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Abstract 

In future modern power systems, reliability and resilience could be an extreme challenge caused by the stability issues of the bidirectional power 

converters (BPCs). The non-linear dynamics of DC link voltage (DCLV) of BPCs in interaction with the existing linear control schemes may 

decrease the stability margin and cause operating-point-dependent instability issues. Existing approaches may solve this issue by reducing the 

DCLV control loop bandwidth, which considerably degrades the system performance. To tackle this issue, first, the root cause of the instability 

challenge is analytically investigated, and then, a non-linear stabilizer control scheme based on Lyapunov theorem is proposed. Considering the 

non-linear dynamic of the BPCs and the interaction between dynamics of DC link voltage and AC currents in the proposed stabilizer, it guarantees 

the stability of the converter in both directions of power flow and the full range of loading conditions. The performance of the proposed scheme 

is verified through simulation of the system under various operating conditions, considering uncertainties, disturbances, and short-circuit events, 

and comparing it with that of prevalent controllers. 

© 2017 Elsevier Inc. All rights reserved. 
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1. INTRODUCTION 

The global paradigm shift toward green electrification technologies is increasingly intensified. Renewable energies, e-mobility, 

electronic transmission systems, microgrid and smart grid technologies, and energy storage systems are forerunner technologies 

facilitating decarburization [1]. Power electronics plays an underlying role in energy conversion process. In this subject, 

bidirectional power converter (BPCs) will be the commonly used elements for inverting and rectifying the electrical energy [2, 3]. 

BPCs will be the common-connection point for different technologies of renewable energies, battery energy storage systems, 

electronic DC loads and drive systems, electric vehicle charger stations, HVDC and etc. Unlike their extensive controllability and 

power grid supporting functions, they pose stability challenges to the power system [4-6].  

Different types of converters driven stability issues in modern power systems are discussed in two Technical Reports (TR) by IEEE 

Power and Energy Society (PES) in PES TR 66 and PES TR 77 [4, 5]. These issues may occur over a wide frequency range from a 

few Hz up to several hundreds of kHz driven by converter controls including inner current control, voltage control, Phase-locked Loop 

(PLL), DC-link voltage control (DCLV), active and reactive power control, harmonics, and etc. [4, 5, 7]. Although the stability of 

current, power and harmonics control loops, considering the time delay in the digital control implementation and interaction with PLL 

are well addressed in the existing literature, only a few works has studied the DCLV control stability, which is the main focus of this 

paper.   

In the field of power converter operation, the inverter mode has been the dominant operating mode in the most of studies till today. 

However, the introduction of hybrid AC/DC systems, energy storage systems, back-to-back converters, active rectifier for motor 

derive systems will further highlight the importance of operating in both modes of inverting and rectifying. Although, a BPC has the 

potential capability to operate in both rectifier/inverter modes, preserving its stability is a challenging issue. The subject that has been 

addressed in [8-11], and it is shown that the BPC may encounter instability issues especially in the rectifier mode and high dynamic 

performance with the prevalent control schemes.  

DCLV dynamics in BPC has complex non-linear components due to the instantaneous power of the output filter which makes its 

analysis difficult. Most of existing methods ignore this non-linearity to simplify the DCLV dynamic model [12-14], and 

correspondingly, the DCLV controller design procedure, which hereafter is called “prevalent DCLV controller”. The prevalent 

controller preserves the BPC stability in inverter mode; however, it is questionable under the rectifier mode with high control loop 

bandwidth (BW) [8, 9]. To improve the stability of DCLV loop, [9] has suggested two remedies of: 1) proposing a nonlinear controller 
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for the nonlinear dynamic of the DCLV, and 2) using small-signal linearized model of DCLV, instead of its simplified model, and 

proposing a linear controller, hereafter called “modified DCLV controller”. The first suggested scheme is complex and not addressed 

in literature except in [15], which used the exact nonlinear model of DCLV and stabilized the DCLV using the intrinsic parallel 

resistance of its DC link capacitor. However, the high value of this resistance and its low damping effect do not guarantee the stability 

in practical application. On the other hand, the modified DCLV controller design scheme, combined with predictive control, is adapted 

in [16-20]. Also, the linearized model of DCLV is variously used to explored the DCLV stability [21, 22]. 

Although using the modified controller simplifies the analysis and the control design procedure, it is not compatible with the exact 

nonlinear model of DCLV. Therefore, it is necessary to decrease the bandwidth of DCLV control loop (𝐵𝑊𝑑𝑐) for ensuring a stable 

control system. This limits the functionality, response speed and disturbance rejection capability of the BPC and leads to necessity of 

the larger DC-link capacitance and larger converter size [23, 24]. Furthermore, using the modified controller may lead to high-

frequency oscillation due to the interactions with the current control dynamic, which is analyzed in [8, 21] by an impedance-based 

dynamic model. The instability of BPCs under rectifier mode of operation is also illustrated in [8], and it also recommend that 𝐵𝑊𝑑𝑐 

should be decreased from the inverter mode to the rectifier. 

As a summary, there is still a gap on control design of BPCs, which could work for both inverter/rectifier modes of operation under 

different loading conditions with high enough bandwidth and suitable transient response. The subject that is complicated considering 

the nonlinear model of DCLV and its interaction with current control loop. Whereas, based on the best knowledge of authors, no 

definite control scheme has been presented considering exact nonlinear model of DCLV to meet the mentioned requirement.  

In this regard, in this paper, first, both the nonlinear and small signal dynamic models of DCLV are analyzed in detail, and the root 

cause of the instability under rectifier mode of operation is investigated. Accordingly, a non-linear Lyapunov-based controller is 

proposed for DCLV control, which considers the nonlinear dynamic characteristics of DCLV and its interaction with output current 

dynamics. Using the proposed scheme, the system is stable with proper stability margin and tracking performance under all 

modes/operating conditions and under the presence of uncertainty in the parameters. The novelties and contribution of the paper are 

summarized as follows. 

• Analyzing the non-linear dynamic model of DCLV and introducing the root cause of instability issue in DCLV with prevalent 

and modified controllers; and 

• Proposing a non-linear Lyapunov-based DCLV controller considering the exact nonlinear model of DCLV and its interaction 

with the current control loop. 

