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Abstract 

Earth System Models (ESMs) are the primary tool for understanding the impacts of global change and several 

ESMs are updated on a regular basis to provide more reliable scenarios of the future. However, the confrontation 

of ESMs outputs to observations reveals biases that are important to correct, especially for impact applications 

where the absolute scale of the environmental variable is as relevant as its trends. In addition, regional impact 

studies need fine scale projections to devise strategic planning and management measures. Statistical 

downscaling provides a fast way to produce regional ocean forcing from ESMs and can additionally produce 

bias-corrected outputs, which are necessary for impact applications driven by or fitted to observed data, like 

many ecological models. Statistical downscaling can make use of different parametric distributions depending 

on the variables used, and generalized regression can provide a flexible approach for this purpose. We propose 

a multi-model approach based on non-parametric generalized regression and a suite of indicators to select a 

robust statistical downscaling model that can be used for projection of future scenarios. The empirical 

cumulative distribution of the variables to downscale is modeled, ensuring that not only the mean but also the 

variance and quantiles (including the minima and maxima) are properly represented, improving the prediction 

of extreme events and taking into account spatial autocorrelation. The approach presented here is applied to two 

contrasted regional case studies, the Bay of Biscay-Celtic Sea ecosystem and the Northern Peru Current 

ecosystem, using the Sea Surface Temperature from the IPSL-CM5A-LR ESM. The results showed that a multi-

model selection approach is appropriate as individual model performance is case specific. 

 

1. Introduction 

The primary tool for understanding the effects of climate change is Earth System Modeling, and most Earth 

System Models (ESM) are frequently updated to produce more accurate future scenarios. However, systematic 

spatio-temporal biases in ESMs outputs relative to observations have been reported (Wang et al. 2014, Cannon 

et al. 2015, Skogen et al. 2018, see Figure 1). Bias correction of model outputs is important for impact 

applications where the absolute scale of a variable is as relevant as its trends (Tabor and Williams 2010, 

Pourmokhtarian et al. 2016). For example, species distribution models can fail in predicting the effects of 

climate change scenarios if the bias in the ESMs’ environmental variables produces a mismatch with the actual 

physiological tolerance range of the modeled species (Stoklosa et al. 2015, Morales-Barbero and Vega-Álvarez 

2018). In addition, regional climate change impact studies and models need finer scale projections than those 

currently provided by ESMs to support strategic decision-making, evaluate management measures at the local 

scale (Horta and Keirstead 2016, Sugi et al. 2017), and explore adaptation and mitigation solutions. 

Furthermore, for some specific applications and impact studies, fine scale resolution is absolutely critical, such 

as water resource management, exploitation of wild species (e.g. fishing), management of wildfire risks and 

urbanization plans (e.g. Townhill et al. 2017, Poggio et al. 2018). 
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In this context, downscaling is the procedure to obtain predictions at regional scales from inputs at global or 

larger scales. The two main approaches to downscaling are dynamical and statistical (Hoar and Nychka 2008). 

Dynamical downscaling requires the simulation of a high-resolution model on a regional domain, using the 

lower-resolution climate model output as boundary conditions (Xu 1999, Fowler et al. 2007). These models use 

physical principles to reproduce regional dynamics, therefore are able to simulate local conditions in greater 

detail (Xu 1999, Fowler et al. 2007, Trzaska and Schnarr 2014) but are computationally intensive. Dynamical 

downscaling could take years of research investment, requires substantial human resources with specific 

technical skills and expertise in climate science, and has high performance computing costs (Fowler et al. 2007). 

