References
- A.P. Gerasev. Emergence of traveling wave endothermic reaction in a
catalytic fixed bed under microwave heating. Energy , Volume
119, 2017, Pages 989-995.
- C. Liebner, D. Wolf, M. Baerns, M. Kolkowski, and F.J. Keil. A
high-speed method for obtaining kinetic data for exothermic or
endothermic catalytic reactions under non-isothermal conditions
illustrated for the ammonia synthesis. Applied Catalysis A:
General , Volume 240, Issues 1-2, 2003, Pages 95-110.
- D. Mehanovic, A. Al-Haiek, P. Leclerc, D. Rancourt, L. Fréchette, and
M. Picard. Energetic, GHG, and economic analyses of electrified steam
methane reforming using conventional reformer tubes. Energy
Conversion and Management , Volume 276, 2023, Article Number: 116549.
- E. Meloni, M. Martino, and V. Palma. Microwave assisted steam
reforming in a high efficiency catalytic reactor. Renewable
Energy , Volume 197, 2022, Pages 893-901.
- A. Amini, M.H. Sedaghat, S. Jamshidi, A. Shariati, and M.R. Rahimpour.
A comprehensive CFD simulation of an industrial-scale side-fired steam
methane reformer to enhance hydrogen production. Chemical
Engineering and Processing - Process Intensification , Volume 184,
2023, Article Number: 109269.
- P.P.S. Quirino, A.F. Amaral, F. Manenti, and K.V. Pontes. Mapping and
optimization of an industrial steam methane reformer by the design of
experiments (DOE). Chemical Engineering Research and Design ,
Volume 184, 2022, Pages 349-365.
- P.P.S. Quirino, A. Amaral, K.V. Pontes, F. Rossi, and F. Manenti.
Impact of kinetic models in the prediction accuracy of an industrial
steam methane reforming unit. Computers & Chemical
Engineering , Volume 152, 2021, Article Number: 107379.
- V. Tacchino, P. Costamagna, S. Rosellini, V. Mantelli, and A. Servida.
Multi-scale model of a top-fired steam methane reforming reactor and
validation with industrial experimental data. Chemical
Engineering Journal , Volume 428, 2022, Article Number: 131492.
- R. Roldán. Technical and economic feasibility of adapting an
industrial steam reforming unit for production of hydrogen from
renewable ethanol. International Journal of Hydrogen Energy ,
Volume 40, Issue 4, 2015, Pages 2035-2046.
- Y. Tavan. An intensified industrial reforming process by change in
combustible fuel. Energy Conversion and Management , Volume 88,
2014, Pages 1011-1019.
- R. Faure, F. Rossignol, T. Chartier, C. Bonhomme, A. Maître, G.
Etchegoyen, P.D. Gallo, and D. Gary. Alumina foam catalyst supports
for industrial steam reforming processes. Journal of the
European Ceramic Society , Volume 31, Issue 3, 2011, Pages 303-312.
- P. Darvishi and F. Zareie-Kordshouli. A rigorous mathematical model
for online prediction of tube skin temperature in an industrial
top-fired steam methane reformer. Chemical Engineering Research
and Design , Volume 126, 2017, Pages 32-44.
- A.S. Sundaramoorthy, A.P.A. Natarajan, and S. Sithanandam. Comparative
performance analysis of industrial scale catalytic steam reformer with
membrane steam reformer. Computer Aided Chemical Engineering ,
Volume 43, 2018, Pages 699-704.
- M.D. Falco, L.D. Paola, and L. Marrelli. Heat transfer and hydrogen
permeability in modelling industrial membrane reactors for methane
steam reforming. International Journal of Hydrogen Energy ,
Volume 32, Issue 14, 2007, Pages 2902-2913.
- A. Kumar, T.F. Edgar, and M. Baldea. Multi-resolution model of an
industrial hydrogen plant for plantwide operational optimization with
non-uniform steam-methane reformer temperature field. Computers
& Chemical Engineering , Volume 107, 2017, Pages 271-283.
