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Abstract: 10 
 11 

Fine particulate matter with a size less than 2.5 µm (PM2.5) is increasing due to economic growth, 12 
air pollution, and forest fires in some states in the United States. Although previous studies have 13 
attempted to retrieve the spatial and temporal behavior of PM2.5 using aerosol remote sensing and 14 
geostatistical estimation methods the coarse resolution and accuracy limit these methods. In this paper 15 
the performance of machine learning models on predicting PM2.5 is assessed with Linear Regression 16 
(LR), Decision Tree (DT), Gradient Boosting Regression (GBR), AdaBoost Regression (ABR), XG 17 
Boost (XGB), k-nearest neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), 18 
and support vector machine (SVM) using PM2.5 station data from 2017-2021. To compare the 19 
accuracy of all the nine machine learning models the coefficient of determination (R2), root mean 20 
square error (RMSE), Nash-Sutcliffe efficiency (NSE), root mean square error ratio (RSR), and 21 
percent bias (PBIAS) were evaluated. Among all nine models the RF and SVM models were the best 22 
for predicting PM2.5 concentrations. Comparison of the PM2.5 performance metrics displayed that the 23 
models had better predictive behavior in the western United States than that in the eastern United 24 
States. 25 

1. Introduction: 26 
 27 

Air pollution has had negative effects on human health and has interfered with social functions; 28 

particles with diameters less than 2.5 𝝁 m (PM2.5) have especially been the primary pollutants in 29 

many cities in the USA. Among air pollutants, PM2.5 is among the most harmful and can easily cross 30 

the human defense barrier, enter the lungs, and cause human disease and even death because of its 31 

small particle size and potential for long-term exposure (Wu et al., 2018; Chen et al., 2019c; Wei et 32 

al., 2019). The PM2.5 observations were from environmental monitoring stations, however, the 33 

quantity of available PM2.5 data presented regional differences due to the uneven station distribution. 34 
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He et al. (2016) conducted research that indicates the PM2.5 pollution index was positively correlated 35 

with the emergency admission rate of female acute myocardial infarction and with the increased 36 

incidence of diabetes and hypertension. According to the latest urban air quality database, 98% of 37 

low and middle income countries with more than 100,000 inhabitants do not meet the World Health 38 

Organization (WHO) air quality guidelines [2]. 39 

Several researchers have used satellite remote sensing data for spatial monitoring coverage in 40 

their studies to estimate PM2.5 concentrations (Fang et al., 2016; Hu et al., 2017; Park et al., 2019). 41 

One way of using remote sensing satellites for estimating PM2.5 levels is through the aerosol optical 42 

depth (AOD) parameter, which refers to the solar radiation attenuation due to the scattering and 43 

absorption characteristics of aerosols within the atmosphere (Hutschison et., 2005; Van Donkelaar et 44 

al., 2010; Soni et al., 2018). Wang and Christoper (2003) was the first estimated PM2.5 using AOD 45 

measurements from Moderate Resolution Imaging Spectrometer (MODIS). Several researchers noted 46 

that satellite AOD as well as monitoring sources and transport of aerosols are key variables in 47 

estimating PM2.5 and air quality (Gupta and Christopher, 2009). Most have used linear regression 48 

models to correlate AOD and PM2.5 (Gupta and Christopher, 2009). Grahremanloo et al., 2021 49 

examined seasonal behavior of PM2.5 over Texas using the Random Forest model. Liu et al. (2005) 50 

studied PM2.5 levels in three different areas such as urban, suburban, and county in the Eastern United 51 

