarinic receptor mRNA in rat brain examined by in situ hybridization
histochemistry. Neuroscience Letters, 114 (2), 154-159.
doi:10.1016/0304-3940(90)90064-g
Volkow, N. D., & Morales, M. (2015). The Brain on Drugs: From Reward to
Addiction. Cell, 162 (4), 712-725.
doi:10.1016/j.cell.2015.07.046
Walker, L. C., Berizzi, A. E., Chen, N. A., Rueda, P., Perreau, V. M.,
Huckstep, K., Srisontiyakul, J., Govitrapong, P., Xiaojian, J.,
Lindsley, C. W., Jones, C. K., Riddy, D. M., Christopoulos, A.,
Langmead, C. J., & Lawrence, A. J. (2020). Acetylcholine Muscarinic
M(4) Receptors as a Therapeutic Target for Alcohol Use Disorder:
Converging Evidence From Humans and Rodents. Biological
Psychiatry, 88 (12), 898-909.
doi:10.1016/j.biopsych.2020.02.019
Walker, L. C., & Lawrence, A. J. (2020). Allosteric modulation of
muscarinic receptors in alcohol and substance use disorders.Advances in Pharmacology, 88 , 233-275.
doi:10.1016/bs.apha.2020.01.003
Walton, M. E., & Bouret, S. (2019). What Is the Relationship between
Dopamine and Effort? Trends in Neurosciences, 42 (2),
79-91. doi:10.1016/j.tins.2018.10.001
Wang, H., & Lupica, C. R. (2014). Release of endogenous cannabinoids
from ventral tegmental area dopamine neurons and the modulation of
synaptic processes. Progress in Neuropsychopharmacology and
Biological Psychiatry, 52 , 24-27.
doi:10.1016/j.pnpbp.2014.01.019
Wang, H., Treadway, T., Covey, D. P., Cheer, J. F., & Lupica, C. R.
(2015). Cocaine-Induced Endocannabinoid Mobilization in the Ventral
Tegmental Area. Cell Reports, 12 (12), 1997-2008.
doi:10.1016/j.celrep.2015.08.041
Weikop, P., Jensen, K. L., & Thomsen, M. (2020). Effects of muscarinic
M(1) receptor stimulation on reinforcing and neurochemical effects of
cocaine in rats. Neuropsychopharmacology, 45 (12),
1994-2002. doi:10.1038/s41386-020-0684-1
Weiner, D. M., Levey, A. I., & Brann, M. R. (1990). Expression of
muscarinic acetylcholine and dopamine receptor mRNAs in rat basal
ganglia. Proceedings of the National Academy of Sciences of the
United States of America, 87 (18), 7050-7054.
doi:10.1073/pnas.87.18.7050
Wise, R. A., & Robble, M. A. (2020). Dopamine and Addiction. Annu
Rev Psychol, 71 , 79-106.
doi:10.1146/annurev-psych-010418-103337
Wolf, M. E., & Roth, R. H. (1990). Autoreceptor regulation of dopamine
synthesis. Annals of the New York Academy of Sciences,604 , 323-343. doi:10.1111/j.1749-6632.1990.tb32003.x
Wolf, M. E., White, F. J., Nassar, R., Brooderson, R. J., & Khansa, M.
R. (1993). Differential development of autoreceptor subsensitivity and
enhanced dopamine release during amphetamine sensitization.Journal of Pharmacology and Experimental Therapeutics,264 (1), 249-255. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/8093727
Yamada, K., Takahashi, S., Karube, F., Fujiyama, F., Kobayashi, K.,
Nishi, A., & Momiyama, T. (2016). Neuronal circuits and physiological
roles of the basal ganglia in terms of transmitters, receptors and
related disorders. Journal of Physiological Sciences,66 (6), 435-446. doi:10.1007/s12576-016-0445-4
Yanovsky, Y., Mades, S., & Misgeld, U. (2003). Retrograde signaling
changes the venue of postsynaptic inhibition in rat substantia nigra.Neuroscience, 122 (2), 317-328.
doi:10.1016/s0306-4522(03)00607-9
Yorgason, J. T., Zeppenfeld, D. M., & Williams, J. T. (2017).
Cholinergic Interneurons Underlie Spontaneous Dopamine Release in
Nucleus Accumbens. Journal of Neuroscience, 37 (8),
2086-2096. doi:10.1523/JNEUROSCI.3064-16.2017
Zachry, J. E., Nolan, S. O., Brady, L. J., Kelly, S. J., Siciliano, C.
A., & Calipari, E. S. (2021). Sex differences in dopamine release
regulation in the striatum. Neuropsychopharmacology,46 (3), 491-499. doi:10.1038/s41386-020-00915-1
Zhang, H. Y., Gao, M., Liu, Q. R., Bi, G. H., Li, X., Yang, H. J.,
Gardner, E. L., Wu, J., & Xi, Z. X. (2014). Cannabinoid CB2 receptors
modulate midbrain dopamine neuronal activity and dopamine-related
behavior in mice. Proceedings of the National Academy of Sciences
of the United States of America, 111 (46), E5007-5015.
doi:10.1073/pnas.1413210111
Zhang, W., Yamada, M., Gomeza, J., Basile, A. S., & Wess, J. (2002).
Multiple muscarinic acetylcholine receptor subtypes modulate striatal
dopamine release, as studied with M1-M5 muscarinic receptor knock-out
mice. Journal of Neuroscience, 22 (15), 6347-6352.
doi:10.1523/JNEUROSCI.22-15-06347.2002
Zhang, Y. F., & Cragg, S. J. (2017). Pauses in Striatal Cholinergic
Interneurons: What is Revealed by Their Common Themes and Variations?Frontiers in Systems Neuroscience, 11 , 80.
doi:10.3389/fnsys.2017.00080