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Text S1. Methods Supplement. Here we described additional details for the methods10

used in the main manuscript related to thermal image data processing. The code reposi-11

tory and further documentation are available at https://github.com/colinrr/locust.git.12

1. Thermal Imagery Pre-processing

1.1. Data Format Conversion and Frame Registration

The thermal imagery, initially recorded in the propriety InfraTec .irb format, were first13

converted to an ASCII file format using one of two methods: via the Infratec IRB2ASCII14

executable, or the program IRT Analyzer. The resulting text files are then converted into15

MATLAB data format. For a given sequence of thermal image frames, a single .mat file16
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is generated for each frame, as a well as a file containing a table of header information17

with rows corresponding to each frame, titled frameHeads.mat.18

Following conversion to MATLAB file format, frame registration is performed as needed19

when the camera viewfield was not perfectly steady. For instance, wind periodically caused20

minor shaking of the camera during video recording, which must be corrected to avoid21

large spatial displacements of imaged objects between frames. Figure S1 shows an exam-22

ple of temperature differences between frames for Event 3 before and after registration.23

A brief period of strong wind gusts caused significant shaking of the camera, such that24

temperature differences become large between frames for a given pixel due to the dis-25

placement of imaged objects. Re-alignment of these images using the MATLAB image26

registration package prevents erroneous plume segmentation and velocity analysis during27

later processing steps.28

1.2. Plume segmentation using plumeTracker

To obtain image masks identifying pixels as belonging to an eruption plume, we use29

the plumeTracker software of Bombrun, Jessop, Harris, and Barra (2018), modified to30

facilitate efficient data input and output in our workflow (the core image segmentation31

algorithm is unchanged). In most instances, clear skies provided excellent thermal contrast32

between plumes and the background of thermal images, and plumeTracker segmentation33

was very effective in these instances for producing binary image masks. In instances where34

clouds are present in the vent region (either atmospheric vapor or outgassing from the vent35

itself), the plumeTracker software struggled to differentiate between cloud and plume36

motions. In these cases and as necessary, we applied plumeTracker to a pre-processed37
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version of the thermal images, in which we enhanced contrast prior to segmentation and/or38

perform manual masking of image regions in which no plume was present.39

1.3. Mapping Pixels to Physical Coordinates

To calculate the positions, dimensions, and velocities of image features, it is necessary40

to obtain estimates of pixel dimensions (in meters) at the target (vent or plume) distance,41

accounting for the viewing angle of the camera. Figure S2 shows the view geometry and42

relevant parameters. Here we generate a mapping function that converts pixel coordinates43

to distances relative to the camera reference frame. Using a modified form of the geometric44

corrections in Harris (2013, Chapter 9), we first assume that (a) the target plume lies in a45

2D vertical plane, centered above the vent and horizontally perpendicular to the camera46

view azimuth (as in Figure S2a), and (b) that only vertical tilt of the thermal images is47

present, with no horizontal tilt (the camera was leveled during field observations). We48

further assume that lens distortion is negligible (a correction is applied internally in the49

camera), such that the thermal images represent an ideal camera perspective projection.50

We first need the true azimuth, ϕ0, and elevation angle relative to horizontal, θ0, of51

the camera view centerline. Using the geodetic coordinates of the camera observation52

point, a visible reference point on the Sabancaya edifice, and the estimated vent location53

(see Figure S2a,c), we calculate the azimuth, elevation angle, and slant distance from the54

camera observation point to the reference point, (ϕ′
ref , θ

′
ref , Dref ), and to the Sabancaya55

vent, (ϕ′
v, θ

′
v, Dv). Here the

′ indicates that angles are apparent angles with respect to the56

camera reference frame (i.e. less than the true angle relative to camera centerline, see Fig-57

ure S2b). The coordinates of the reference point and vent location are estimated from the58

ALOS 12 digital elevation model (ASF-DAAC, 2015) and Google Earth satellite imagery.59
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The angular distance in azimuth and elevation angle between the camera centerline and60

the reference point are, respectively:61

dθref =
[
iref − (ni

2
+ 0.5)

]
βi , (S.1)62

dϕref =
[
jref − (

nj

2
+ 0.5)

