References
  1. A.P. Gerasev. Emergence of traveling wave endothermic reaction in a catalytic fixed bed under microwave heating. Energy , Volume 119, 2017, Pages 989-995.
  2. C. Liebner, D. Wolf, M. Baerns, M. Kolkowski, and F.J. Keil. A high-speed method for obtaining kinetic data for exothermic or endothermic catalytic reactions under non-isothermal conditions illustrated for the ammonia synthesis. Applied Catalysis A: General , Volume 240, Issues 1-2, 2003, Pages 95-110.
  3. D. Mehanovic, A. Al-Haiek, P. Leclerc, D. Rancourt, L. Fréchette, and M. Picard. Energetic, GHG, and economic analyses of electrified steam methane reforming using conventional reformer tubes. Energy Conversion and Management , Volume 276, 2023, Article Number: 116549.
  4. E. Meloni, M. Martino, and V. Palma. Microwave assisted steam reforming in a high efficiency catalytic reactor. Renewable Energy , Volume 197, 2022, Pages 893-901.
  5. A. Amini, M.H. Sedaghat, S. Jamshidi, A. Shariati, and M.R. Rahimpour. A comprehensive CFD simulation of an industrial-scale side-fired steam methane reformer to enhance hydrogen production. Chemical Engineering and Processing - Process Intensification , Volume 184, 2023, Article Number: 109269.
  6. P.P.S. Quirino, A.F. Amaral, F. Manenti, and K.V. Pontes. Mapping and optimization of an industrial steam methane reformer by the design of experiments (DOE). Chemical Engineering Research and Design , Volume 184, 2022, Pages 349-365.
  7. P.P.S. Quirino, A. Amaral, K.V. Pontes, F. Rossi, and F. Manenti. Impact of kinetic models in the prediction accuracy of an industrial steam methane reforming unit. Computers & Chemical Engineering , Volume 152, 2021, Article Number: 107379.
  8. V. Tacchino, P. Costamagna, S. Rosellini, V. Mantelli, and A. Servida. Multi-scale model of a top-fired steam methane reforming reactor and validation with industrial experimental data. Chemical Engineering Journal , Volume 428, 2022, Article Number: 131492.
  9. R. Roldán. Technical and economic feasibility of adapting an industrial steam reforming unit for production of hydrogen from renewable ethanol. International Journal of Hydrogen Energy , Volume 40, Issue 4, 2015, Pages 2035-2046.
  10. Y. Tavan. An intensified industrial reforming process by change in combustible fuel. Energy Conversion and Management , Volume 88, 2014, Pages 1011-1019.
  11. R. Faure, F. Rossignol, T. Chartier, C. Bonhomme, A. Maître, G. Etchegoyen, P.D. Gallo, and D. Gary. Alumina foam catalyst supports for industrial steam reforming processes. Journal of the European Ceramic Society , Volume 31, Issue 3, 2011, Pages 303-312.
  12. P. Darvishi and F. Zareie-Kordshouli. A rigorous mathematical model for online prediction of tube skin temperature in an industrial top-fired steam methane reformer. Chemical Engineering Research and Design , Volume 126, 2017, Pages 32-44.
  13. A.S. Sundaramoorthy, A.P.A. Natarajan, and S. Sithanandam. Comparative performance analysis of industrial scale catalytic steam reformer with membrane steam reformer. Computer Aided Chemical Engineering , Volume 43, 2018, Pages 699-704.
  14. M.D. Falco, L.D. Paola, and L. Marrelli. Heat transfer and hydrogen permeability in modelling industrial membrane reactors for methane steam reforming. International Journal of Hydrogen Energy , Volume 32, Issue 14, 2007, Pages 2902-2913.
  15. A. Kumar, T.F. Edgar, and M. Baldea. Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field. Computers & Chemical Engineering , Volume 107, 2017, Pages 271-283.
