References
  1. H.-K. Lyeo and D.G. Cahill. Thermal conductance of interfaces between highly dissimilar materials. Physical Review B , Volume 73, Issue 14, 2006, Article Number: 144301.
  2. T.S. English, J.C. Duda, J.L. Smoyer, D.A. Jordan, P.M. Norris, and L.V. Zhigilei. Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces. Physical Review B , Volume 85, Issue 3, 2012, Article Number: 035438.
  3. J.Xu, A. Munari, E. Dalton, A. Mathewson, and K.M. Razeeb. Silver nanowire array-polymer composite as thermal interface material.Journal of Applied Physics , Volume 106, Issue 12, 2009, Article Number: 124310.
  4. R.J. Warzoha and B.F. Donovan. High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions. Review of Scientific Instruments , Volume 88, Issue 9, 2017, Article Number: 094901.
  5. D. Shin, S. Choi, S.E. Kim, C. Yun, Y.Y. Tan, and C.S. Lee. Fabrication of multilayer Graphene-coated copper nanoparticles for application as a thermal interface material. Applied Surface Science , Volume 583, 2022, Article Number: 152488.
  6. D. Shia and J. Yang. A Hertzian contact based model to estimate thermal resistance of thermal interface material for high-performance microprocessors. Microelectronics Journal , Volume 112, 2021, Article Number: 105058.
  7. Y. Jin, C. Shao, J. Kieffer, M.L. Falk, and M. Shtein. Spatial nonuniformity in heat transport across hybrid material interfaces.Physical Review B , Volume 90, Issue 5, 2014, Article Number: 054306.
  8. F. Angeles, Q. Sun, V.H. Ortiz, J. Shi, C. Li, and R.B. Wilson. Interfacial thermal transport in spin caloritronic material systems.Physical Review Materials , Volume 5, Issue 11, 2021, Article Number: 114403.
  9. M. Obori, S. Nita, A. Miura, and J. Shiomi. Onsite synthesis of thermally percolated nanocomposite for thermal interface material.Journal of Applied Physics , Volume 119, Issue 5, 2016, Article Number: 055103.
  10. B. Feng, F. Faruque, P. Bao, A.-T. Chien, S. Kumar, and G.P. Peterson. Double-sided tin nanowire arrays for advanced thermal interface materials. Applied Physics Letters , Volume 102, Issue 9, 2013, Article Number: 093105.
  11. D. Jeon, S.H. Kim, W. Choi, and C. Byon. An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials. International Journal of Heat and Mass Transfer , Volume 132, 2019, Pages 944-951.
  12. A.J. McNamara, Y. Joshi, and Z.M. Zhang. Characterization of nanostructured thermal interface materials - A review.International Journal of Thermal Sciences , Volume 62, 2012, Pages 2-11.
  13. J.A. Jaszczak and D. Wolf. Thermoelastic behavior of structurally disordered interface materials: Homogeneous versus inhomogeneous effects. Physical Review B , Volume 46, Issue 4, 1992, Pages 2473-2480.
  14. H. Gades and H.M. Urbassek. Model study of keV-ion mixing of metallic interfaces: Influence of materials properties and deposited energy.Physical Review B , Volume 51, Issue 20, 1995, Pages 14559-14569.
  15. A. Vass-Várnai, Z. Sárkány, and M. Rencz. Characterization method for thermal interface materials imitating an in-situ environment.Microelectronics Journal , Volume 43, Issue 9, 2012, Pages 661-668.
  16. K.M.F. Shahil and A.A. Balandin. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials.Solid State Communications , Volume 152, Issue 15, 2012, Pages 1331-1340.
  17. X. Liu, Y. Zhang, A.M. Cassell, and B.A. Cruden. Implications of catalyst control for carbon nanotube based thermal interface materials. Journal of Applied Physics , Volume 104, Issue 8, 2008, Article Number: 084310.