]
βj , (S.2)63

where dθref and dϕref are the angular distances within the camera field of view between64

the reference point and camera centerline; (iref , jref ) are the vertical and horizontal pixel65

coordinates of the reference point in the image, respectively; (ni, nj) are the vertical66

and horizontal image resolution in pixels, respectively; and (βi, βj) are the vertical and67

horizontal angular fields of view for a single pixel. To retrieve the geodetic elevation angle68

and azimuth, we then apply an apparent angle correction to account for the camera tilt69

to obtain the camera elevation angle θ0 and azimuth ϕ0 (in geodetic reference frame):70

θ0 = θref − dθref = tan−1
(

tan(θ′ref )

cos(dϕref )

)
− dθref , (S.3)71

ϕ0 = ϕ′
ref − dϕ′

ref = ϕ′
ref − tan−1 (cos(θ0) tan(dϕref )) . (S.4)72

Using a similar apparent angle correction, the horizontal angular distance from camera73

centerline dϕv and elevation angle θv to the vent location are given by:74

dϕv = tan−1
(

tan(ϕ′
v−ϕ0)

cos(θ0)

)
, (S.5)75

θv = tan−1
(

tan(θ′v)
cos(dϕv)

)
. (S.6)76

We then calculate horizontal distance from camera to vent Dx and slant distance from77

camera to the centerline pixel Dlos (in the projected vertical plane) according to:78

Dx = Dv cos(dϕv) cos(θv) , (S.7)79

Dlos = Dx

cos(θ0)
. (S.8)80
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Once the above calculations are performed for a given camera location, image coordinates81

i, j in units of pixels may be readily converted to coordinates in meters in the projected82

image plane (x, z) by:83

z = Dx tan
[
θ0 − (i− 0.5− ni

2
)
]
βi , (S.9)84

x = (Dlos + (Dx tan(θ0)− z) sin(θ0)) tan
[
(j − 0.5− nj

2
)
]
βj . (S.10)85

We numerically propagate uncertainty in the positions of the vent and reference feature86

to estimate uncertainty in pixel dimensions and absolute position. From these calculations87

for Events 1 and 2 (Observation Site 1), the image center pixel dimensions are (dx, dz) =88

(3.3± 0.06, 3.5± 0.06) m, the camera vertical field of view at the vent distance is 2720 m,89

and estimated pixel positional errors for features near the center image are ±(1, 30) m in90

x and z coordinates, respectively, and increase approximately linearly towards the image91

edges to a maximum of ±(30, 75) m. For Event 3 (Observation Site 2), pixel dimensions92

are (dx, dz) = (2.7± 0.06, 2.9± 0.06) m, the vertical field of view at vent distance is 227093

m, and estimated positional errors are similar to those for Events 1 and 2. The analyses94

presented below rely almost exclusively on pixels from features near image centers with95

relatively lower uncertainty values, and therefore absolute positional error are generally96

≤ ±(15, 60) m for all three events. Note that these error values are estimated for the97

geometrical projection alone, assuming objects lie in the projection plane (Figure S2),98

and result primarily from uncertainty in the absolute positions of the reference feature99

and vent.100
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1.4. Image re-gridding

Image stretching during the above image projection step results in pixel positions that101

are not regularly spaced in (x, z) (see Figure S2c,d). The resampling of thermal images102

and masks into regularly gridded spatiotemporal coordinates is done in two steps. First,103

individual frames are resampled from projected positions onto regularly sampled grid104

coordinates (x, z) (Figure S2e). Re-gridding is performed using a linear interpolation in105

the MATLAB ‘scatteredInterpolant’ function. Next, because the thermal camera frame106

rate is slightly variable, we used the MATLAB ‘resmaple’ function with piecewise cubic107

Hermite interpolation. This function outputs a MATLAB structure which contains a108

regularly sampled data cube ∆T (x, z, t).109

2. Two-dimensional (2D) Velocity Field Retrieval Using Optical Flow

Analysis

Here we describe the details of obtaining 2D velocity fields using the Optical Flow110

toolbox of Sun, Roth, and Black (2014). Their code was used unaltered, and we do not111

include it in the our available code, but driver scripts and additional functions built for112

the filtering process described below are included. There are two key controls that govern113

the extent to which we resolve the velocity field with Optical Flow. First, the sampling114

interval must fully resolve the turnover time of the coherent structure we are tracking115