The remainder of this paper is organized as follows. Modeling and prevalent DCLV and current controls of a BPC are explained in 

Section II. Performance of prevalent DCLV control design scheme is analyzed in section III, and root cause of the instability issue of 

DCLV is illustrated. The proposed non-linear DCLV control scheme is presented in Section IV. The numerical analysis and the 

conclusion of the paper are given in sections V and VI, respectively. 

  

2.  MODELIING AND PREVALENT CONTROL OF BIDIRECTIONAL POWER CONVERTER 

   A general schematic diagram of a power converter with a generation (a PV array), battery storage and DC loads in the DC link 

is shown in Fig. 1. In the AC side, the converter is connected via output filters to the grid modeled by its Thevenin equivalent. 

Depending on the power generation/consumption status, the converter operates either in inverter or rectifier modes. When the PV 

power generation exceeds the power absorbed by loads and battery storage, the converter switches to inverter mode of operation. 

On the other hand, under the deficiency of power from the PV and storage to supply the load, the converter switches to rectifier 

mode. Thus, a stable operation of converter in both modes of operation is necessary to guarantee the continuous operation in both 

modes. In the following, the prevalent control structure of the converter is presented.  

2.1 Modeling of Power Converter 

The dynamic model of a power converter includes the dynamics of ac side filter and DC-link capacitor, which are given in (1)-

(2), respectively.  

𝐿
𝑑𝑖𝑎𝑏𝑐

𝑑𝑡
= 𝑅𝑖𝑎𝑏𝑐 + 𝑣𝑡𝑎𝑏𝑐 − 𝑣𝑔𝑎𝑏𝑐 (1) 

1

2
𝐶𝑑𝑐

𝑑

𝑑𝑡
(𝑉𝑑𝑐

2 ) = 𝑃𝑑𝑐−2 − 𝑃𝑑𝑐−1  (2) 

In (1)-(2), L is the filter inductance, 𝑅 models the resistance of the filter and the switching power loss, 𝐶𝑑𝑐 is the DC-link capacitor, 

𝑖𝑎𝑏𝑐  and 𝑣𝑡,𝑎𝑏𝑐  are the terminal currents and voltages of the converter, 𝑣𝑔,𝑎𝑏𝑐 is the grid voltage at PCC, and 𝑉𝑑𝑐 is the DC-Link 

voltage. Moreover, 𝑃𝑑𝑐−2, 𝑃𝑑𝑐−1, and Pac are the exchanged DC and AC powers shown in Fig. 1. The operator d/dt(·) denotes the 

differential operator.  
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Fig. 1. Single line diagram of a bidirectional power converter. 

 

By taking 𝑉𝑑𝑐 as a state-variable, (2) is non-linear; and to remove this nonlinearity, DC-link capacitor energy of 𝑊𝑐 =
0.5𝐶𝑑𝑐(𝑉𝑑𝑐)2 is considered as a variable instead of 𝑉𝑑𝑐 [12]. Therefore, (2) can be rewritten as: 

𝑑𝑊𝑐

𝑑𝑡
= 𝑃𝑑𝑐−2 − 𝑃𝑑𝑐−1  (3) 

Transforming to the “dq” rotating reference frame, (1)-(2) are changed to (4)-(6). 

𝑑𝑖𝑑

𝑑𝑡
= −

𝑅

𝐿
𝑖𝑑 −ω. 𝑖𝑞 +

(𝑣𝑡𝑑 − 𝑣𝑔𝑑)

𝐿 
 (4) 

𝑑𝑖𝑞

𝑑𝑡
= −

𝑅

𝐿
𝑖𝑞 +ω. 𝑖𝑑 +

(𝑣𝑡𝑞 − 𝑣𝑔𝑞)

𝐿 
 (5) 

𝑑𝑊𝑐

𝑑𝑡
= 𝑃𝑑𝑐−2 − 𝑃𝑑𝑐−1 (6) 

, where 𝑖𝑞 , 𝑖𝑑 and Wc are state variables, 𝑣𝑡𝑑 and 𝑣𝑡𝑞 are control variables, and 𝑣𝑔𝑑 with 𝑣𝑔𝑞  are PCC voltages in “dq” reference 

frame, and ω denotes the grid angular frequency. Equation (7) represents the exchanged active power at PCC in Fig. 1, which can 

be simplified to (8) knowing that the value of 𝑣𝑔𝑞  is zeroed by the phase-locked-loop (PLL) operation.  

𝑃𝑎𝑐 = 1.5(𝑣𝑔𝑑𝑖𝑑 + 𝑣𝑔𝑞𝑖𝑞) (7) 

𝑃𝑎𝑐 = 1.5(𝑣𝑔𝑑𝑖𝑑) (8) 

The reactive power exchanged with AC grid is also given as: 

𝑄𝑎𝑐 = 1.5(𝑣𝑔𝑑𝑖𝑞) (9) 

Also, the instantaneous power of the output 𝐿 filter will be obtained by differentiating its stored energy as  

𝑃𝐿−𝑖𝑛𝑠𝑡 =
3

4
𝐿

𝑑

𝑑𝑡
(𝑖𝑑

2 + 𝑖𝑞
2) (10) 

The net power loss of switching and filter resistance is: 

𝑃𝐿𝑜𝑠𝑠 =
3

2
𝑅(𝑖𝑑

2 + 𝑖𝑞
2) (11) 

Now, by adding 𝑃𝐿−𝑖𝑛𝑠𝑡  and 𝑃𝐿𝑜𝑠𝑠 to 𝑃𝑎𝑐  of (8),  𝑃𝑑𝑐−1 is as  

𝑃𝑑𝑐−1 =
3

2
𝑣𝑔𝑑𝑖𝑑 + 𝑃𝐿−𝑖𝑛𝑠𝑡 + 𝑃𝑙𝑜𝑠𝑠 (12) 

Substituting (12) in (6) yields (13), which shows the nonlinearity in the DC-link dynamics due to 𝑃𝐿−𝑖𝑛𝑠𝑡 . 

𝑑𝑊𝑐

𝑑𝑡
= 𝑃𝑑𝑐−2 −

3

2
𝑣𝑔𝑑𝑖𝑑  − 𝑃𝐿−𝑖𝑛𝑠𝑡 − 𝑃𝐿𝑜𝑠𝑠 (13) 
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Fig. 2. Structure of prevalent DCLV control loop in power converter. 