  18. Y. Ni, H.L. Khanh, Y. Chalopin, J. Bai, P. Lebarny, L. Divay, and S. Volz. Highly efficient thermal glue for carbon nanotubes based on azide polymers. Applied Physics Letters , Volume 100, Issue 19, 2012, Article Number: 193118.
  19. C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, R.W. Knight, and D.K. Harris. Thermal performance of low melting temperature alloys at the interface between dissimilar materials. Applied Thermal Engineering , Volume 99, 2016, Pages 72-79.
  20. C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, J.L. Nguyen, R.W. Knight, and D.K. Harris. Investigation into the application of low melting temperature alloys as wet thermal interface materials.International Journal of Heat and Mass Transfer , Volume 85, 2015, Pages 996-1002.
  21. P.E. Hopkins, T. Beechem, J.C. Duda, K. Hattar, J.F. Ihlefeld, M.A. Rodriguez, and E.S. Piekos. Influence of anisotropy on thermal boundary conductance at solid interfaces. Physical Review B , Volume 84, Issue 12, 2011, Article Number: 125408.
  22. D. Saha, X. Yu, M. Jeong, M. Darwish, J. Weldon, A.J. Gellman, and J.A. Malen. Impact of metal adhesion layer diffusion on thermal interface conductance. Physical Review B , Volume 99, Issue 11, 2019, Article Number: 115418.
  23. A. Hamdan, A. McLanahan, R. Richards, and C. Richards. Characterization of a liquid-metal microdroplet thermal interface material. Experimental Thermal and Fluid Science , Volume 35, Issue 7, 2011, Pages 1250-1254.
  24. M.A. Peacock, C.K. Roy, M.C. Hamilton, R.W. Johnson, R.W. Knight, and D.K. Harris. Characterization of transferred vertically aligned carbon nanotubes arrays as thermal interface materials. International Journal of Heat and Mass Transfer , Volume 97, 2016, Pages 94-100.
  25. R. Kempers, P. Kolodner, A. Lyons, and A.J. Robinson. A high-precision apparatus for the characterization of thermal interface materials.Review of Scientific Instruments , Volume 80, Issue 9, 2009, Article Number: 095111.
  26. K.M. Razeeb and S. Roy. Thermal diffusivity of nonfractal and fractal nickel nanowires. Journal of Applied Physics , Volume 103, Issue 8, 2008, Article Number: 084302.
  27. S. Merabia and K. Termentzidis. Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics. Physical Review B , Volume 86, Issue 9, 2012, Article Number: 094303.
  28. Z. Liang, K. Sasikumar, and P. Keblinski. Thermal transport across a substrate-thin-film interface: Effects of film thickness and surface roughness. Physical Review Letters , Volume 113, Issue 6, 2014, Article Number: 065901.
  29. J. Due and A.J. Robinson. Reliability of thermal interface materials: A review. Applied Thermal Engineering , Volume 50, Issue 1, 2013, Pages 455-463.
  30. N. Bajaj, G. Subbarayan, and S.V. Garimella. Topological design of channels for squeeze flow optimization of thermal interface materials.International Journal of Heat and Mass Transfer , Volume 55, Issues 13-14, 2012, Pages 3560-3575.
  31. M.F. Thompson, X. Wu, D. Huang, Y. Zhang, N.C.A. Seaton, C. Zhang, M.T. Johnson, J.P. Podkaminer, V. Ho, and X. Wang. Direct measurements of thermal transport in glass and ceramic microspheres embedded in an epoxy matrix. Applied Physics Letters , Volume 119, Issue 2, 2021, Article Number: 023904.
  32. J.E. Martin and G. Gulley. Field-structured composites for efficient, directed heat transfer. Journal of Applied Physics , Volume 106, Issue 8, 2009, Article Number: 084301.
  33. C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, R.W. Knight, and D.K. Harris. Accelerated aging and thermal cycling of low melting temperature alloys as wet thermal interface materials.Microelectronics Reliability , Volume 55, Issue 12, Part B, 2015, Pages 2698-2704.