This capacity is not found in many places in the world, yet the demand for fine resolution climate projections is 

ubiquitous and increases steeply for researchers. This is critical in a context where climate change scenarios and 

ESMs regularly change over time (and so the downscaling needs to be regularly revised), and ensemble ESMs 

are now available to the scientific community (and so the downscaling needs to be done multiple times). Unless 

strong and large multi-disciplinary teams can work hand in hand towards dynamical downscaling of climate 

change projections under multiple scenarios, e.g., all IPCC Representative Concentration Pathways (RCP), and 

potentially using multiple ESMs, researchers are often bound to use the coarse scale ESMs projections, with all 

the biases previously mentioned. Statistical downscaling is a two-step process consisting of i) the construction 

of a statistical downscaling model for the empirical relationships between regional variables and large-scale 

predictors, and ii) the prediction of the statistical model from the output of global climate models to simulate 

the regional dynamics in the future (Xu 1999, Fowler et al. 2007, Trzaska and Schnarr 2014). Statistical 

downscaling provides a fast way to produce regional ocean forcing from global models and can additionally 

produce bias-corrected outputs (e.g. Wong et al. 2014, Volosciuk et al. 2017), which are of crucial importance 

for impact applications driven by or fitted to observed data (e.g. most ecological models). Many statistical 

downscaling methods are currently available, including the combination of multiple linear regressions (e.g. 

Rheuban et al. 2017, Hoomehr et al. 2016, Yue et al. 2016, Hertig and Tramblay 2017, Araya‑Osses et al. 2020, 

Bonafoni et al. 2016), machine learning (e.g. Baño-Medina et al. 2020, Anh et al. 2019, He et al. 2016, Oh et 

al. 2022) or ad-hoc algorithms (Han et al. 2019, Zhang et al. 2020, Keller 2017, Sa’adi et al. 2017), and 

parametric transformations (Lange 2019, Wang et al. 2016, Su et al. 2016, González-Aparicio et al. 2017, Huang 

et al. 2016). Statistical downscaling can make use of different parametric distributions depending on the 

variables of interest, and generalized regression can provide a flexible approach for this purpose (e.g. Asong et 

al. 2016, Latombe et al. 2018, Hoskins et al. 2016).  

In this work, we propose a multi-model approach based on non-parametric generalized regression and a suite 

of indicators to select a robust statistical downscaling model that can be used for projections of future scenarios. 

Distribution or quantile mapping (Teutschbein and Seibert 2012, Cannon e t al. 2015) and generalized additive 

regression (GAMs, e.g. Latombe et al. 2018) are used to model the empirical cumulative distribution of the 

variables to downscale, ensuring that not only the mean but also the variance and quantiles (including the 

minima and maxima) are properly represented, improving the prediction of extreme events. The methods 

presented here are illustrated with the application to two regional case studies, the Bay of Biscay and Celtic Sea 

ecosystem in the Northeast Atlantic and the Northern Peru Current ecosystem in the Southeast Pacific (Figure 

1). We describe our method for the Sea Surface Temperature (SST) variable outputted by the IPSL-CM5A-LR 

(Dufresne et. al 2013, Mignot et al. 2013) ESM.  

2. Methods 

The downscaling and bias correction is carried out in 7 steps: 

1. Subset low resolution ESM outputs to the specific regional domain. 

2. Interpolate low resolution ESM outputs to the spatial resolution of the target (observed) data. 

3. Quantile computation across time for each square of the grid for both interpolated ESM outputs and 

target data.  

4. Fit statistical models using k-fold cross validation (full dataset splitted in k equal parts). 

5. Select the best models based on a suite of indicators. 



6. Fit the best models selected in step 5 to the full dataset and perform final model selection based on the 

same suite of indicators. 

7. Use the best model for prediction and produce the downscaling and bias-correction.  

 
Figure 1. Bias in the average sea surface temperature in output of the IPSL-CM5A-LR model. Observations come from OI-SST 

(Banzon et al. 2016, Reynolds et al. 2007) 

Steps 1-3 produce the databases used in the statistical modeling carried out in steps 4-6, while the final step 

produces the final downscaled and bias-corrected product. The approach is summarized in Figure 2 and 

illustrated in detail for our case studies in the next sections.  