States using multiple linear regression (MLR). They concluded that the model performance may 52 

decrease since the satellite images have a relatively coarse spatial resolution since each pixel 53 

represents a large area on the ground. 54 

The design of a model for time series prediction focuses on the application of algorithms to predict 55 

future events based on past trends. The model captures the variables with certain assumptions and 56 

represents the existing dynamic relations, summarizing them to better understand the process that 57 

produced the past data to better predict the future. Most of the above studies have used linear and 58 
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non-linear regressions to correlate various parameters with PM2.5 concentrations over a particular 59 

region. In our study we focused on the entire United States and predicted PM2.5 concentrations over 60 

various regions using different machine learning models. 61 

 Recently, due to an increase in the application of machine learning models to various fields 62 

in order to increase the accuracy of predictions, machine learning has also been used to predict particle 63 

concentrations (Kuremoto et al., 2014; Ong et al., 2016; Gui et al., 2020). However, the data mining 64 

does not only differ from one study to another but also in terms of classification algorithms and used 65 

features. The regression, boosting models, and deep learning-based methods display remarkable 66 

performance in time-series data processing to make predictions (Hochreiter and Schmidhuber, 1997). 67 

The estimation using traditional statistical methods requires a large amount of historical data to 68 

construct the relationship between explanatory variables and target variables (Breiman, 2001b). Since 69 

machine learning is a very promising tool to forecast pollution, we proposed applying this approach 70 

to predict PM2.5 concentrations in the USA. The model predictions based on ML algorithms were 71 

checked by cross-validation and evaluated using appropriate metrics such as root mean square 72 

(RMSE) and mean absolute error (MAE). 73 

Earlier studies used a limited number of statistical models, but in our study, we used nearly six 74 

machine learning models to find the best accuracy of predictions. In addition to this, our research 75 

paper took a novel approach in PM2.5 concentration research by exploring concentrations over USA 76 

as opposed to China where many existing PM2.5studies have already been conducted. The purpose of 77 

this paper is to present the predictions of PM2.5 over different states over the USA. The data collection 78 

and different machine learning techniques applied in the context of time series predictions are adopted 79 

for the present study as described in Section 2. Results and discussion are given in Section 3 and 80 

finally the overall conclusions are drawn from the present study presented in Section 4. 81 
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2. Datasets: 82 

2.1 Ground PM2.5 Measurements: 83 

Daily PM2.5 observational data was collected from January 2015 to December 2021 from the 84 

openaq air quality database (https://openaq.org/). These datasets are available from nearly 1081 85 

stations around the USA. The PM2.5 concentrations of ground sites were taken as the dependent 86 

variable of the model. In this paper, the daily PM2.5 concentration data of 1081 ground monitoring 87 

stations were sorted in to monthly and seasonal data from January 2015 to December 2021, and the 88 

data integrity exceeded 97%. The datasets were calibrated and quality-controlled according to 89 

national standards. Figure 1 shows the ground-level monitoring site coverage over the United States; 90 

these sites collected 7 years of daily continuous observations. From this figure, we can see that PM2.5 91 

monitoring sites are greater in number in the eastern part than in the western part of USA. We 92 

observed small data gaps and therefore applied linear interpolation for filling the gaps of PM2.5 93 

datasets. However, stations are sparsely located, therefore ground level PM2.5 monitoring sites face 94 

difficulties in meeting the data requirements (Lin et al., 2015). As expected, the PM2.5 concentrations 95 

were much lower at remote sites compared to urban areas, mainly due to the absence of anthropogenic 96 

sources. 97 

This study aims to achieve the best statistical comparison of nine machine learning models: Linear 98 

Regression, K-Nearest Neighbors Regressor, Logistic Regression, Gradient Boosting Regressor, Ada 99 

Boost Regressor, Decision Tree Regressor, XG Boost, Support Vector Regressor, Random Forest, 100 

Support Vector Machine, and LSTM for estimating the PM2.5 concentrations over the specified 101 

period. The datasets are split into 80% and 20% as training and testing datasets, respectively. The 102 

training datasets are used to build the model, and the testing dataset is used to verify the model 103 

performance of the trained model.   104 
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2.2 K Nearest Neighbors (K-NN):  105 