  34. Y. Koutsawa, A. Karatrantos, W. Yu, and D. Ruch. A micromechanics approach for the effective thermal conductivity of composite materials with general linear imperfect interfaces. Composite Structures , Volume 200, 2018, Pages 747-756.
  35. K. Fujiwara and M. Shibahara. Thermal transport mechanism at a solid-liquid interface based on the heat flux detected at a subatomic spatial resolution. Physical Review E , Volume 105, Issue 3, 2022, Article Number: 034803.
  36. G. Varnavides, A.S. Jermyn, P. Anikeeva, and P. Narang. Nonequilibrium phonon transport across nanoscale interfaces. Physical Review B , Volume 100, Issue 11, 2019, Article Number: 115402.
  37. S.H. Taylor and S.V. Garimella. Capacitive sensing of local bond layer thickness and coverage in thermal interface materials.International Journal of Heat and Mass Transfer , Volume 97, 2016, Pages 26-31.
  38. R. Kempers, P. Ahern, A.J. Robinson, and A.M. Lyons. Modeling the compressive deformation of metal micro-textured thermal interface materials using SEM geometry reconstruction. Computers & Structures , Volumes 92-93, 2012, Pages 216-228.
  39. K.J. Solis and J.E. Martin. Field-structured magnetic platelets as a route to improved thermal interface materials. Journal of Applied Physics , Volume 111, Issue 7, 2012, Article Number: 073507.
  40. Z. Liang and M. Hu. Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations. Journal of Applied Physics , Volume 123, Issue 19, 2018, Article Number: 191101.
  41. A. Dinler, R.W. Barber, S.K. Stefanov, and D.R. Emerson. Curvature dependence of heat transfer at a fluid-solid interface. Physical Review E , Volume 98, Issue 3, 2018, Article Number: 033104.
  42. K. Sääskilahti, J. Oksanen, J. Tulkki, and S. Volz. Spectral mapping of heat transfer mechanisms at liquid-solid interfaces. Physical Review E , Volume 93, Issue 5, 2016, Article Number: 052141.
  43. V. Goyal and A.A. Balandin. Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials. Applied Physics Letters , Volume 100, Issue 7, 2012, Article Number: 073113.
  44. T. Yang, J.G. Kang, P.B. Weisensee, B. Kwon, P.V. Braun, N. Miljkovic, and W.P. King. A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy.Applied Physics Letters , Volume 116, Issue 7, 2020, Article Number: 071901.
  45. M. Kumar and G. Natarajan. Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems. Physical Review E , Volume 99, Issue 5, 2019, Article Number: 053304.
  46. H. Masoud and J.P. Rothstein. Diffusive mass transfer from a Janus sphere. Physical Review Fluids , Volume 7, Issue 7, 2022, Article Number: 070501.
  47. V. Varshney, J. Lee, A.K. Roy, and B.L. Farmer. Modeling of interface thermal conductance in longitudinally connected carbon nanotube junctions. Journal of Applied Physics , Volume 109, Issue 8, 2011, Article Number: 084913.
  48. F. Gao, J. Qu, and M. Yao. Interfacial thermal resistance between metallic carbon nanotube and Cu substrate. Journal of Applied Physics , Volume 110, Issue 12, 2011, Article Number: 124314.
  49. A. Sarkar and B. Issac. Geometry optimization of thermal interface material with the help of heat propagation speed subjected to a pulsed heat source. International Journal of Thermal Sciences , Volume 111, 2017, Pages 100-107.
  50. D.D.L. Chung. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon , Volume 50, Issue 9, 2012, Pages 3342-3353.
  51. K. Sääskilahti, J. Oksanen, J. Tulkki, and S. Volz. Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Physical Review B , Volume 90, Issue 13, 2014, Article Number: 134312.
  52. D. Korba and L. Li. Lattice Boltzmann model for conjugate heat transfer across thin walls. Physical Review E , Volume 103, Issue 4, 2021, Article Number: 043304.