- D.A. Latham, K.B. McAuley, B.A. Peppley, and T.M. Raybold.
Mathematical modeling of an industrial steam-methane reformer for
on-line deployment. Fuel Processing Technology , Volume 92,
Issue 8, 2011, Pages 1574-1586.
- A. Kumar, M. Baldea, and T.F. Edgar. Real-time optimization of an
industrial steam-methane reformer under distributed sensing.Control Engineering Practice , Volume 54, 2016, Pages 140-153.
- A.M. Meziou, P.B. Deshpande, and I.M. Alatiqi. Dynamic matrix control
of an industrial steam gas reformer. International Journal of
Hydrogen Energy , Volume 20, Issue 3, 1995, Pages 187-192.
- I.M. Alatiqi and A.M. Meziou. Dynamic simulation and adaptive control
of an industrial steam gas reformer. Computers & Chemical
Engineering , Volume 15, Issue 3, 1991, Pages 147-155.
- J.R. Rostrup-Nielsen and I. Alstrup. Innovation and science in the
process industry: Steam reforming and hydrogenolysis. Catalysis
Today , Volume 53, Issue 3, 1999, Pages 311-316.
- D.L. Trimm. Coke formation and minimisation during steam reforming
reactions. Catalysis Today , Volume 37, Issue 3, 1997, Pages
233-238.
- D.L. Trimm. Catalysts for the control of coking during steam
reforming. Catalysis Today , Volume 49, Issues 1-3, 1999, Pages
3-10.
- A. Kumar, M. Baldea, and T.F. Edgar. A physics-based model for
industrial steam-methane reformer optimization with non-uniform
temperature field. Computers & Chemical Engineering , Volume
105, 2017, Pages 224-236.
- V.V. Galvita, G.L. Semin, V.D. Belyaev, V.A. Semikolenov, P.
Tsiakaras, and V.A. Sobyanin. Synthesis gas production by steam
reforming of ethanol. Applied Catalysis A: General , Volume 220,
Issues 1-2, 2001, Pages 123-127.
- A. Carrara, A. Perdichizzi, and G. Barigozzi. Simulation of an
hydrogen production steam reforming industrial plant for energetic
performance prediction. International Journal of Hydrogen
Energy , Volume 35, Issue 8, 2010, Pages 3499-3508.
- M.D. Falco, P. Nardella, L. Marrelli, L.D. Paola, A. Basile, and F.
Gallucci. The effect of heat-flux profile and of other geometric and
operating variables in designing industrial membrane methane steam
reformers. Chemical Engineering Journal , Volume 138, Issues
1-3, 2008, Pages 442-451.
- R. Faure, F. Basile, I. Bersani, T. Chartier, A. Cuni, M. Cornillac,
P.D. Gallo, G. Etchegoyen, D. Gary, F. Rossignol, and A. Vaccari.
Foam-supported catalysts tailored for industrial steam reforming
processes. Studies in Surface Science and Catalysis , Volume
175, 2010, Pages 241-244.
- L.M.R. Otal, T.V. García, and M.S. Rubio. A model for catalyst
deactivation in industrial catalytic reforming. Studies in
Surface Science and Catalysis , Volume 111, 1997, Pages 319-325.
- K.T. Kim, D.H. Lee, and S. Kwon. Effects of thermal and chemical
surface-flame interaction on flame quenching. Combustion and
Flame , Volume 146, Issues 1-2, 2006, Pages 19-28.
- T.M. Sloane, and A.Y. Schoene. Computational studies of end-wall flame
quenching at low pressure: The effects of heterogeneous radical
recombination and crevices. Combustion and Flame , Volume 49,
Issues 1-3, 1983, Pages 109-122.
- M.R. Patel, J.C. Holste, K.R. Hall, and P.T. Eubank. Thermophysical
properties of gaseous carbon dioxide-water mixtures. Fluid Phase
Equilibria , Volume 36, 1987, Pages 279-299.