2.1 Databases 

We used Sea Surface Temperature (SST) model outputs from the IPSL-CM5A-LR (Dufresne et. al 2013, 

Mignot et al.  2013) Earth System Model (ESM) at a spatial 1°x1° and monthly temporal resolution (ISIMIP 2a 

outputs, https://data.isimip.org/), for the historical period (1982-2005) and RCP 2.6 and 8.5 scenarios (2006-

2100) for the climate change forecast. As target values, we used OI-SST (Banzon et al. 2016, Reynolds et al. 

2007) at 0.25ºx0.25º resolution, monthly averages for the same historical period (1982-2005). ESM modeled 

SST was interpolated to the target resolution and grid of the OI-SST data by bilinear interpolation. 

For each cell of the spatial grid, the empirical cumulative distribution of SST values during the historical period 

was calculated using 141 quantiles (every 0.01 in the interval [0.2, 0.8], and every 0.005 in the [0.0, 0.2[ and 

]0.8, 1.0] intervals to improve sampling in the tails of the distribution). The data were extracted for two domains 

(Figure 3): The ecoregion of the Bay of Biscay and Celtic Sea (20ºW-3ºE, 35ºN-61ºN) and the Northern Peru 

Current ecosystem (93ºW-70ºW, 20ºS-6ºN). The data points corresponding to the Mediterranean Sea were 

removed from the former. A dataset with the matching quantiles for historical and future values and geolocations 

was constructed, including the distance to the coast and the distance to the continental shelf break (200m isobath, 

Figure 3), resulting in a final dataset of approximately one million records for each domain (Table 1, modeling 

dataset). Distance to the shelf break was log-transformed, keeping the sign (i.e. negative values inside the shelf). 

An identical database was constructed for the RCPs forecast data (prediction dataset). A summary of the 

databases is presented in Table 1. 



The full historical dataset (observed and modeled) was split randomly into 24 training and validation datasets, 

where a bigger portion was used for validation (1/24th of the dataset for training and 23/24th for validation), 

ensuring the totality of data was used once for training purposes. These datasets were used for model selection. 

The best models were fitted to the full dataset for a final model selection step.  



 

Figure 2. Schematic view of the approach for the statistical downscaling and bias correction protocol. See text for details. 



Table 1. Summary of datasets used for the two case studies. n: number of data points. SST: sea surface temperature. 

Dataset n (x103) SST (obs, ºC) SST (model, ºC) 
Distance to coast 

(km) 

Distance to Shelf 

Break (km) 

min max Min max Min max min max 

Bay of Biscay and Celtic Sea Ecoregion 

Historical 1014 -0.27 28.35 -1.50 27.72 0 931 -716 987 

RCP 2.6 11359   -0.25 30.63 0 931 -716 987 
RCP 8.5 11359   -1.37 33.53 0 931 -716 987 

RCP 8.5(2090-2100) 100   4.43 31.72 0 931 -716 987 

Northern Peru Current Ecosystem 

Historical 950 13.36 30.97 11.66 30.77 1 1866 -1201 1870 

RCP 2.6 11359   11.92 31.71 1 1866 -1201 1870 

RCP8.5 11359   12.44 34.62 1 1866 -1201 1870 
RCP 8.5 (2090-2100) 100   16.47 33.83 1 1866 -1201 1870 

 

2.2 Statistical models 

Nineteen nested statistical models (Table 2) describing the relationship between the empirical distributions of 

historical modeled and observed SST were constructed using Generalized Additive Models (GAM) as 

implemented in the mgcv 1.8-24 R package (Wood 2017) and Shape Constrained Additive models (SCAM, Pya 

and Wood 2015) as implemented in the scam 1.2-2 R package (Pya 2017), to make use of the monotonicity 

properties of the relationship between quantiles of ESM and target data, and to avoid overfitting. Some models 

included spatial covariates (longitude, latitude and distance to the shelf break). The computational complexity 

of the statistical models selected directly translates into computational costs, but even for the most complex 

model the fitting time is in the order of magnitude of tens of hours on a multicore computer and minutes for the 

simplest models.  