The K-NN model is one of the earliest ML models (reference). The K-NN model categorizes each 106 

unknown instance in the training set by choosing the majority class label among its k nearest 107 

neighbors. Its performance is also crucially dependent on the Euclidean distance metric used to define 108 

the most immediate neighbors. After determining the Euclidean distance between the data, the 109 

database samples are sorted in ascending order from the least distance (maximal similarity) to 110 

maximum distance (minimal similarity) [Wu et al. 2008]. The k nearest distances are looked at, and 111 

the highest occurring class label of these k nearest points to the instance is decided to be the class 112 

label of the previously unknown instance in the training set. Selecting an optimal value of k becomes 113 

challenging since too low of a value for k can result in overfitting while a larger value of k can cause 114 

the opposite to occur. 115 

2.3 Random Forest (RF):  116 

RF is a machine learning algorithm and was proposed by Breiman (2001); it integrates multiple 117 

trees through the idea of ensemble learning, utilizes classification and regression tree (CART) as 118 

learning algorithms of decision trees. The RF is a set of decision trees, where the structure of each 119 

one, and the space of the variables is divided into smaller subspaces so that the data in each region is 120 

as uniform as possible [Hastie et al., 2005 and Breiman, 2001]. It uses the bootstrap resampling 121 

technique to randomly extract k samples (with replacement) from the original training set to generate 122 

new training samples. RF uses multiple base classifiers to obtain higher accuracy classification results 123 

by voting or averaging. RF excels because of its ability to leverage several different independent 124 

decision trees in order to classify better, thereby reducing the error from using a single decision tree 125 

because oftentimes viewing classification in independent directions can lead to lower error than a 126 

single decision tree’s direction. 127 
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2.4 XGBoost:  128 

This is a highly efficient and optimized distributed gradient boosting algorithm. XGBoost 129 

supports a range of different predictive modeling problems such as classification and regression. It is 130 

trained by minimizing the loss of an objective function against a dataset, and the loss function is a 131 

critical hyperparameter which is tied directly to the type of problem being solved. Regular gradient 132 

boosting, stochastic gradient boosting, and regularized gradient boosting are the three main forms of 133 

gradient boosting. For efficiency, the system features include parallelization, distributed computing, 134 

out-of-core computing, cache optimization, and optimization of data structures to achieve the best 135 

global minimum and run time.   136 

2.5 Long Short-Term Memory (LSTM):  137 

LSTM is well suited for prediction based on time-series data, with better performance, to learn 138 

long-term dependency, and it deals with exploding and vanishing gradient problems [Alahi et al., 139 

2016, Kong et al., 2017].  LSTM is superior to traditional ML methods in processing large input data 140 

and is a type of Recurrent Neural Network (RNN) [Rumelhart et al., 1986], that has been proposed 141 

to predict future outputs using past inputs. LSTM is great at processing time-series data because the 142 

PM2.5 concentrations are time-dependent, and it can better predict future air pollution concentrations 143 

by learning features contained in past air pollution concentration time-series data.  144 

2.6 Decision Tree (DT):  145 

Decision Trees are one of the most commonly used machine learning models in classification and 146 

regression problems. To split a node into two or more sub-nodes DT uses mean squared error (MSE). 147 

It is a tree structure with three types of nodes. The root node is the initial node, which may get split 148 

into further nodes of the branched tree that finally leads to a terminal node (leaf node) that represents 149 

the prediction or final outcome of the model.  The interior nodes and branches represent features of 150 
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a data set and decision rules respectively. The final prediction is the average of the value of the 151 

dependent variable in that particular leaf node.  152 

2.7 Gradient Boosting Regression (GBR):  153 

The type of boosting that combines simple models called weak learners into a single composite 154 

model. Gradient boosting involves optimizing the loss function and a weak learner which makes 155 

predictions. Generally, the gradient descent procedure is used to minimize a set of parameters, such 156 

as coefficients in a regression equation or weights in a neural network. After estimating loss or error, 157 

the weights are updated to minimize that error. Gradient Boosting algorithms minimize the bias error 158 

of the model. The Gradient Boosting algorithm predicts the target variable using a regressor and Mean 159 

Square Error (MSE) as the cost function (for regression problems) or predicts the target variable with 160 

a classifier using a Log Loss cost function (for classification problems). 161 

2.8 Support Vector Regression (SVR):  162 

The SVR model is widely applied to time series prediction problems. It is a novel forecasting 163 

approach, which is trained independently based on the same training data with different targets. The 164 