(generally ≳ 5 s). Second, the rise speed of any feature must be similar or greater than116

the “grid speed” dx/dt set by the image spatial resolution dx and sampling rate dt, such117

that the classical Courant number is of order 1.118

C = ||u, v|| dt
dx

≳ 1, (S.11)119

September 14, 2023, 7:20pm



: X - 7

where ||u, v|| is the mean of the velocity field magnitude in the plume. For pixel sizes of120

about 3 m and frame intervals of 0.1 to 0.2 s, velocities of 15 to 30 m/s are comparable to a121

displacement of about 1 pixel per frame. Motions significantly faster than this are not fully122

resolved because displacements are very large between frames, but tracking motions much123

slower than this introduces unphysical noise to the velocity field estimation, as shown in124

Figure S3. Therefore the 10 Hz sampling rate of the camera is higher than is required to125

resolve coherent structures rising at typical speeds of about ∼ 5 to 25 m/s or turning over126

with periods of ≳ 10s, and we first downsample the video to every second frame before127

applying the Optical Flow analysis. The choice of every second frame balances resolving128

slower plume motions while also minimizing the number of frames for which velocity fields129

must be interpolated. To eliminate remaining high-frequency noise after obtaining optical130

flow fields, we then apply a low-pass filter to the velocity fields over the time dimension131

t, and finally interpolate velocity fields for frames not included in downsampling. The132

frequency cutoff for low-pass filtering is chosen based on the Courant condition such that133

it is about half the ratio of dominant plume flow velocities to the pixel grid spacing,134

f ≈ (0.5)
||u, v||
dx

, (S.12)135

This choice of frequency cutoff (about 0.5 to 1 Hz) produces velocity fields that are spa-136

tially coherent and robustly capture plume motions with minimal noise over the timescales137

of plume rise or the overturn of large eddies (≫ 1 s). Obtaining optical flow velocities in138

this manner produces velocities that are accurate compared with manual calculations to139

within a few percent.140
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3. Atmospheric Profile Removal Methods Supplement

Here we present additional details on the atmospheric profile removal steps, including141

height uncertainty estimation, late-time filtering, and additional checks on the choice of142

∆Tmode.143

3.1. Height uncertainty estimation

We estimate the height uncertainty of pixels in the projected images, so that pixels with144

large height uncertainty can be filtered out when fitting the atmospheric profile to the145

data. Figure S4 shows the two main sources of pixel height uncertainty, and the estimate146

of the two uncertainties for a sample frame of Event 3. For a given column feature, error in147

the height estimation arises if the feature is farther from or closer to the camera than the148

assumed projection plane above the vent. Because of the upward camera viewing angle,149

an object that is farther than the projection plane will likely have an underestimated150

height for features at the edge of the column, and an object that is closer will likely have151

an overestimated height. Therefore for a perfectly vertical, conical plume centered above152

the vent, the 3D shape of the plume (i.e. the plume radius) will generally cause the153

projected height to overestimate the true height since the outer visible portions of the154

plume will lie outside the projection plane and relatively closer to the camera. We refer155

to this height uncertainty as the radial error in z (Figure S4a). Additional (and greater)156

height uncertainty arises where the plume center axis is not centered above the vent (e.g.157

due to wind transport), such that the position of features may be ambiguously closer to158

or farther from the camera than implied by the assumed projection plane. We refer to159

this uncertainty as the axial uncertainty in z (Figure S4b).160
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For all pixels in all frames as a function of height, we estimate the combined height161

uncertainty using the geometrical relationships shown in Figure S4, combined with sim-162

plifying assumptions on column geometry. We use the shape of the plume masks derived163

from the plumeTracker algorithm (Bombrun et al., 2018, yellow line in Figure S4c) to164

estimate both radial and axial height uncertainties. First, we use the mask width as a165

proxy for column diameter. Second, we use distance in x between the mask centerline166

and the vent as a proxy for the magnitude of uncertainty in distance to the camera. This167

choice is based on the assumption that plume advection along the visible x coordinate is168

of similar magnitude to advection into or out of the projection plane. This is broadly true169

for our three Events based on field observations, in which columns were generally shifted170

north-northwest by prevailing winds at altitude. Figure S4d shows the resulting estimated171

maximum combined height uncertainty (generally occurring near the plume centerline)172

for pixels in the plume mask as a function of altitude z, where the solid blue line gives173

the estimated height radial error, and the shaded blue region gives the axial uncertainty174

resulting from the column axial position. In this example, the plume is approximately175

centered above the vent for z ≲ 6800 m a.s.l., and the estimated height error increases lin-176

early with both increasing plume radius and elevation angle from the camera, but remains177

less than about 50 m. Above 6800 m where the plume is bent away from the vent, the178

uncertainty in height quickly increases in both magnitude and sign, ranging from about179