Models are presented in five groups (Table 2): Group 0 does global bias-correction (i.e. constant throughout the 

spatial domain) with and without rescaling of SST. Group 1 does also global bias-correction but with additional 

nonlinear rescaling of SST, allowing for different bias-correction in the distribution tails than in the central 

range of the temperature. Group 2 models perform spatially explicit bias-correction (i.e. bias-correction varies 

in space) using linear relationships. Group 3 models are similar to group 2 models but with the difference of 

more flexible non-linear relationships. Group 4 models present a mix of terms, allowing for linear and non-

linear bias corrections. 

Table 2. Description of the models tested for bias correcting downscaled predictions. Some models were tested with different smoothing 

bases for the univariate and the bivariate splines producing different models for the same model equations. Additional covariates (like 

distance to shelf-break) are included in the “mean” component b(...). The modeled variable (SST here) is represented by x. 

Model Description 

0. Global linear 
0.0 xobs = x + b0 Global mean bias correction (NULL model) 

0.1 xobs = x + b(…) Spatial mean bias correction 

0.2 xobs = a11x + b(…) Global linear correction 
1. Global non-linear 

1.0 

xobs = a11(x) + b(…) 

Global non-linear correction 

1.1 Global monotonic increasing correction 

1.2 Global monotonic increasing and convex correction 

1.3 Global monotonic increasing and concave correction 

2. Spatially-explicit linear correction 

2.0 xobs = a0(lon, lat)x + b(…) Spatially-varying coefficients  

2.1 xobs = a01(lon)x + a02(lat)x + b(…) Additive spatially-varying coefficients 

2.2 xobs = (a11 + a12lon + a13lat)x + b(…)  Additive linear spatial coefficients 

3. Spatially-explicit non-linear correction 
3.0 

xobs = a11(x) + a12(lon, x) + a13(lat, x) + b(…)  

Non-linear correction 

3.1 Monotonic increasing correction 

3.2 Monotonic increasing and convex correction 

3.3 Monotonic increasing and concave correction 

3.4 xobs =  a12(lon, x) + a13(lat, x) + b(…) Monotonic increasing correction spatial-only correction 

4. Spatially-varying mixed 
4.0 xobs = a0(lon, lat)x + a11(x) + a12(lon, x) + a13(lat, x) + b(…)  

4.1 xobs = a0(lon, lat)x + a12(lon, x) + a13(lat, x) + b(…)  
4.2 xobs = a0(lon, lat)x + a11(x) + b(…)  

4.3 xobs = a(lon, lat, x) + b(…)  



 

 

 

 
Figure 3. Case study domains showing the distance to the shelf break (purple within the shelf, cyan outside) for the Northern Peru 

Current Ecosystem (left) and the Ecoregion Bay of Biscay and Celtic Sea (right).  

 

2.3 Model selection 

Model selection was based on the comparison of several indicators of predictive performance (Table 3). The 

performance indicators were grouped into three categories: Future bias indicators (A), residual indicators (B) 

and deviance indicators (C). The category A indicators measure the relative change in bias between the future 

and the historical periods, for the minimum, maximum and the whole dataset. The purpose is to identify large 

deviations in the future predictions, implying a large bias possibly due to overfitting the historical data, which 

is reported as an issue for bias-correction methods (Cannon et al. 2015). The category B indicators measure the 

magnitude, range and asymmetry in the residual distribution for the historical data set; they correspond to the 

more standard test for the performance of regressions. Finally, the category C indicators measure the 

unexplained deviance of the model for the full dataset and some selected subsets (inside the shelf-break, 

minimum and maximum temperature) that normally represents a challenge for statistical downscaling methods 

(Hempel et al. 2013).    

The indicators were calculated for each of the 24 models fitted to each data subset, and the 95%           

percentile was used for a first screening of model performance. After that step, the best models for each case 

study were fitted to the full dataset, and the indicators were calculated again to select the final model (i.e the 

downscaling model). The downscaling model was applied to the raw future SST and historical scenarios to get 

the downscaled and bias-corrected SST.   



Table 3. Indicators used for model selection. 