SVR can be used with functions that are linear or non-linear (called kernel functions). The linear 165 

function is used for the linear regression model and evaluates results with metrics such as Root Mean 166 

Square Error (RMSE) and Mean Absolute Error (MAE) to estimate the performance of the model.   167 

2.9 AdaBoost Regressor (ABR):  168 

AdaBoost (Adaptive Boosting) is a popular technique, as it combines multiple weak classifiers to 169 

build one strong classifier. The boosting approach is a class of ensembles of ML algorithms and is 170 

described by Schapire (1990). Generally, the boosting approach requires a large amount of training 171 

data which is not possible for many cases, and one way of mitigating this issue is by using AdaBoost 172 

(Freund and Schapire, 1997). The main difference of AdaBoosting from most of the other boosting 173 

approaches is in computing loss functions using relative error rather than absolute error.  AdaBoost 174 
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regressor fits the data set and adjusts the weights according to the error rate of the current prediction, 175 

and reduces the bias as well as the variance for supervised learning.  176 

2.10 Linear Regression:  177 

Linear Regression is a great statistical tool that achieves to model and predict variables by fitting 178 

the predicted values to the observed values with a straight line or surface. This fitting process is 179 

implemented by reducing the average perpendicular distance from the straight line/surface (which 180 

are the predictions) to the observed values which oftentimes are scattered. The lower this 181 

perpendicular distance, the better the line of best fit; based on this line of best fit’s equation future 182 

values can be predicted. In this case, the line of best fit’s equation uses the PM2.5 values as the 183 

dependent and output variable whereas time is the independent variable. 184 

3.0 Results and Discussion: 185 

Before proceeding to apply machine learning models on the PM2.5 data we will first discuss the 186 

PM2.5 concentrations monthly mean structures, a common method of data exploration to better 187 

understand the data and potentially adjust hyperparameters of the models. Figure 2 shows the USA 188 

monthly anomalies and quantiles for four years using daily PM2.5 values. The monthly anomalies are 189 

in percent form, so we subtracted 100 to set the average value to zero. In addition, we estimated the 190 

anomaly to be positive or negative. Using anomalies we estimated the minimum, maximum values, 191 

the 25%, 75% quantiles, and the interquartile ranges for each month of the entire time period, and the 192 

resultant plot is shown in Figure 2. During 2018, in USA, the highest levels of PM2.5 were observed 193 

in the inland locations and they declined nearly 20% in the year 2019. In the inland areas, PM2.5 194 

concentrations are primarily influenced by the secondary particles’ formation resulting from the 195 

oxidation of gaseous precursors (NOx, SOx,and  NH3) (South Coast Air Quality Management 196 

District, 2017). PM2.5 concentrations show a drastic change before and during pandemic years. Before 197 



 

9 

pandemic years the PM2.5 concentrations are higher in the spring and summer months especially 198 

towards the end of summer (August) and early fall (September) during summer years.  199 

The monthly PM2.5 concentrations are greatest in 2018 when compared to other years. The 200 

positive anomalies are observed on a higher frequency in August 2018 whereas negative anomalies 201 

are observed more in September 2018. This indicates that before COVID-19 the PM2.5 concentrations 202 

were a little higher than in other years throughout the USA.  PM2.5 values were also higher in the 203 

Eastern USA than in Western USA (Figure not shown). The decrease was moderate (in absolute and 204 

relative terms) in urban areas and progressively became lower from the urban to the rural sites. From 205 

our review of recent sources, primary traffic emissions are highest at traffic sites in absolute and 206 

relative terms (Masiol et al., 2015; Khan et al., 2016, Pietrogrande et al., 2016). Before proceeding 207 

with applying machine learning models to the data, a preliminary statistical analysis was performed 208 

for each state’s PM2.5 values and all time series values were freed of trend and outliers. This was done 209 

because otherwise the time-series data values would give rise to several issues during training like 210 

overfitting or significantly decreasing the performance of the model. The seasonal and annual 211 