-50 to +150 m.180

3.2. Late Time Filtering

The transient Events 2 and 3 are conducive to atmospheric profile fitting by virtue181

of rapid decay in source heat flux. At large time after the Event onset, remnants of182
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the column become increasingly quiescent and approach thermal equilibrium with the183

background atmosphere. Figure S5 compares ∆T for two frames of Event 3 at t = 60 and184

t = 245 s. ∆T is both much lower and much more uniform throughout the column for the185

late-time frame, and we take advantage of this to apply the atmospheric filtering. Figure186

S5b shows a heat map of Tb − Ta as a function of time for Event 3, where each column187

of data is the normalized probability density function (PDF) for pixels in a single frame.188

Initially, during the peak heat flux from the vent, the PDF of ∆Ti has a mode of about 60189

K and wide standard deviation of about 30 K. At late times as column heat flux decays,190

however, the values converge towards an approximately constant mode of about -12.4 K191

with a standard deviation of only about 1 K (red box), indicating that the plume is near192

thermal equilibrium with the atmosphere at this relative temperature difference between193

image and satellite data. This constant value corresponds to peak of filtered PDFs as194

shown in Figure 4(g-i) of the main manuscript, from which we estimate ∆Tmode = −13.6195

K.196

3.3. Apparent Minimum Temperatures and Atmospheric Profile Fit Residuals

To add confidence in our estimate of ∆Tmode based on filtered PDF half-maxima, here197

we discuss an additional filtering step. As shown in Figure 4, the action of column rise198

and turbulent entrainment and mixing causes column temperatures to approach those199

of atmospheric background approximately asymptotically. At any given height in the200

column, turbulent entrainment and thermal mixing act to combine two packages of fluid:201

the relatively hot plume mixture, and the cold and comparatively uniform temperature202

of the ambient air. As a result, temperature distributions in the data are frequently203

bi-modal, and the statistical distribution of the coldest temperatures can be used to204
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find pixels that represent the coldest background temperature being entrained into the205

column and towards which temperatures are approaching asymptotically. To this end, for206

all filtered pixel rows within the plume (see Figure 4e) we find the minimum value of ∆T .207

Since the initial masking process should eliminate the majority of partially transparent208

pixels, we expect that these apparent ∆T minima are statistically representative of the209

coldest atmosphere being drawn into the plume.210

Figure S6(a-c) shows the resulting PDFs of row-wise apparent minima for Events 1-211

3, respectively, as purple dashed lines. The filtered PDFs of Figure 4(g-i) are shown in212

blue and orange for comparison. For the Event 3 example in Figure S6c, this procedure213

gives a population of about 20,000 apparent minima values (about 400 pixel rows within214

the range of good height estimates over about 50 frames). The apparent minima peaks215

approximately coincide with the half-maximum value of the initially filtered pixels (vertical216

dashed grey lines), except in the case of Event 1. Because Event 1 is a steady plume and217

lacks a well-equilibrated ‘late-time’ population of pixels, the apparent minima peak is218

more diffuse. We take the long tails in apparent minima PDFs at colder temperatures219

as representative of partially transparent pixels incorporating information from cold sky220

background. That apparent minima peaks for Events 2 and 3 coincide with peak half-221

maxima of the filtered pixels (orange lines) adds confidence that these values correspond222

approximately to the atmospheric background temperatures, motivating our choice of223

∆Tmode. Since this is not the case for Event 1, however, for consistency we skip this224

additional apparent minima step in our final results, and retain only the half-maxima225

definition of ∆Tmode as described in the main manuscript.226
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Panels (d), (e), and (f) in Figure S6 show the residual errors in the modal value of227