 

In the prevalent control scheme, 𝑃𝐿−𝑖𝑛𝑠𝑡 and 𝑃𝐿𝑜𝑠𝑠  are neglected in the DCLV model as given by (14) with this reasoning that 

both have small values compared to other terms. Also, 𝑃𝐿−𝑖𝑛𝑠𝑡 has zero steady state value. 

𝑑𝑊𝑐

𝑑𝑡
≈ 𝑃𝑑𝑐−2 −

3

2
𝑣𝑔𝑑𝑖𝑑 (14) 

The 𝑃𝐿𝑜𝑠𝑠 has positive damping effect on  the stability of the control system, and it could be ignored for considering the worse 

possible condition in the controller design. However, ignoring 𝑃𝐿−𝑖𝑛𝑠𝑡 may either reduce the stability margin or cause instability 

of the control system. 

2.2  Prevalent Control of Power Converter 

The prevalent control structure of a power converter can be stablished based on the equations of (4)-(5), (9), and (14). According 

to (9) and (14), the reactive power and DCLV are proportional to 𝑖𝑞  and 𝑖𝑑, respectively. Thus, the reactive power and DCLV can 

be controlled by 𝑖𝑞  and 𝑖𝑑 with the references given in (15)-(16), respectively. 

𝑖𝑑
𝑟𝑒𝑓

=
𝑃𝑑𝑐−2

1.5𝑣𝑔𝑑
⁄ +

𝐾𝑝−𝑤𝑠 + 𝐾𝐼−𝑤

𝑠
(𝑊𝑐

𝑟𝑒𝑓
− 𝑊𝑐) (15) 

𝑖𝑞
𝑟𝑒𝑓

=
𝑄𝑎𝑐

𝑟𝑒𝑓

1.5𝑣𝑔𝑑
⁄ +

𝐾𝑝−𝑞𝑠 + 𝐾𝐼−𝑞

𝑠
(𝑄𝑎𝑐

𝑟𝑒𝑓
− 𝑄𝑎𝑐) 

(16) 

To control currents 𝑖𝑞  and 𝑖𝑑, the control variables 𝑣𝑡𝑑 and 𝑣𝑡𝑞 are determined as: 

𝑣𝑡𝑑 = 𝐿 × 𝐾
𝑠 + 𝑅/𝐿 

𝑠
(𝑖𝑑

𝑟𝑒𝑓
− 𝑖𝑑) + 𝑣𝑔𝑑 + 𝐿𝜔𝑖𝑞 (17) 

𝑣𝑡𝑞 = 𝐿 × 𝐾
𝑠 + 𝑅/𝐿 

𝑠
(𝑖𝑞

𝑟𝑒𝑓
− 𝑖𝑞) + 𝑣𝑔𝑞 − 𝐿𝜔𝑖𝑑 (18) 

Substituting (17) and (18) into (4)-(5), the dynamic behavior of 𝑖𝑑 and 𝑖𝑞  are as given by (19)-(20), in which 𝐾 is the current 

control loop BW (𝐵𝑊𝑐). 

𝑖𝑑 =
𝐾

𝑠 + 𝐾
𝑖𝑑

𝑟𝑒𝑓
 (19) 

𝑖𝑞 =
𝐾

𝑠 + 𝐾
𝑖𝑞

𝑟𝑒𝑓
 (20) 

The BW is limited by the computation and PWM time delays 𝑇𝑑 = 0.5/𝑓𝑠𝑤, which are dependent on switching frequency (𝑓𝑠𝑤) 

[25]. As a rule of thumb, 𝐾 is selected 0.1 × 𝑓𝑠𝑤 to ensure an appropriate phase margin in the current control loop. 

Prevalent control structure of power converter including DCLV (Eq. (15)), reactive power (Eq. (16)), curent control loops (Eq. 

(17)-(18)) is depicted in Fig. 2. As a rule of thumb, the bandwidth of the outer DC-link and reactive power control loops should be 

at least about 5 times lower than that of the inner current control loop 𝐵𝑊𝑐, in the prevalent design scheme. Then, the outer control 

loops are designed independent from inner control loops. 

3. PERFORMANCE EVALUATION OF REVALENT DCLV CONTROLLER  

In this sub-section, the stability margin of the system with prevalent DCLV controller of (15)-(18) is investigated via analytical 

expressions and frequency domain study. It is shown that 𝑃𝐿−𝑖𝑛𝑠𝑡 should not be ignored in DCLV controller design process, unlike 

it is done in the prevalent control, otherwise it may lead to undesirable dynamic response or even instability in DCLV control loop. 



 

 

3.1 Analytical Expressions 

Substituting (12) into (13) and ignoring 𝑃𝑙𝑜𝑠𝑠 as a pessimistic approximation, the result is given in (21). 

𝑑𝑊𝑐

𝑑𝑡
= 𝑃𝑑𝑐−2 −

3

2
𝑣𝑔𝑑𝑖𝑑 −

3

4
𝐿

𝑑

𝑑𝑡
(𝑖𝑑

2 + 𝑖𝑞
2) (21) 

From (21), the dynamic equation of DCLV is nonlinear; and then, it is linearized around the operating point of (22)-(23) to use 

the linear systems stability analysis methods. Also, it is assumed that 𝑊𝑐
0 = 𝑊𝐶

𝑟𝑒𝑓
 is DCL energy at operating point. 

𝑖𝑑
𝑜 =

𝑃𝑑𝑐−2
1. 5𝑣𝑔𝑑

⁄  (22) 

𝑖𝑞
𝑜 =

𝑄𝑎𝑐
𝑟𝑒𝑓

1.5𝑣𝑔𝑑
⁄  (23) 

Substituting 𝑖𝑑 = 𝑖𝑑
0 + ∆𝑖𝑑, 𝑖𝑞 = 𝑖𝑞

0 + ∆𝑖𝑞, and 𝑊𝑐 = 𝑊𝑐
0 + ∆𝑊𝑐 into (21), the resultant is: 

𝑑

𝑑𝑡
(∆𝑊𝑐) = 𝑃𝑑c−2 −

3

2
𝑣𝑔𝑑(𝑖𝑑

0 + ∆𝑖𝑑) −
3

4
𝐿

𝑑(𝑖𝑑
0 + ∆𝑖𝑑)

2

𝑑𝑡
−

3

4
𝐿

𝑑(𝑖𝑞
0 + ∆𝑖𝑞)

𝑑𝑡
 (24) 

Considering (22), it is simplified to  

𝑑

𝑑𝑡
(∆𝑊𝑐) = −

3

2
𝑣𝑔𝑑∆𝑖𝑑 −

3

4
𝐿

𝑑(𝑖𝑑
02

+ 2𝑖𝑑
0∆𝑖𝑑 + (∆𝑖𝑑)2)

𝑑𝑡
−

3

4
𝐿

𝑑(𝑖𝑞
02

+ 2𝑖𝑞
0∆𝑖𝑞 + (∆𝑖𝑞)

2
)

𝑑𝑡
 (25) 

Applying the first-order Taylor approximation to (∆𝑖𝑑)2 and (∆𝑖𝑞)
2
, and considering the zero value of 𝑑(𝑖𝑞

02
)/𝑑𝑡 and 𝑑(𝑖𝑞

02
)/𝑑𝑡, 

the small signal model of DCLV is as given in (26). 