variations were removed from all states’ time series data points from the entire time period. This 212 

ensured stationarity in the time series data, which is a preprocessing prerequisite before applying 213 

different machine learning algorithms. This is because it is better to observe statistical properties of 214 

a time series which do not change over time, since statistical properties would have to be averaged 215 

for the entire time period, which is not as accurate. 216 

3.1 Evaluation Parameters: 217 

For model evaluation, the errors between the estimated and true values were evaluated using 218 

several evaluation indices (Chadalawada & Babovic 2017; Shahid et al., 2018; Yi et al., 2019). The 219 

statistical metrics selected for comparing the performance of the models and error-values between 220 

computed and observed data are evaluated by Root Mean Square Error (RMSE): square root of the 221 
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mean squared differences between observed and predicted, and suggests the dispersion of the sample. 222 

Smaller RMSE indicates better performance, and as performance decreases, the RMSE increases. 223 

The coefficient of determination (R2) indicates the collinearity (relationship) between the observed 224 

and predicted data. The R2 value ranges from 0 to 1 (Santhi et al., 2001 and Van Liew et al., 2003).   225 

Mean absolute error (MAE): average of the absolute differences between the observed and predicted 226 

values where a small value of MAE indicates better performance.  Mean absolute percentage error 227 

(MAPE): this index indicates the ratio between errors and observations, the lower the MAPE the 228 

higher the accuracy (Chen et al., 2018). Root mean square error ratio (RSR): the ratio of the RMSE 229 

to the standard deviation of measured data (Stajkowski et al., 2020). RSR is classified into four 230 

intervals: very good (0.0 < RSR < 0.50), good (0.50 < RSR < 0.60), acceptable (0.60 < RSR <0.70), 231 

and unacceptable (RSR > 0.70), respectively (Khosravi et al., 2018). Nash-Sutcliffe efficiency (NSE): 232 

is a normalized statistical metric to determine the relative magnitude of the residual variance relative 233 

to the variance or noise (Nash and Sutcliffe 1970). NSE performance ratings are very good (0.75 < 234 

NSE < 1.0), good (0.65 < NSE < 0.75), satisfactory (0.50 < NSE < 0.65), and unsatisfactory (NSE < 235 

0.50). Percent bias (PBIAS): it measures the average percent of the predicted value that is smaller or 236 

larger than the observed value (Malik et al., 2018; Nury et al., 2017). The PBIAS is classified into 237 

four ranges, very good (PBIAS < +10), good (+10 < PBIAS < +15), satisfactory (+15 < PBIAS < 238 

+25), and unsatisfactory (PBIAS > +25). 239 
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where N refers to the number of data points, xoi, xpi are the observed and predicted daily PM2.5 259 

concentrations, respectively.  260 

The nine machine learning models can describe daily variations of observed and estimated values 261 

of PM2.5 concentrations as shown in Figure 3 and Figure 4, in which the blue curve represents the 262 

observed PM2.5 concentrations, while the red curve represents the estimated PM2.5 concentrations. 263 

We generated time series plots for all states but we showed one state from the western side of the 264 

USA: California (Figure 3) and another state from east USA: New York (Figure 4). All nine machine 265 

learning models show that the seasonal variability of PM2.5 concentration is lower in the spring and 266 

summer and higher in autumn and winter, maybe due to atmospheric circulation of autumn and 267 

winter. The PM2.5 concentrations in the autumn and winter are less accurate because air pollution is 268 

more severe than that in spring and summer. The SVM and RF models give better agreement with 269 

observed PM2.5 concentrations. However, the California PM2.5 estimations are less accurate than 270 

those of the New York because pollution is more severe due to forest fires in the summer. Sulfate 271 
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concentrations may reflect regional influences of PM2.5; these concentrations decreased from east to 272 

west but with higher amounts in California (Meng et al. 2018).  273 

 Figures 5 and 6 display California and New York’s scatter plots of the observed vs estimated 274 

daily PM2.5 concentrations during the period of observations using different machine learning models 275 

respectively. The scatter plot of the two variables suggests a positive linear relationship between 276 

them. All points on the scatter plot lie on a straight line; this indicates the differences are zero and 277 

suggest a strong correlation between the observed and estimated PM2.5 concentrations. Tables 1 and 278 