Tb − Ta as a function of height for Events 1, 2, and 3, respectively. The blue and orange228

curves correspond to the mode for all plume pixels and filtered plume pixels, respectively,229

as in panel (e). As expected for all events, the fit for all pixels is generally poor near the230

vent where temperatures are high and above about 7500 to 8000 m a.s.l., where plumes231

becomes increasingly transparent and pixel height estimates are increasingly uncertain.232

In between these heights for Events 2 and 3, fit of filtered pixels with the atmospheric233

profile is generally very good. This is in part facilitated by the transient nature of these234

events, which allows a better fit for thermally well-mixed plumes at late time. For Event235

1, which is both steady in time (and thus lacks “late-time” data to use) and increasingly236

bent by winds with altitude above the vent (see Figure 3a), there is a more narrow height237

range of about 6700 to 7300 m a.s.l. where the profile fit is good. Below this height the238

steady plume is not thermally well mixed, and above this height the plume is likely both239

increasingly transparent and strongly transported out of the projection plane, resulting240

in large height uncertainty.241

3.4. Effects on Power Law Fits of ∆Tmode Approximation

The linear approximation using ∆Tmode in Equation 6 (main manuscript) is valid so long242

as the maximum values of ∆T are not more than 100 to 200 K. For example, assuming that243

the satellite atmospheric profile gives the true temperature (about 267 to 275 K between244

6500 and 7500 m a.s.l.), then for the largest estimated magnitude of ∆Tmode = −12.4245

K (Event 3, Figure S6c), Equation 5 implies a combined emission and transmission loss246

(εξ) ≈ 0.83. In this case, the maximum error introduced to our ∆T approximation for247

the hottest (unsaturated) pixels is about 7 K, and typically less than about 2 K. This248
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approach is further aided in our case by the combination of high altitude (observation249

sites about 5200 m a.s.l.), a dry environment, and generally clear-sky background, which250

are well-suited to minimal (though non-zero) transmission loss of thermal emissions at251

our viewing distances (Harris, 2013).252

Figure S7 compares power law fit results using the scalar temperature correction ∆Tmode253

(Equation 6) against the results of applying a multiplicative correction to brightness254

temperature data (Equation 5). Panel (a) shows absolute temperatures after applying four255

different multiplicative corrections (ϵξ) ranging from 0.6 to 1.0 to brightness temperature256

data. A value of 0.83 gives the best fit with the satellite-derived atmospheric profiles. In257

panel (b), we calculate the excess temperature 95th percentile. For cases besides (ϵξ) =258

0.83, multiplicative corrections must be adjusted by an additive constant to align the259

decay curves for comparison with the scalar-adjusted ∆T employed in the main manuscript260

(black line in panel (b)). In panels (c) and (d), the power law fit results show that resulting261

B estimates are insensitive to the choice of correction, though RMS fit error increases for262

low correction values of (ϵξ) = 0.6.263
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Table S1. Table of variables for supporting information.

Variable Description Units
iref Vertical image coordinate of reference feature pixels
jref Horizontal image coordinate of reference feature pixels
ni Height of camera field of view pixels
nj Width of camera field of view pixels
βi Vertical angular field of view for a single pixel radians
βj Horizontal angular field of view for a single pixel radians
ϵ Emissivity of target plume -
θ0 Camera view centerline elevation angle to horizontal radians
dθref Angular elevation to reference point along camera centerline radians
ξ Transmissivity of the atmospheric path between camera and plume -
ϕ0 Camera view centerline azimuth rad
dϕref Angular distance: camera centerline to reference azimuth rad

Notation:
′ E.g. θ′: apparent angle relative to a camera-centered frame of reference

September 14, 2023, 7:20pm



X - 16 :

500 1000 1500 2000

0.2

0.4

0.6

0.8

1 Raw frames

Registered frames

500 1000 1500 2000

Frame Index Pair

5

10

15

20

25

30

35

(a)

(b)

Wind gusts

Figure S1. Mean (a) and maximum (b) temperature difference between subsequent frames

for Event 3. Blue and red lines show temperature differences for raw and registered frames,

respectively. Re-alignment of images during a period of strong wind-gusting (frames 500-750)

reduced the frame-to-frame pixel error.
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Figure S2. Field observation geometry for mapping image coordinates to spatial coordinates.