𝑑

𝑑𝑡
(∆𝑊𝑐) = −

3

2
𝑣𝑔𝑑∆𝑖𝑑 −

3

2
𝐿𝑖𝑑

0 𝑑(∆𝑖𝑑)

𝑑𝑡
−

3

2
𝑖𝑞

0𝐿
𝑑(∆𝑖𝑞)

𝑑𝑡
 (26) 

The Laplace representation form of (26) is given in (27). 

∆𝑊𝑐(𝑠) = −
3

2

𝑣𝑔𝑑 + 𝐿𝑖𝑑
𝑜𝑠

𝑠
∆𝑖𝑑(𝑠) −

3

2
𝐿𝑖𝑞

𝑜∆𝑖𝑞(𝑠) (27) 

Whereas substituting 𝑖𝑑 = 𝑖𝑑
0 + ∆𝑖𝑑 in (14) and taking Laplacian transform yields to the following simplified dynamic equation 

for DCLV.  

∆𝑊𝑐(𝑠) = −
3

2
𝑣𝑔𝑑

∆𝑖𝑑(𝑠)

𝑠
 (28) 

Comparing (27) and (28) reveals that ignoring 𝑃𝐿−𝑖𝑛𝑠𝑡 eliminates two terms in DCLV dynamic, which are (i) the ∆𝑖𝑞(𝑠) part in 

the right side of (27), and (ii) a “zero” at 𝑠 = 𝑣𝑔𝑑/𝐿𝑖𝑑
0. Therefore, the prevalent DCLV controller, which is designed based on (14), 

is by not considering the dynamics originated from such terms in the DCLV dynamic. 

The ∆𝑖𝑞(𝑠) part in (27) shows the effect of the reactive current 𝑖𝑞  on DCLV dynamic. According to (9) and (16), the reactive 

power dynamic is independent from 𝑖𝑑 and 𝑊𝑐, and it does not affect DCLV stability. Hence, it can be regarded as a disturbance 

input for DCLV dynamic. On the other hand, the zero of 𝑠 = 𝑣𝑔𝑑/𝐿𝑖𝑑
0 is dependent on the operating point of the system (𝑃𝑑𝑐−2), 

which significantly affects the stability and dynamic characteristics of DCLV. 

3.2 Frequency Analysis 

Using the small-signal DCLV model of (27), prevalent DCLV controller in (15), and d-axis current dynamic in (19), the open 

loop small-signal transfer function of DCLV control loop is as given in (29). It is worth to mention that the disturbance part, i.e., 

∆𝑖𝑞(𝑠), in (27) is ignored when calculating (29).  



 

 

∆𝑊𝑐(𝑠) =
−3

2

𝑣𝑔𝑑 + 𝐿𝑖𝑑
0𝑠

𝑠

𝐾

𝑠 + 𝐾
 
𝐾𝑝−𝑤𝑠 + 𝐾𝐼−𝑤

𝑠
(𝑊𝑐

𝑟𝑒𝑓
− 𝑊𝑐) (29) 

To get better insight about (29), the values taken by 𝑖𝑑
0 should be investigated. According to (22), during the inverter mode of 

operation, 𝑃𝑑𝑐−2 and consequently 𝑖𝑑
0 are positive. Then, the “zero” of 𝑠 = −

𝑣𝑔𝑑

𝐿𝑖𝑑
0  in (29) is located at the left-hand side of the S-

plane. However, in rectifier mode of operation, 𝑃𝑑𝑐−2 is negative and the “zero” moves to the right half side of S-plane. Then, the 

DCLV becomes a non-minimum phase system in the rectifier mode of operation. This non-minimum phase “zero” reduces the 

phase margin, and may cause the instability of DCLV control loop as appears in the prevalent control of DCLV. 

To further explain the performance of prevalent DCLV control and the impact of zero of 𝑠 = −
𝑣𝑔𝑑

𝐿𝑖𝑑
0 , a frequency analysis is 

presented in the following. Assume a test power converter with the parameters given in Table I. The DCLV controller is given by 

(30),  

𝑖𝑑
𝑟𝑒𝑓

=
𝑃𝑑𝑐−2

3
2

𝑣𝑔𝑑

+
360𝑠 + 40000

𝑠

1

1.5𝑣𝑔𝑑
(𝑊𝑐

𝑟𝑒𝑓
− 𝑊𝑐) 

(30) 

where, 𝐾𝑝−𝑤 = 360/1.5𝑣𝑔𝑑 and 𝐾𝐼−𝑤 = 4000/1.5𝑣𝑔𝑑  are selected by prevalent control design scheme to get PM = 60 and 

𝐵𝑊𝑑𝑐=340 rad/s. However, the frequency domain analysis based on linearized DCLV model of (27) shows that PM and GM will 

be non-constant and dependent to operating point. To more explain, the open loop frequency response of DCLV in (29) with the 

prevalent DCLV controller of (30) is shown in Fig. 3 for different values of 𝑃𝑑𝑐−2, in which the frequency response is depicted 

with and without considering the zero of (29).  Also, the vertical solid line in Fig. 3 shows the desired 𝐵𝑊𝑑𝑐 (in this case 340 rad/s) 

for prevalent controller scheme. The following pointes are inferred from Fig. 3: 

• Under inverter mode of operation (𝑃𝑑𝑐−2 > 0), the “zero” is at the right-half side of s-plain, which adds positive phase to the 

system and increases the stability margin of DCLV. 