2 indicate the performance and statistical metrics as estimated for New York and California. The 279 

metrics of all models in Table 1 are for New York: Random Forest with R2 = 0.899, MAE = 2.122, 280 

and RMSE = 3.121 has less error than the other models. The next model with the lowest error is 281 

Support Vector Machine with R2 = 0.857, MAE = 2.145, and RMSE = 3.125.  282 

The performance of the models at different states are good at most sites, as 73% of them show an 283 

R2 > 0.62 and 10% show an R2 less than 0.3. Moreover, an average RMSE less than 4.5 Mg/m3 in 284 

70% of the states and more than 5 Mg/m3 in rest of the states demonstrates good performance. PM2.5 285 

estimations are lower and higher than observations with high and low PM2.5 concentration scenarios 286 

respectively, indicating that estimation accuracy will decline in extreme cases in both states. Zhan et 287 

al. (2017) also found similar behavior using PM2.5 concentration in some parts of China. This may be 288 

due to the model’s lack of performanced caused by a smaller amount of training data, especially 289 

during extreme PM2.5 concentrations. Ghahremanloo et al. 2021 observed PM2.5 levels in Texas are 290 

maximal in the summer and are attributed to higher temperatures and humidity that accelerate the 291 

formation of nitrate and sulfate from NO2 and SO2 (Lin et al., 2019). Overall, the performance of RF 292 

is reasonable, with California’s R2, RMSE, and MAE values of 0.77, 3.051 mg/m3, and 2.233 mg/m3, 293 

respectively. New York’s R2, RMSE, and MAE values were 0.899, 3.121 mg/m3, and 2.12 mg/m3, 294 

respectively. Comparing California’s to New York’s results, we observe that the California PM2.5 295 
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concentration values and biases were slightly higher. Overall, the average error values are slightly 296 

lower in the Eastern states than in the Western states. Each state’s R2, RMSE, MAE, and bias values 297 

are estimated for each model and we observed RF and SVM models produce better estimates than 298 

the other models. On average, the R2 of the SVM model is 5% higher than that of the RF model. The 299 

biases are 15% lower in the Eastern states than in the Western states of the USA. The high sulfate 300 

concentrations around Los Angeles and Long Beach may be due to the ship emissions, since these 301 

two areas combined have one-fourth of all container cargo traffic in the Unites States 302 

(http://www.dot.ca.gov) (Vutukuru and Dabdub, 2008). However, the PM2.5 estimations in the 303 

autumn and winter are less accurate because air pollution is more severe than that present in the spring 304 

and summer. Among the nine machine learning models, only the SVM and RF models give desirable 305 

results in the mildest air pollution cases. The LSTM model performs the outperformed among all 306 

models, which can neither reflect the variations of PM2.5 concentrations significantly nor estimate the 307 

PM2.5 concentrations accurately.        308 

 A Taylor diagram can display multiple metrics in a single plot and can be used to summarize 309 

the relative skill with several states’ PM2.5 model outputs. The Taylor diagram characterizes the 310 

statistical relationship between two fields (Taylor, 2001).  In this paper, observed is representing the 311 

values based on observations, and predicted indicates that the values were simulated by a machine 312 

learning model. Figures 7 and 8 illustrate the Random Forest and Support Vector Machine of standard 313 

deviation and correlation of all states of USA. Metrics of RF and SVM were computed at each state, 314 

and a number was assigned to each state considered.  The position of each number appearing on the 315 

plot quantifies how closely model PM2.5 values matches with different states. Consider state 50, for 316 

example and its correlation is about 0.78. The centered standard deviation difference between the 317 

observed and predicted patterns is proportional to the point on the x-axis identified as observed. The 318 

dotted line contours indicate the normalized standard deviation values, and it can be seen that in the 319 
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case of state 50 it is centered at about 1.65.  Predicted patterns that agree well with observed test data 320 

will lie nearest to the observed marked point. The state values lie near or on the observed dotted line, 321 

and it indicates a small predicted pattern difference. Some of the state values are slightly further from 322 

the observed value, it also shows that the predicted values are larger than the observed.  323 