  16. D.A. Latham, K.B. McAuley, B.A. Peppley, and T.M. Raybold. Mathematical modeling of an industrial steam-methane reformer for on-line deployment. Fuel Processing Technology , Volume 92, Issue 8, 2011, Pages 1574-1586.
  17. A. Kumar, M. Baldea, and T.F. Edgar. Real-time optimization of an industrial steam-methane reformer under distributed sensing.Control Engineering Practice , Volume 54, 2016, Pages 140-153.
  18. A.M. Meziou, P.B. Deshpande, and I.M. Alatiqi. Dynamic matrix control of an industrial steam gas reformer. International Journal of Hydrogen Energy , Volume 20, Issue 3, 1995, Pages 187-192.
  19. I.M. Alatiqi and A.M. Meziou. Dynamic simulation and adaptive control of an industrial steam gas reformer. Computers & Chemical Engineering , Volume 15, Issue 3, 1991, Pages 147-155.
  20. J.R. Rostrup-Nielsen and I. Alstrup. Innovation and science in the process industry: Steam reforming and hydrogenolysis. Catalysis Today , Volume 53, Issue 3, 1999, Pages 311-316.
  21. D.L. Trimm. Coke formation and minimisation during steam reforming reactions. Catalysis Today , Volume 37, Issue 3, 1997, Pages 233-238.
  22. D.L. Trimm. Catalysts for the control of coking during steam reforming. Catalysis Today , Volume 49, Issues 1-3, 1999, Pages 3-10.
  23. A. Kumar, M. Baldea, and T.F. Edgar. A physics-based model for industrial steam-methane reformer optimization with non-uniform temperature field. Computers & Chemical Engineering , Volume 105, 2017, Pages 224-236.
  24. V.V. Galvita, G.L. Semin, V.D. Belyaev, V.A. Semikolenov, P. Tsiakaras, and V.A. Sobyanin. Synthesis gas production by steam reforming of ethanol. Applied Catalysis A: General , Volume 220, Issues 1-2, 2001, Pages 123-127.
  25. A. Carrara, A. Perdichizzi, and G. Barigozzi. Simulation of an hydrogen production steam reforming industrial plant for energetic performance prediction. International Journal of Hydrogen Energy , Volume 35, Issue 8, 2010, Pages 3499-3508.
  26. M.D. Falco, P. Nardella, L. Marrelli, L.D. Paola, A. Basile, and F. Gallucci. The effect of heat-flux profile and of other geometric and operating variables in designing industrial membrane methane steam reformers. Chemical Engineering Journal , Volume 138, Issues 1-3, 2008, Pages 442-451.
  27. R. Faure, F. Basile, I. Bersani, T. Chartier, A. Cuni, M. Cornillac, P.D. Gallo, G. Etchegoyen, D. Gary, F. Rossignol, and A. Vaccari. Foam-supported catalysts tailored for industrial steam reforming processes. Studies in Surface Science and Catalysis , Volume 175, 2010, Pages 241-244.
  28. L.M.R. Otal, T.V. García, and M.S. Rubio. A model for catalyst deactivation in industrial catalytic reforming. Studies in Surface Science and Catalysis , Volume 111, 1997, Pages 319-325.
  29. K.T. Kim, D.H. Lee, and S. Kwon. Effects of thermal and chemical surface-flame interaction on flame quenching. Combustion and Flame , Volume 146, Issues 1-2, 2006, Pages 19-28.
  30. T.M. Sloane, and A.Y. Schoene. Computational studies of end-wall flame quenching at low pressure: The effects of heterogeneous radical recombination and crevices. Combustion and Flame , Volume 49, Issues 1-3, 1983, Pages 109-122.
  31. M.R. Patel, J.C. Holste, K.R. Hall, and P.T. Eubank. Thermophysical properties of gaseous carbon dioxide-water mixtures. Fluid Phase Equilibria , Volume 36, 1987, Pages 279-299.