• Under rectifier mode of operation (𝑃𝑑𝑐−2 < 0), the “zero” is at left-half side of s-plain, which adds negative phases to the 

system and adversely affects the stability margin of the DCLV control loop. The more negative is 𝑃𝑑𝑐−2, the more decreases the 

PM and stability.  

• With increasing 𝐵𝑊𝑑𝑐, the solid line in the figure shifts to the right and the negative phase imposed by the zero becomes 

greater and the stability of the system is degraded more. 

 

 
Fig. 3. Frequency response of the open loop system with and without the zero. 

 



 

 

To sum up the above analyses, the PM of the closed-loop system is shown in Fig. 4 for different values of 𝑃𝑑𝑐−2. It can be seen 

that in contrary to the expected constant PM = 60 in the prevalent controller scheme, the actual PM of the system decreases by 

increasing the 𝑃𝑑𝑐−2 toward more negative values; i.e., 𝑃𝑑𝑐−2 = −100kW, 𝑃𝑀 = 15𝑜. It will be shown that, the stability situation 

is far more serious with the actual nonlinear system such that the system becomes unstable for 𝑃𝑑𝑐−2 < −80𝑘𝑊. 
 

 

TABLE I. Parameters of the sample power converter 

Variables/Parameter Symbol Value 

Nominal power Pnom 100 kW 

Line to line voltage VLL 380 V 

Switching frequency fsw 4 kHz 
DCLV Vdc 1000 V 

Filer inductor 

DC-link capacitor 

L 

Cdc 

3 mH 

4 mF 
Grid inductance Ls 460 μH 

Current control BW 𝐵𝑊𝑐/ K 2000 rad/s 
 

 

In summary, to guarantee the stability of the system while using the prevalent controller, either 𝐵𝑊𝑑𝑐 should be sufficiently 

decreased or 𝑃𝑑𝑐−2 should be limited in rectifier operating mode. Then, a compromise between “speed/power transfer capability 

of power converter” and “the stability margin of the DCLV” is required. To improve the stability and power transfer capability, 

the two following procedures can be considered. 

 

 
Fig. 4. Stability margin of DCLV dependent on operating point, in the case of using DCLV controller in (30), designed by the prevalent scheme. 

 

1- Designing DCLV controller based on small-signal model of (27) instead of the simplified model of (14), which is named 

before “modified controller” [16-20]. As the model (27) is dependent on the operating point (𝑖𝑑0 ∝ 𝑃𝑑𝑐−2), the controller should 

be either adaptive or designed for the worst-case of operating point. Due to the complexity and unreliability of the adaptive 

controller, the controller design at worst-case operating point is preferred. The rectifier mode with maximum nominal power is 

selected for the design, which is associated with the most negative value of 𝑃𝑑𝑐−2. Even with this remedy, 𝐵𝑊𝑑𝑐 should be still 

reduced to preserve the stability, which is not a suitable characteristic. 

2- Designing a nonlinear controller based on nonlinear dynamic model of (13), which is the most preferable/reliable but 

complex scheme. In this regard, a novel nonlinear controller is proposed in this paper to stabilize the DCLV system, which properly 

work regardless of the system operating point and with high values of 𝐵𝑊𝑑𝑐. 

4. PROPOSED NIN-LINEAR DCLV CONTROLLER  

The proposed non-linear DCLV control of this section guarantees a stable operation of the converter in both rectifier and inverter 

modes of operation with high 𝐵𝑊𝑑𝑐. The details are provided in the following. 

In contrary to the prevalent controller, in the proposed controller, the output current and DCLV controllers are designed 

simultaneously, whereby their interaction is inherently considered in the design procedure. At the beginning, three error variables 

of e1, e2, and e3 are defined as given by (31)-(33). 

𝑖𝑑 = 𝑖𝑑
𝑜 + 𝑒1 (31) 

𝑖𝑞 = 𝑖𝑞
𝑜 + 𝑒2 (32) 

𝑊𝑐 = 𝑊𝑐
𝑟𝑒𝑓

 + 𝑒3 (33) 

Also 𝑣𝑡𝑑 and 𝑣𝑡𝑞 are defined as  



 

 

𝑣𝑡𝑑 = 𝑅𝑖𝑑 + Lω. 𝑖𝑞 + 𝑣𝑔𝑑 + 𝑢𝑑 (34) 

𝑣𝑡𝑞 = 𝑅𝑖𝑞 − Lω. 𝑖𝑑 + 𝑣𝑔𝑞 + 𝑢𝑞  
(35) 

Substituting (31)-(35) into (4), (5), and (21) yields to (36)-(37). 

𝑑𝑒1

𝑑𝑡
= 𝑢𝑑 

𝑑𝑒2

𝑑𝑡
= 𝑢𝑞 

(36) 

 

𝑑𝑒3

𝑑𝑡
= −1.5𝑉𝑔𝑑𝑒1 − 1.5𝐿𝑖𝑑

0 (
𝑑𝑒1

𝑑𝑡
) − 1.5𝐿𝑒1 (

𝑑𝑒1

𝑑𝑡
) − 1.5𝐿𝑖𝑞

0 (
𝑑𝑒2

𝑑𝑡
) − 1.5𝐿𝑒2 (

𝑑𝑒2

𝑑𝑡
) (37) 

Now, a new variable 𝜌 is defined as follows.  

𝜌 = 𝑒1𝛽1 + 𝑒2𝛽2 + 𝑒3 (38) 

where, 

𝛽1 = 1.5𝐿𝑖𝑑
0 +

3𝐿

4
𝑒1 (39) 

𝛽2 = 1.5𝐿𝑖𝑞
0 +

3𝐿

4
𝑒2 (40) 

Substituting (39)-(40) into (38), and with mathematical simplification, the dynamic equation of 𝜌 is 

𝑑𝜌

𝑑𝑡
= −1.5𝑉𝑔𝑑𝑒1 (41) 

Also, the positive definite Lyapunov function can be defined by (42) to determine the control variables. 

𝑃 =
1

2
𝛿1𝜌2 +

1

2
𝛿2𝑒1

2 +
1

2
𝛿3𝑒2

2 (42) 

Using Lyapunov function of (42), deriving all error variables to zero is questionable in the presents of uncertainty in the system. 