4. Conclusion: 324 

In this paper, we present the prediction of PM2.5 concentrations over USA using various machine 325 

learning algorithms with the goal of improving our understanding of the differences among them. 326 

Machine learning algorithms are new approaches for analyzing large datasets due to the 327 

computational speed and easy implementation for massive data. In this paper we studied and 328 

examined nine machine learning models (Linear Regression, Decision Tree, Gradient Boost, Ada 329 

Boost, XG Boost, K-Nearest Neighbors, LSTM, Random Forest, and SVM) and their performance 330 

in predicting PM2.5 concentrations. 331 

The obtained machine learning-based methods’ accuracies vary in all of USA’s states, but the 332 

performance of RF (California: R2=0.77, NSE = 0.817, PBIAS=7.022, and RSR=0.355; New York: 333 

R2=0.899, NSE=0.811, PBIAS=2.989, and RSR=0.331) and SVM (California: R2=0.71, NSE=0.897, 334 

PBIAS=7.027, and RSR=0.424; New York: R2= 0.857, NSE=0.280, PBIAS=3.011, and RSR=0.338)  335 

were better than the other examined methods. Moreover, it should be noted that the accuracy and 336 

performance of these machine learning methods are not constant in different climates and regions.  337 

Both RF and SVM models’ R2 scores were between 0.71 and 0.899, RMSE scores ranged between 338 

3.05 to 3.714, NSE values ranged between 0.811 to 0.899, PBIAS ranged between 2.989-7.027, and 339 

RSR scores ranged between 0.331-0.424 for California and New York states. These metrics revealed 340 

high model reliability and performed well for both RF and SVM and larger datasets produced better 341 

prediction results.   342 
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Our study can also contribute to limiting human health exposure risks and helping future 343 

epidemiological studies of air pollution. With the improved computational efficiency, machine 344 

learning models improved prediction performance and served as a better scientific tool for decision-345 

makers to make sound PM2.5 control policies. Real-time measurements of the chemical composition 346 

of PM2.5 taken as regulatory air quality measurements are needed in the future. 347 

Several parameters affect PM2.5 concentrations; in the future, it is possible to improve the 348 

performance of our machine learning models with GDP per capita, urbanization data, and other 349 

atmospheric parameters which would be investigated for model development. In the United States 350 

more extensive ground monitoring is needed, as the total number of stations is 1000, suggesting the 351 

network of stations is too sparse for a large nation (See Figure 1). This becomes much more apparent 352 

in some states as also displayed in Figure 1. However, understanding the spatial and temporal 353 

distribution of each region over the United States is helpful, especially over rural areas. Considering 354 

these areas, a larger amount of data for these locations and other ground-based locations would 355 

enhance predicting PM2.5 concentrations. Furthermore, the machine learning models can always be 356 

updated to yield better results as new data becomes available, therefore, the expansion of sources of 357 

data becomes even more important as models can be updated.  358 
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 480 

Figure 1. Locations of PM2.5 monitoring sites over USA 481 
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 482 

Figure 2. Monthly anomalies and quantiles for the observed period (2018-2021) using daily PM2.5 483 

values over United States. 484 
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 495 

 496 

 497 

Figure 3. The comparison of the time series of estimated and observed PM2.5 concentrations over 498 
California using different machine learning models: (a) AdaBoost regressor, (b) Decision Tree 499 
regression, (c) Gradient Boost regression, (d) K-neighbors regression (e) LSTM, (f) Linear 500 
regression, (g) Random Forest, (h) Support Vector regression, and (I) XGBoost. 501 
 502 
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 503 