(a) Geometry of field setup, perpendicular to camera view, showing the camera elevation angle

θ0, the camera field of view, and the projected image plan centered above the vent. (b) Schematic

of angles and apparent angles (denoted with ′) relative to a frame-of-reference centered on the

camera image centerline for an arbitrary pixel coordinate (i, j). (c) Example raw image frame,

showing the pixel coordinates of the reference pixel (iref , jref ) and projected vent location (it, jt).

(d) The image from panel (c) after projection onto the vertical plane centered above the inferred

vent location. (e) Projected thermal frame after the image re-gridding step.
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Figure S3. Optical flow velocity power spectral density for a sequence of thermal images

from Event 3, using the maximum possible time resolution (about 10 frames per second). The

Courant frequency of 1.21 Hz, obtained from Equation S.11 is marked by the vertical grey dashed

line. Significant noise occurs at frequencies above this cutoff, which corresponds to sub-pixel

displacements between frames.
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Figure S4. Sources of pixel height uncertainty. (a) Projection height error resulting from

radial thickness of the column predictably causes overestimation of the true height of features

at the visible column exterior. (b) Projection height uncertainty arises from uncertainty in the

axial position of a bent column, is additive to the radial error and may produce an under- or

overestimation of the height of features, depending on whether the axial position is away from or

towards the camera, respectively. (c) Sample frame for estimating height uncertainty for t = 60

s in Event 3. (d) Column centerline uncertainty for the frame in (c). Solid blue line gives the

estimated radial z error, and the shaded region gives the uncertainty from axial position.
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Figure S5. Example of late-time filtering for Event 3 atmospheric profile removal. (a) Compar-

ing an ‘early-time’ frame where the column ∆T values are elevated well above background with

a ‘late-time’ frame where column ∆T values are relatively homogeneous relative to background

and column pixels remain largely opaque to background radiation. (c) Probability density map

of initial pixel excess temperature ∆Ti = Tb−Ta) versus time in the Event 3 plume, for all plume

pixels. The PDF for each frame (pixel column here) is normalized to the maximum value in the

frame, and blue dots indicate the mode value for each frame. Initially high ∆T at the start of the

explosion decays with time towards a flat value corresponding to the background atmospheric

profile (≈ −12.4 K). The red box highlights the late-time frames (standard deviation < 1 to 2

K) used to obtain PDF functions for atmospheric profile fitting (Figure 4, main manuscript).
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Figure S6. Apparent minima PDFs are similar to filtered PDF half-maxima. (a)-(c) PDFs

of Tb − Ta for Events 1-3. Blue and orange lines are identical to those in Figure 4, where blue

lines show the distribution of all plume pixels, and the orange line results after filtering pixels for

vent proximity, large height uncertainty, and late time. The purple line shows the distribution

of apparent row-wise minima. (f) Mode b − Ta as a function of height for Event 1. As in (a)-(c),

blue line shows all pixels and orange line shows filtered pixels. (g) As (f), for Event 2. (h) As

(f), for Event 3.
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Figure S7. Comparison of power law fit results using the additive ∆Tmode atmospheric

profile correction versus multiplicative corrections from assumed emission and transmission loss.

(a) Absolute temperature for the tracked leading front of Event 3 after applying emission and

transmission corrections (ϵξ). (b) ∆T95 after apply a scalar shift to align the decay curves about

1800 m. (c) RMS error (K) of power law fit for each correction. (d) Estimated B values for each

correction.
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Table S2. Table of lower (min.) and upper (max.) height limits for linear R fit and power

law B fit. Bold/black denotes manually chosen limits, cyan denotes limits imposed by automatic

pixel filters, and light gray indicates that the full extent of the data set was used. See also Figures

S8-S15 below for comparison.

Event No. Track No.
Fit height limits (m)

R min. R max. ∆T min. ∆T max.
1 1 116 377 112 616
1 2 99 420 98 581
1 3 149 300 105 850
1 4 146 212 78 809
1 5 102 325 112 571
1 6 173 392 95 758
1 7 599 510 78 755
1 8 146 323 109 602
1 9 122 358 132 874
1 10 122 300 109 632
1 11 200 364 112 442
2 1 139 540 145 1080
2 2 142 342 190 425
2 3 103 425 107 426
2 4 107 182 121 415
2 5 149 375 75 545
2 6 175 312 103 506
2 7 163 353 89 489
2 8 132 384 89 555
3 1 540 1172 558 1518
3 2 924 1157 393 1518
3 3 176 321 214 495
3 4 129 305 233 622
3 5 300 597 274 720
3 6 118 634 198 88
3 7 129 640 98 837
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Caption on next page.
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Figure S8. Tracking and curve-fitting results for Event 1, tracks 1-4. Left-most column shows