Hence, to guarantee a zero steady state error in control of reactive power and DC-link capacitor voltage, new variables 𝐹 and 𝐻 are 

defined as in (43) and added to dynamic equation of (36) and (41). This updated controller is robust against uncertainties in the 

system parameters and the delays originated from the PWM switching strategy and computations process. 

𝑑𝐹

𝑑𝑡
= 𝜌,    

𝑑𝐻

𝑑𝑡
= 𝑒2 (43) 

By analyzing (38) along with (43), the variables ρ, e3 and e2 automatically driven to zero if F and H are properly stabilized to a 

steady state value; not necessarily to zero. Using the Lyapunov criterion, the following Lyapunov function is proposed in this 

paper, which provides suitable stability for the system. 

𝑉 =
1

2
𝐻2 +

1

2
𝑍ℎ

2 +
1

2
𝐹2 +

1

2
𝑍𝑓1

2 +
1

2
𝑍𝑓2

2  (44) 

 
where,  

𝑍ℎ = 𝑒2 + 𝑘ℎ1𝐻 (45) 

𝑍𝑓1 = 𝜌 + 𝑘𝑓1𝐹 (46) 

𝑍𝑓2 = −1.5𝑣𝑔𝑑𝑒1 + (𝑘𝑓1 + 𝑘𝑓2)𝑍𝑓1 + (1 − 𝑘𝑓1
2 )𝐹 (47) 

 

Then, the derivative of (44) with respect to the time is given in (48).  



 

 

𝑑𝑉

𝑑𝑡
= 𝐻𝑒2 + 𝑍ℎ(𝑢𝑞 + 𝑘ℎ𝑒2) + 𝐹𝜌 + 𝑍𝑓1

𝑑𝑍𝑓1

𝑑𝑡
+ 𝑍𝑓2[−1.5𝑣𝑔𝑑𝑢𝑑 + (𝑘𝑓1 + 𝑘𝑓2)𝑍𝑓1 + (1 − 𝑘𝑓1

2 )𝐹] (48) 

 

By simultaneous adding or subtracting 𝑘ℎ1𝐻2, 𝑘𝑓1𝐹2, and 𝑘𝑓2𝑍𝑓1
2  to the right side of (48), Eq. (49) is obtained. 

𝑑𝑉

𝑑𝑡
= −𝑘ℎ1𝐻2 − 𝑘𝑓1𝐹2 + 𝐻𝑍ℎ + 𝑍ℎ(𝑢𝑞 + 𝑘ℎ𝑒2) − 𝑘𝑓1𝐹2 − 𝑘𝑓2𝑍𝑓1

2 + 𝑍𝑓1𝑍𝑓2 𝑍𝑓2[−1.5𝑣𝑔𝑑𝑢𝑑 + (𝑘𝑓1 + 𝑘𝑓2)𝑍𝑓1

+ (1 − 𝑘𝑓1
2 )𝐹] 

(49) 

 

By selecting 𝑢𝑞 and 𝑢𝑑 according to (50) and (51), respectively, Eq. (49) is rewritten as shown in (52). 

𝑢𝑞 = −(𝑘ℎ1𝑒2 + 𝐻) − 𝑘ℎ2(𝑒2 + 𝑘ℎ𝐻) (50) 

𝑢𝑑 = −
1

𝑣𝑔𝑑
[−𝑍𝑓1 − (𝑘𝑓1 + 𝑘𝑓2)𝑍𝑓1 − (1 − 𝑘𝑓1

2 )𝐹 − 𝑘𝑓3𝑍𝑓2
2 ] (51) 

𝑑𝑉

𝑑𝑡
= −𝑘ℎ1𝐻2 − 𝑘ℎ2𝑍ℎ

2 − 𝑘𝑓1𝐹2 − 𝑘𝑓2𝑍𝑓1
2 − 𝑘𝑓3𝑍𝑓2

2  (52) 

From (52), it is concluded that by (50) and (51), 
𝑑𝑉

𝑑𝑡
 is definitely negative, and consequently, all variables of 𝐻, F, Zh, Zf1, and 

Zf2 go asymptotically to their steady-state values. According to (43) and its description, 𝜌 and 𝑒2 are derived to zero as the state 

variables F and H settle at their steady-state values. Also, according to Krasovskii-Lasalle principle [26], deriving 𝜌 and 𝑒2 to zero 

results in deriving 𝑒3 to zero. Then, the control goal of deriving 𝑉𝑑𝑐  and 𝑄𝑎𝑐 to their reference values is achieved. In summary, 

using the proposed nonlinear control scheme, the control goals are achieved, and stability of system is preserved regardless of the 

sign and value of 𝑃𝑑𝑐−2 . Furthermore, tracking speed and 𝐵𝑊 of system is adjustable by choosing proper positive values for 𝑘ℎ1, 

𝑘ℎ2, 𝑘𝑓1, 𝑘𝑓2, and 𝑘𝑓3 without any concern about instability in rectifier and inverter modes of operation. Indeed, using the proposed 

control scheme, operating modes and bandwidth of DCLV control don’t threaten the bidirectional power converter stability.       

Finally, the block diagram of the proposed controller is depicted in Fig. 5, in which different parts with refer to the associated 

equations are shown. 
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Fig. 5. Block diagram of proposed nonlinear DCLV control scheme. 



 

 

5. SIMULATION RESULTS 

To verify the effectiveness of the proposed control scheme, a comprehensive set of simulations have been done on the test 

converter with the parameters given in Table I. Also, the following assumptions are included, which accurately considers the real-

life limitations. 

a- The computational delay of 0.5/fsw=125 µsec is added to the control loop, 

b- The converter is modeled by a switching model, 

c- The PWM sampling is modeled by a zero-order hold with sampling frequency of fs = 4 kHz. 

d- The grid Thevenin impedance is Ls = 460μH, which corresponds to a normal SCR =10. 

To illustrate the performance of the proposed controller, comparative analysis with the results of prevalent control scheme is 

provided. The prevalent control scheme parameters are given in (30). The control parameters for the proposed nonlinear controller 

are 𝑘ℎ1 = 2000, 𝑘ℎ2 = 2000, 𝑘𝑓1 = 1000, 𝑘𝑓2 = 1000, 𝑘𝑓3 = 1000. 