  32. M. Fermeglia and S. Pricl. A novel approach to thermophysical properties prediction for chloro-fluoro-hydrocarbons. Fluid Phase Equilibria , Volume 166, Issue 1, 1999, Pages 21-37.
  33. A.E. Lutz, R.W. Bradshaw, J.O. Keller, and D.E. Witmer. Thermodynamic analysis of hydrogen production by steam reforming.International Journal of Hydrogen Energy , Volume 28, Issue 2, 2003, Pages 159-167.
  34. N. Iwasa, T. Mayanagi, W. Nomura, M. Arai, and N. Takezawa. Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol. Applied Catalysis A: General , Volume 248, Issues 1-2, 2003, Pages 153-160.
  35. P. Pfeifer, K. Schubert, M.A. Liauw, and G. Emig. Electrically heated microreactors for methanol steam reforming. Chemical Engineering Research and Design , Volume 81, Issue 7, 2003, Pages 711-720.
  36. B. Lindström and L.J. Pettersson. Steam reforming of methanol over copper-based monoliths: The effects of zirconia doping. Journal of Power Sources , Volume 106, Issues 1-2, 2002, Pages 264-273.
  37. Q. Ming, T. Healey, L. Allen, and P. Irving. Steam reforming of hydrocarbon fuels. Catalysis Today , Volume 77, Issues 1-2, 2002, Pages 51-64.
  38. P. Marty and D. Grouset. High temperature hybrid steam-reforming for hydrogen generation without catalyst. Journal of Power Sources , Volume 118, Issues 1-2, 2003, Pages 66-70.
  39. N. Steinfeldt, N. Dropka, D. Wolf, and M. Baerns. Application of multichannel microreactors for studying heterogeneous catalysed gas phase reactions. Chemical Engineering Research and Design , Volume 81, Issue 7, 2003, Pages 735-743.
  40. N. Steinfeldt, O.V. Buyevskaya, D. Wolf, and M. Baerns. Comparative studies of the oxidative dehydrogenation of propane in micro-channels reactor module and fixed-bed reactor. Studies in Surface Science and Catalysis , Volume 136, 2001, Pages 185-190.
  41. J. Sehested. Sintering of nickel steam-reforming catalysts.Journal of Catalysis , Volume 217, Issue 2, 2003, Pages 417-426.
  42. M. Levent, D.J. Gunn, and M.A. El-Bousiffi. Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor. International Journal of Hydrogen Energy , Volume 28, Issue 9, 2003, Pages 945-959.
  43. D.G. Löffler, S.D. McDermott, and C.N. Renn. Activity and durability of water-gas shift catalysts used for the steam reforming of methanol.Journal of Power Sources , Volume 114, Issue 1, 2003, Pages 15-20.
  44. E.L.G. Oliveira, C.A. Grande, and A.E. Rodrigues. Methane steam reforming in large pore catalyst. Chemical Engineering Science , Volume 65, Issue 5, 2010, Pages 1539-1550.
  45. V. Dupont, A.B. Ross, E. Knight, I. Hanley, and M.V. Twigg. Production of hydrogen by unmixed steam reforming of methane. Chemical Engineering Science , Volume 63, Issue 11, 2008, Pages 2966-2979.
  46. J. Solsvik, T. Haug-Warberg, and H.A. Jakobsen. Implementation of chemical reaction equilibrium by Gibbs and Helmholtz energies in tubular reactor models: Application to the steam-methane reforming process. Chemical Engineering Science , Volume 140, 2016, Pages 261-278.
  47. X. Fang and D.J. Gunn. Ternary diffusion and flow in steam reforming catalysts. Chemical Engineering Science , Volume 51, Issue 11, 1996, Pages 2673-2679.
  48. G.W. Roberts and H.H. Lamb. The effect of reversibility on the selectivity of parallel reactions in a porous catalyst. Chemical Engineering Science , Volume 51, Issue 3, 1996, Pages 441-448.