tracked feature outlines at various time steps in blue, and the total outline (enclosing all tracked

pixels for all times) in orange. The gray outline shows the time-averaged image mask as shown

in Figure 7 of the main manuscript. The second column from the left shows the tracked feature

effective radius (taken as the square root of total pixel area) versus height (of pixel values at

each time step) above the vent. The linear model 95% confidence bounds for R(z) are shown

with blue dashed lines. The third column from the left shows evolution with height of the

reconstructed excess temperature distribution. Light gray and dark gray fields show the 5-95

and 25-75 percentile range, respectively, and the dark gray line gives the mean. The curve-fitted

∆T95 is highlighted with blue dots, and the fit confidence 95% bounds are again shown with

blue dashed lines. Note that the plotted power law fit confidence bounds shown are for the

central z0 estimate only, but the printed uncertainty in B includes for the range of uncertainty

in z0. We also report the manually identified quality check (QC) value, where 0 = poor, 1 = ok,

2 = excellent (see text for description). The second-from-right and right-most columns show,

respectively, the percentage of pixels at each height that are removed from curve-fitting due

to either temperature saturation or large height error. Saturated and height-filtered pixels are

removed from the temperature fit, while only height-filtered pixels are removed from the radius

fit.
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Figure S9. Tracking and curve-fitting results for Event 1, tracks 5-8. See the caption of Figure

S8 for full description.

September 14, 2023, 7:20pm



: X - 27

40 60 80 100

z_0 = -230±172 m
dR/dz = 0.15±0.05
Fit NRMSE = 0.138
QC = 0

0 20 40

B = -2.9±1.3
C = 2.3±0.7 K

Fit NRMSE = 0.021
QC = 2

50 100 50 100

200

400

600

800

40 60 80

z_0 = 14±41 m
dR/dz = 0.30±0.04
Fit NRMSE = 0.090
QC = 2

0 20 40

B = -0.8±0.3
C = -8.6±0.4 K (bounded)

Fit NRMSE = 0.044
QC = 2

50 100 50 100
100

200

300

400

500

600

30 40 50 60 70

z_0 = -253±81 m
dR/dz = 0.13±0.02
Fit NRMSE = 0.039
QC = 2

0 20 40

B = -1.9±0.4
C = -6.6±0.0 K (bounded)

Fit NRMSE = 0.047
QC = 2

50 100 50 100

100

200

300

400

100 200 300

z_0 = -136±47 m
dR/dz = 0.25±0.01
Fit NRMSE = 0.048
QC = 2

0 50 100

B = -3.1±0.5
C = 10.0±0.0 K (bounded)

Fit NRMSE = 0.030
QC = 2

50 100 50 100

500

1000

1500

-600 -400 -200 0 200

200

400

600

800 Event 1
Track 9

(i)

-600 -400 -200 0
100

200

300

400

500

600 Event 1
Track 10

(j)

-500 -400 -300 -200 -100

100

200

300

400 Event 1
Track 11

(k)

-500 0 500 1000

500

1000

1500
Event 2
Track 1

(l)

Figure S10. Tracking and curve-fitting results for Event 1, tracks 9-11 and Event 2, track 1.

See the caption of Supplementary Figure S8 for full description.
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Figure S11. Tracking and curve-fitting results for Event 2, tracks 2-5. See the caption of

Supplementary Figure S8 for full description.
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Figure S12. Tracking and curve-fitting results for Event 2, tracks 6-8 and Event 3, track 1.

See the caption of Supplementary Figure S8 for full description.
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Figure S13. Tracking and curve-fitting results for Event 3, tracks 2-5. See the caption of

Supplementary Figure S8 for full description.
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Figure S14. Tracking and curve-fitting results for Event 3, tracks 6-7. See the caption of

Supplementary Figure S8 for full description.
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Figure S15. Components of Puµ for all tracks of Events 1-3. Horizontal solid lines show

unweighted track averages. Track numbers are in chronological order for each event. (a) A∗, (b)

τpulse, (c) τµ.
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