The power converter connects to the grid at t = 0.2 s, and to show the performance under different operating conditions, various 

𝑃𝑑𝑐−2s are applied in the range of +Pnom to –Pnom (=± 100 kW). Furthermore, DCLV reference is changed from 1100 V to 1150 V, 

and again is returned back to 1100 V. Also, the reactive power reference is changed from 0 kVAR to 20 and -20 kVAR and again 

to 0 kVAR consequently in both inverter and rectifier modes. The changes in the reference values and the related times can be seen 

in the corresponding figures. The further details of the simulations are provided in the following sub-sections.  

5.1  Prevalent Controller 

The simulation results including active and reactive power waveforms, the DCLV, and output currents are shown in Fig. 6. As 

shown in the figure, the system with the prevalent controller is stable in inverter mode 𝑃𝑑𝑐−2 > 0 with a proper time-domain 

response. However, in rectifier mode when 𝑃𝑑𝑐−2 < 0, the system response is deteriorated. Specifically, the system is unstable for 

𝑃𝑑𝑐−2 < less than – 80 kW. 
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Fig. 6. Simulation results with the prevalent controller in (30): (a) active power, (b) reactive power, (c) DCLV, and (d) output currents. 

5.2  Proposed Controller 

In this sub-section, the performance of the proposed nonlinear controller is evaluated, and the results are shown in  Fig.7. As 

shown in the figure, the system is stable in all operating points, and the reference commands are tracked with high speed and zero 

steady state error. The undershoot in the response of DCLV comes from the intrinsic non-minimum phase characteristic of the 

system which also exists in the prevalent control scheme. However, it does not have any adverse effect on stability margin of the 

system. 

5.3 Proposed Controller with Uncertainties in the System Parameters 

To show the performance of the proposed controller in presence of uncertainty in the system parameters, it is supposed that 

inductance of the output filter has been changed from 3mH to 2.5 mH, while the controller is designed based on 3mH. The 

simulation results are presented in Fig.8. As it was expected, the presence of uncertainty has negligible effect on the system 



 

 

dynamic response; and all expected criterion including high stability margin, fast dynamic response and accurate reference tracking 

are satisfied.  
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Fig. 7. System response with the proposed nonlinear controller: (a) active power, (b) reactive power, (c) DCLV, and (d) output currents. 
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Fig. 8. System response with the proposed nonlinear controller in presence of uncertainty in filter inductance: (a) active power, (b) reactive power, (c) 

DCLV, and (d) output currents. 

 

5.4 Proposed Controller in Short Circuit Fault Condition  

As another scenario, to demonstrate the functionality of the proposed nonlinear controller to preserve the stability during large 

transients, two short circuit fault conditions are simulated. For the first fault condition, the converter is operating in the inverter 

mode by injecting 100 kW power into the grid. A three-phase short circuit occurs close to the converter at t= 0.3s, and cleared at t 

=0.4. This fault causes a voltage sag of about 70% at PCC. The second fault condition corresponds to rectifier mode of operation 

at 𝑃𝑑𝑐−2 = −100 𝑘𝑊, in which another three-phase short circuit fault occurs close to the converter busbar at t = 1.3s, and cleared 

at t = 1.4. This fault also leads to a voltage sag of about 70% at PCC. The simulation results are shown in Fig. 9. As shown in the 

figure, the stability of the system, including DC link voltage and grid current stabilities, are preserved in both fault conditions in 

inverter and rectifier modes. Furthermore, Fig. 9 (d) illustrates the dynamic response of DCLV during fault condition implying 

proper performance in case of severe voltage sag. It should be mentioned that the current of the VSC is limited to 205 A; hence, 

𝑃𝑑𝑐−1 is limited and consequently 𝑃𝑎𝑐  decreases under short circuit fault conditions. It is worth to note that 𝑃𝑑𝑐−1 is supposed to be 



 

 

limited by the primary source (in inverter mode) and DC loads (in rectifier mode), which it’s used strategy details are beyond the 

scope of this paper.    
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Fig. 9. System response with the proposed nonlinear controller in presence of grid fault in both inversion and rectification modes, (a) grid voltage, (b) active 

power, (c) reactive power, (d) DCLV, and (e) output currents.  

6. CONCLUSION 

This paper has explored the DC-link voltage (DCLV) stability of grid following Voltage Source Converters (VSCs) in bidirectional 

power flow applications. The prevalent DCLV control scheme, which is designed based on the simplified DCLV model, was 

analyzed in detail, and it was shown that due to ignoring the effect of output filter instantaneous power in controller design, the 

closed-loop system performance is not such as expected. Especially, the stability margin of the system decreases in the rectification 

mode with increasing the active power flow and DCLV control loop (𝐵𝑊𝑑𝑐). This can threaten the stability and reliability of the 

overall power system. Limiting transfer power flow capacity is a simple remedy to preserve the stability of DCLV in rectifier mode 

operation, which decreases the VSC utilization factor. Also, decreasing 𝐵𝑊𝑑𝑐 was another remedy, which, of course, degrades the 

system's performance. Although using the modified control design process based on the small signal model of DCLV, instead of 

the simplified model can improve the system stability, decreasing 𝐵𝑊𝑑𝑐 is still necessary.  

In order to address and resolve DCLV instability issue in VSCs, this paper, considering the non-linear dynamic of the BPCs and 

the interaction between dynamics of DC link voltage and AC currents, has proposed a non-linear controller based on combining 

the Lyapunov theorem and integral controller. It was proved that the stability of the converter in both rectification and inversion 

modes is preserved without any concern and limit from the side of DCLV control bandwidth and power level of the converter. As 

a result, the system can operate at both rectification and inversion modes, in the full power range, with high adjustable DCLV 

bandwidth, a suitable dynamic response, and high stability margin. Simulation results of various cases and comparison with the 

prevalent controller demonstrated theoretical findings and the effectiveness of the proposed nonlinear controller in terms of stability 

and robustness. 

REFERENCES 

[1] D. S. P. Johannes N. Mayer, Noha Saad Hussein, Dr. Thomas Schlegl, Charlotte Senkpiel, "Current and Future Cost of 

Photovoltaics-Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems," 

Agora Energiewende, 2015. 



 

 

[2] S. F. Zarei, M. A. Ghasemi, and S. Khankalantary, "Current limiting strategy for grid-connected inverters under 

asymmetrical short circuit faults," International Journal of Electrical Power & Energy Systems, vol. 131, p. 107020, 

2021/10/01/ 2021. 