 Indicator Range Description 

A. FUTURE BIAS INDICATORS 

A1 Relative change in bias range future vs. present 

(minima) 

[-1,+Inf) The range of the future bias is divided by the range of the present 

minus one, for each indicated subset. For visualization purposes, this 

indicator is normalized over [0, 1]  

A2 Relative change in bias range future vs. present (full) [-1,+Inf) 

A3 Relative change in bias range future vs. present 

(maxima) 

[0,+Inf) 

B. RESIDUAL INDICATORS 

B1 Average magnitude of residuals [0,+Inf) Average of the absolute value of all residuals for each tested model. 

B2 Range of the residuals [0,+Inf) Difference between the maximum and the minimum residuals. 

B3 Asymmetry in residual distribution [0,+Inf) Zero is the best possible value, for a symmetric distribution of 

residuals. This indicator detects extrapolation errors in the minimum 
and maximum. For visualization purposes, this indicator is 

normalized over the maximum observed value across models.  

C. DEVIANCE INDICATORS 

C1 1 - Explained Deviance, full dataset  [0,1] Explained deviance proportion  was calculated for each subset using 

the constant bias model (0.0) as null model. One minus the explained 
deviance was used as an indicator to make zero the best possible 

value.   
C2 1 - Explained Deviance, extrapolation      (shelf     ). [0,1] 

C4 1 - Explained Deviance, quantile=0% (minima) [0,1] 

C7 1 - Explained Deviance, quantile=100% (maxima) [0,1] 

 

3. Results 

The indicators calculated during the cross-validation are shown in Figures 4 and 5 for the Bay of Biscay-Celtic 

Sea and the northern Peru Current ecosystem, respectively. The group 0 models did not produce extrapolation 

issues (category A indicators) but performed poorly concerning the distribution of residuals and explained 

deviance (categories B and C indicators). The group 1 models generally outperformed group 0, but in some 

cases (Peru) performed poorly for the explained deviance (category C) of the extremes and produced 

extrapolation problems (category A). The group 2 models performed better than group 1 models, with model      

2.0 being the best of the group. Model 2.0 was the closest to apply a regular point-based bias-correction 

procedure using linear regression but took into account spatial auto-correlation in the slopes of the linear 

predictors, a feature which is needed when working with gridded data. Models 3.1-3.4 produced extrapolation 

issues (A indicators), while performing well in explaining the deviance of the extremes in the Bay of Biscay-

Celtic Sea case but not in the northern Peru Current case. Model 3.0 performed best within the group 3 models 

but showed a different behavior for each case study. Group 4 models showed different behaviors for the two 

case studies, 4.3 showing the worst performance within the group, especially for type A indicators (future 

projections). Model 4.2 performed the best, especially for category C indicators (spatial extrapolation and 

extreme values). Based on these results we can report that i) the results of the indicators varied between case 

studies and ii) that using traditional indicators for statistical model selection only (categories B and C indicators) 

may select models that increase the bias in future projections (as revealed by category A indicators). The latter 

point is particularly important as the objective of the statistical model is not to predict the historical period but 

to produce unbiased downscaled scenarios of the future. 



 

Figure 4. Standardized indicators of model performance for three categories (A, B and C indicators, delimited by dashed lines). Each 

radar plot represents a statistical downscaling model (m0.0 to m4.3) applied to the Bay of Biscay-Celtic Sea case study. The performance 

of a model is inversely proportional to the shaded area. See table 2 for model descriptions and table 3 for indicators.   

 

 

Figure 5. Standardized indicators of model performance for three categories (A, B and C indicators, delimited by dashed lines). Each 

radar plot represents a statistical downscaling model (m0.0 to m4.3) applied to the northern Peru Current case study. The performance 

of a model is inversely proportional to the shaded area. See table 2 for model descriptions and table 3 for indicators. 



 

Figure 6. Indicators of performance for the seven models selected for the final screening for the Bay of Biscay-Celtic Sea (top) and the 

northern Peru Current ecosystem (bottom), using the full dataset. See table 2 for model descriptions and table 3 for indicators. 