Figure 4. The comparison of the time series of estimated and observed PM2.5 concentrations over 504 
New York using different machine learning models: (a) AdaBoost regressor, (b) DecisionTree 505 
regression, (c) Gradient Boost regression, (d) Kneighbors regression (e) LSTM, (f) Linear regression, 506 
(g) Random Forest, (h) Support Vector regression, and (I) XGBoost. 507 
 508 
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 510 

Figure 5. Scatter plots of observed and estimated daily PM2.5 concentrations over California using 511 
different machine learning models: (a) AdaBoost regressor, (b)DecisionTree regression, (c) Gradient 512 
Boost regression, (d) Kneighbors regression (e) LSTM, (f) Linear regression, (g) Random Forest, (h) 513 
Support Vector regression, and (I) XGBoost. 514 
 515 
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 516 

Figure 6. Scatter plots of observed and estimated daily PM2.5 concentrations over New York using 517 
different machine learning models: (a) AdaBoost regressor, (b)DecisionTree regression, (c) Gradient 518 
Boost regression, (d) Kneighbors regression (e) LSTM, (f) Linear regression, (g) Random Forest, 519 
(h) Support Vector regression, and (I) XGBoost. 520 
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 529 

Figure 7. Taylor diagram of the Support Vector Machines (SVM) over each state of the United States. 530 
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 538 

 539 

Figure 8. Taylor diagram of the Random Forest (RF) over each state of the United States. 540 

Table 1: Different Model Metrics for New York State 541 

New York 
Model RMSE MAE MAPE R2 NSE NORM PBIAS RSR 
Linear Regression 3.883 2.309 0.285 0.688 0.613 60.156 11.24 0.561 
Decision Tree 5.136 3.109 0.254 0.454 0.533 79.58 13.44 0.691 
Gradient Boost 
Regressor 

3.822 2.394 0.545 0.698 0.683 59.207 8.210 0.546 

AdaBoost Regressor 3.961 2.316 0.188 0.676 0.683 61.369 9.653 0.576 
XG Boost 3.898 2.501 0.202 0.686 0.681 60.393 8.342 0.559 
KNeighbors Regressor 3.919 2.379 0.195 0.683 0.677 60.711 7.515 0.562 
LSTM 7.487 3.359 0.218 0.158 0.455 115.991 6.020 0.812 
Random Forest 3.121 2.122 0.182 0.899 0.811 38.671 2.989 0.331 
SVM 3.125 2.145 0.183 0.857 0.820 39.161 3.011 0.338 

 542 
RMSE = Root mean squared error 543 
MAE = Mean absolute error 544 
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MAPE = Mean absolute percentage error 545 
R2 = The coefficient of determination 546 
NSE = Nash-Sutcliffe efficiency  547 
PBIAS = Percent Bias 548 
RSR = root mean square error ratio 549 
 550 
  551 
Table 2: Different Model Metrics for California State 552 

California 
Model RMSE MAE MAPE R2 NSE NORM PBIAS RSR 
Linear Regression 3.695 2.599 0.326 0.43 0.694 57.243 12.086 0.932 
Decision Tree 5.481 3.743 0.467 0.23 0.576 84.917 19.901 0.732 
Gradient Boost 
Regressor 

4.051 2.736 0.340 0.28 0.461 62.758 16.891 1.017 

AdaBoost Regressor 3.804 2.636 0.342 0.33 0.435 58.938 17.532 0.969 
XG Boost 4.271 2.972 0.372 0.17 0.438 66.178 18.726 1.075 
KNeighbors 
Regressor 

4.394 3.062 0.392 0.22 0.286 68.071 17.076 1.106 

LSTM 5.025 3.252 0.339 0.46 0.309 77.853 18.027 0.618 
Random Forest 3.051 2.233 0.315 0.77 0.817 46.894 7.022 0.355 
SVM 3.714 2.618 0.320 0.71 0.897 47.853 7.027 0.424 

 553 
RMSE = Root mean squared error 554 
MAE = Mean absolute error 555 
MAPE = Mean absolute percentage error 556 
R2 = The coefficient of determination 557 
NSE = Nash-Sutcliffe efficiency  558 
PBIAS = Percent Bias 559 
RSR = root mean square error ratio  560 
 561 