[3] M. Fallah, H. M. Kojabadi, E. Pashajavid, A. N. Akpolat, and J. M. Guerrero, "Compensation of distortions in VSC-based 

DC–AC power systems using a modified vector control method," Control Engineering Practice, vol. 114, p. 104864, 

2021/09/01/ 2021. 

[4] M. Farrokhabadi et al., "Microgrid Stability Definitions, Analysis, and Examples," IEEE Transactions on Power Systems, 

vol. 35, no. 1, pp. 13-29, 2020. 

[5] N. Hatziargyriou et al., "Stability definitions and characterization of dynamic behavior in systems with high penetration 

of power electronic interfaced technologies," IEEE PES Technical Report PES-TR77, 2020. 

[6] A. J. Agbemuko, J. L. Domínguez-García, and O. Gomis-Bellmunt, "Robust decentralized approach to interaction 

mitigation in VSC-HVDC grids through impedance minimization," Control Engineering Practice, vol. 118, p. 104346, 

2022. 

[7] M. Z. Mansour, S. P. Me, S. Hadavi, B. Badrzadeh, A. Karimi, and B. Bahrani, "Nonlinear Transient Stability Analysis 

of Phased-Locked Loop-Based Grid-Following Voltage-Source Converters Using Lyapunov’s Direct Method," IEEE 

Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 3, pp. 2699-2709, 2022. 

[8] D. Lu, X. Wang, and F. Blaabjerg, "Impedance-Based Analysis of DC-Link Voltage Dynamics in Voltage-Source 

Converters," IEEE Transactions on Power Electronics, vol. 34, pp. 3973-3985, 2019. 

[9] A. Yazdani and R. Iravani, Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications. Wiley, 

2010. 

[10] Y. Li, Z. Shuai, X. Liu, Y. Hong, X. Wu, and Z. J. Shen, "Stability investigation of bidirectional AC-DC converter 

considering operating conditions," IEEE Access, vol. 8, pp. 131499-131510, 2020. 

[11] M. Amin, M. Molinas, J. Lyu, and X. Cai, "Impact of Power Flow Direction on the Stability of VSC-HVDC Seen From 

the Impedance Nyquist Plot," IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 8204-8217, 2017. 

[12] S. A. Khajehoddin, M. Karimi-Ghartemani, P. K. Jain, and A. Bakhshai, "A Control Design Approach for Three-Phase 

Grid-Connected Renewable Energy Resources," Sustainable Energy, IEEE Transactions on, vol. 2, no. 4, pp. 423-432, 

2011. 

[13] A. Yazdani and P. P. Dash, "A Control Methodology and Characterization of Dynamics for a Photovoltaic (PV) System 

Interfaced With a Distribution Network," Power Delivery, IEEE Transactions on, vol. 24, no. 3, pp. 1538-1551, 2009. 

[14] S. F. Zarei, H. Mokhtari, M. A. Ghasemi, S. Peyghami, P. Davari, and F. Blaabjerg, "Control of Grid-Following Inverters 

Under Unbalanced Grid Conditions," IEEE Transactions on Energy Conversion, vol. 35, no. 1, pp. 184-192, 2020. 

[15] M. Rahimi and M. Parniani, "Coordinated Control Approaches for Low-Voltage Ride-Through Enhancement in Wind 

Turbines With Doubly Fed Induction Generators," Energy Conversion, IEEE Transactions on, vol. 25, no. 3, pp. 873-

883, 2010. 

[16] L. Yin, Z. Zhao, T. Lu, S. Yang, and G. Zou, "An Improved DC-Link Voltage Fast Control Scheme for a PWM Rectifier-

Inverter System," IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 462-473, 2014. 

[17] T. Wang, Z. Q. Zhu, N. M. A. Freire, D. Stone, and M. Foster, "Generalized Predictive DC-Link Voltage Control for 

Grid-Connected Converter," IEEE Journal of Emerging and Selected Topics in Power Electronics, pp. 1-1, 2021. 

[18] X. Xiao, Y. Zhang, J. Wang, and H. Du, "An Improved Model Predictive Control Scheme for the PWM Rectifier-Inverter 

System Based on Power-Balancing Mechanism," IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5197-

5208, 2016. 

[19] M. Abarzadeh, K. Al-Haddad, and M. R. Dehbozorgi, "Deadbeat predictive direct power control of neutral-point-clamped 

converter based active front end rectifier for more electric aircraft applications," 2018-44th Annual Conference of the 

IEEE Industrial Electronics Society in IECON, pp. 5739-5744, 2018.  

[20] M. Abarzadeh, N. Weise, R. Katebi, A. Javadi, and K. Al-Haddad, "Constant switching frequency hierarchical deadbeat 

predictive direct power controller with dynamic power estimator for 3L-ANPC AFE rectifier for EV charger applications," 

IEEE Transportation Electrification Conference & Expo (ITEC), pp. 1006-1011, 2020.  

[21] B. Wen, D. Dong, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, "Impedance-Based Analysis of Grid-

Synchronization Stability for Three-Phase Paralleled Converters," IEEE Transactions on Power Electronics, vol. 31, no. 

1, pp. 26-38, 2016. 

[22] Y. Xu, H. Nian, and L. Chen, "Small-Signal Modeling and Analysis of DC-Link Dynamics in Type-IV Wind Turbine 

System," IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1423-1433, 2021. 

[23] S. F. Zarei, H. Mokhtari, M. A. Ghasemi, S. Peyghami, P. Davari, and F. Blaabjerg, "DC-link loop bandwidth selection 

strategy for grid-connected inverters considering power quality requirements," International Journal of Electrical Power 

& Energy Systems, vol. 119, p. 105879, 2020. 

[24] Y. Vule and A. Kuperman, "Plug-in disturbance observer assisted DC link voltage control of grid-connected converters 

to improve transient performance without deteriorating grid current quality," International Journal of Electrical Power 

& Energy Systems, vol. 143, p. 108439, 2022. 



 

 

[25] L. Harnefors, A. G. Yepes, A. Vidal, and J. Doval-Gandoy, "Passivity-Based Controller Design of Grid-Connected VSCs 

for Prevention of Electrical Resonance Instability," Industrial Electronics, IEEE Transactions on, vol. 62, no. 2, pp. 702-

710, 2015. 

[26] H. K. Khalil and J. Grizzle, Nonlinear systems. Prentice hall New Jersey, 1996. 
 

 

 