For the final comparison, models 0.2, 1.0, 1.3, 2.0, 3.0, 4.0 and 4.2 were used (Figure 6), corresponding to the 

best models of each group for the two case studies. In this final assessment, the best two models according to 

our indicators were models 2.0 and 4.2, for both case studies. For the northern Peru Current case study, the 

results were less clear for the distinction between models 2.0 and 4.2, as model 2.0 performed better for category 

B indicators but worse for category C indicators. 

When predicting models 2.0 and 4.2 for different quantiles (minimum, 5%, 95% and maximum) and the mean 

of the historical period (Figure 7) we observed that model 4.2 performed better within the 5-95% range but the 

direction of the bias changed for the extremes (maximum and minimum), especially for the northern Peru 

Current system, suggesting an overfitting of that model for this case study.  

In Figure 8, the logarithm of the ratio of the absolute value of the residuals after downscaling and bias correction 

between models 4.2 and 2.0 is depicted, showing spatial differences in the prediction skills for the extreme 

values of the SST distribution. In addition, the spatial patterns predicted by these two models were different for 

the minima and the maxima of SST. For example, for the maximum temperature in the Peru case study, model 

4.2 tended to perform better, especially in the coastal and northern areas. However, model 4.2 showed a positive 

bias for the maximum temperature (Figure 7) that may artificially enhance the rise of temperature as shown in 

Figure 9. When aggregating the results over the whole case study domains, no differences were observed 

between model 2.0 and 4.2 for the Bay of Biscay-Celtic Sea case. In contrast, for the northern Peru Current case 

the results showed that model 4.2 produced slightly warmer temperatures for the RCP 2.6 scenario but much 

higher temperatures for the RCP 8.5 scenario, surpassing even the original ESM predictions (Figure 9). 

However, both statistical downscaling models were able to bias-correct the original ESMs outputs as the 

predictions were now inside the original range of SST variability (orange rectangles in Figure 9). These results 

highlight the importance of including the category A indicators for model selection, as they help detect this type 

of issue that compromise the capability of the statistical downscaling to produce plausible future scenarios 

results.  



 

Figure 7. Comparison of absolute bias in the minimum, 5% quantile, mean, 95% quantile and maximum sea surface temperature. Panel A (top) shows 

the results for the Bay of Biscay-Celtic Sea and panel B (bottom) for the northern Peru Current system. In each panel, the top row shows the bias of the 

IPSL-CM5A-LR after a bilinear interpolation and the intermediate and bottom rows the bias after downscaling and bias correction using model m2.0 and 

m4.2, respectively. The columns present the minimum, 5% quantile, mean, 95% quantile and maximum from left to right. 



      

 

Figure 8. Log absolute-bias ratio between models 4.2 (green) and 2.0 (purple) for the Bay of Biscay-Celtic Sea (left) and the northern Peru Current 

system (right). The intensity of the color represents how much better each model performed in that particular region in terms of reducing the bias between 

the downscaled and bias-corrected predictions and the target data.  

 

Figure 9. Projected average sea surface temperature under RCP 2.6 and RCP 8.5 scenarios for the two case studies. The average sea surface temperature 

after downscaling and bias correction (color lines) is compared to the original IPSL-CM5A-LR ESM outputs (black line). The range of observed 

variability is shown by the orange rectangle. In the Bay of Biscay and Celtic Sea model m2.0 and m4.2 results overlap. 



4. Conclusions 

The application of our approach to two different case studies showed that the performance of statistical 

downscaling models is difficult to generalize across regions and it should therefore be evaluated for each case. 

The multi-model comparison is a strength of our approach and additional models could be included in the 

original ensemble of models (e.g., including different spatial covariates). A formal statistical procedure 

including validation and model selection is encouraged to produce outputs downscaling that are reliable for 

regional applications. Another important feature of our approach is the evaluation of not only the capacity of 

the models to preserve temporal patterns (e.g., temporal trends) but also spatial patterns. The latter aspect is 

particularly important when extrapolation to coastal regions that are not covered by the ESMs is needed.  
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