- M. Fermeglia and S. Pricl. A novel approach to thermophysical
properties prediction for chloro-fluoro-hydrocarbons. Fluid
Phase Equilibria , Volume 166, Issue 1, 1999, Pages 21-37.
- A.E. Lutz, R.W. Bradshaw, J.O. Keller, and D.E. Witmer. Thermodynamic
analysis of hydrogen production by steam reforming.International Journal of Hydrogen Energy , Volume 28, Issue 2,
2003, Pages 159-167.
- N. Iwasa, T. Mayanagi, W. Nomura, M. Arai, and N. Takezawa. Effect of
Zn addition to supported Pd catalysts in the steam reforming of
methanol. Applied Catalysis A: General , Volume 248, Issues 1-2,
2003, Pages 153-160.
- P. Pfeifer, K. Schubert, M.A. Liauw, and G. Emig. Electrically heated
microreactors for methanol steam reforming. Chemical Engineering
Research and Design , Volume 81, Issue 7, 2003, Pages 711-720.
- B. Lindström and L.J. Pettersson. Steam reforming of methanol over
copper-based monoliths: The effects of zirconia doping. Journal
of Power Sources , Volume 106, Issues 1-2, 2002, Pages 264-273.
- Q. Ming, T. Healey, L. Allen, and P. Irving. Steam reforming of
hydrocarbon fuels. Catalysis Today , Volume 77, Issues 1-2,
2002, Pages 51-64.
- P. Marty and D. Grouset. High temperature hybrid steam-reforming for
hydrogen generation without catalyst. Journal of Power Sources ,
Volume 118, Issues 1-2, 2003, Pages 66-70.
- N. Steinfeldt, N. Dropka, D. Wolf, and M. Baerns. Application of
multichannel microreactors for studying heterogeneous catalysed gas
phase reactions. Chemical Engineering Research and Design ,
Volume 81, Issue 7, 2003, Pages 735-743.
- N. Steinfeldt, O.V. Buyevskaya, D. Wolf, and M. Baerns. Comparative
studies of the oxidative dehydrogenation of propane in micro-channels
reactor module and fixed-bed reactor. Studies in Surface Science
and Catalysis , Volume 136, 2001, Pages 185-190.
- J. Sehested. Sintering of nickel steam-reforming catalysts.Journal of Catalysis , Volume 217, Issue 2, 2003, Pages 417-426.
- M. Levent, D.J. Gunn, and M.A. El-Bousiffi. Production of
hydrogen-rich gases from steam reforming of methane in an automatic
catalytic microreactor. International Journal of Hydrogen
Energy , Volume 28, Issue 9, 2003, Pages 945-959.
- D.G. Löffler, S.D. McDermott, and C.N. Renn. Activity and durability
of water-gas shift catalysts used for the steam reforming of methanol.Journal of Power Sources , Volume 114, Issue 1, 2003, Pages
15-20.
- E.L.G. Oliveira, C.A. Grande, and A.E. Rodrigues. Methane steam
reforming in large pore catalyst. Chemical Engineering Science ,
Volume 65, Issue 5, 2010, Pages 1539-1550.
- V. Dupont, A.B. Ross, E. Knight, I. Hanley, and M.V. Twigg. Production
of hydrogen by unmixed steam reforming of methane. Chemical
Engineering Science , Volume 63, Issue 11, 2008, Pages 2966-2979.
- J. Solsvik, T. Haug-Warberg, and H.A. Jakobsen. Implementation of
chemical reaction equilibrium by Gibbs and Helmholtz energies in
tubular reactor models: Application to the steam-methane reforming
process. Chemical Engineering Science , Volume 140, 2016, Pages
261-278.
- X. Fang and D.J. Gunn. Ternary diffusion and flow in steam reforming
catalysts. Chemical Engineering Science , Volume 51, Issue 11,
1996, Pages 2673-2679.
- G.W. Roberts and H.H. Lamb. The effect of reversibility on the
selectivity of parallel reactions in a porous catalyst. Chemical
Engineering Science , Volume 51, Issue 3, 1996, Pages 441-448.