  53. M. Goni, M. Patelka, S. Ikeda, T. Hartman, T. Sato, and A.J. Schmidt. A technique to measure the thermal resistance at the interface between a micron size particle and its matrix in composite materials.Journal of Applied Physics , Volume 124, Issue 10, 2018, Article Number: 105303.
  54. I.O. Thomas and G.P. Srivastava. Effect of interface density, quality and period on the lattice thermal conductivity of nanocomposite materials. Journal of Applied Physics , Volume 127, Issue 2, 2020, Article Number: 024304.
  55. Y. Zhang, H. Wang, Z. Wang, and F. Blaabjerg. An empirical model for thermal interface materials based on experimental characterizations under realistic conditions. Microelectronics Reliability , Volumes 88-90, 2018, Pages 806-811.
  56. S.-H. Chung, H. Kim, and S.W. Jeong. Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment. Carbon , Volume 140, 2018, Pages 24-29.
  57. K. Joulain, J. Drevillon, and P. Ben-Abdallah. Noncontact heat transfer between two metamaterials. Physical Review B , Volume 81, Issue 16, 2010, Article Number: 165119.
  58. Y.A. Kosevich, L.G. Potyomina, A.N. Darinskii, and I.A. Strelnikov. Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces.Physical Review B , Volume 97, Issue 9, 2018, Article Number: 094117.
  59. E. Lee and T. Luo. Thermal transport across solid-solid interfaces enhanced by pre-interface isotope-phonon scattering. Applied Physics Letters , Volume 112, Issue 1, 2018, Article Number: 011603.
  60. Y. Jin, A. Yadav, K. Sun, H. Sun, K.P. Pipe, and M. Shtein. Thermal boundary resistance of copper phthalocyanine-metal interface.Applied Physics Letters , Volume 98, Issue 9, 2011, Article Number: 093305.
  61. S.A. Bender and Y. Tserkovnyak. Interfacial spin and heat transfer between metals and magnetic insulators. Physical Review B , Volume 91, Issue 14, 2015, Article Number: 140402(R).
  62. K. Asheichyk, B. Müller, and M. Krüger. Heat radiation and transfer for point particles in arbitrary geometries. Physical Review B , Volume 96, Issue 15, 2017, Article Number: 155402.
  63. T. Beechem, S. Graham, P. Hopkins, and P. Norris. Role of interface disorder on thermal boundary conductance using a virtual crystal approach. Applied Physics Letters , Volume 90, Issue 5, 2007, Article Number: 054104.
  64. B.A. Slovick and S. Krishnamurthy. Thermal insulator transition induced by interface scattering. Applied Physics Letters , Volume 109, Issue 14, 2016, Article Number: 141905.
  65. J.B. Pendry, K. Sasihithlu, and R.V. Craster. Phonon-assisted heat transfer between vacuum-separated surfaces. Physical Review B , Volume 94, Issue 7, 2016, Article Number: 075414.
  66. W.J.M. Kort-Kamp, P.I. Caneda, F.S.S. Rosa, and F.A. Pinheiro. Enhancing near-field heat transfer in composite media: Effects of the percolation transition. Physical Review B , Volume 90, Issue 14, 2014, Article Number: 140202(R).
  67. T. Beechem and P.E. Hopkins. Predictions of thermal boundary conductance for systems of disordered solids and interfaces.Journal of Applied Physics , Volume 106, Issue 12, 2009, Article Number: 124301.
  68. X. Wu and T. Luo. The importance of anharmonicity in thermal transport across solid-solid interfaces. Journal of Applied Physics , Volume 115, Issue 1, 2014, Article Number: 014901.
  69. A.J. McNamara, Y. Joshi, and Z.M. Zhang. Thermal resistance of thermal conductive adhesive anchored carbon nanotubes interface material.International Journal of Thermal Sciences , Volume 96, 2015, Pages 221-226.
  70. N. Bonfoh, C. Dreistadt, and H. Sabar. Micromechanical modeling of the anisotropic thermal conductivity of ellipsoidal inclusion-reinforced composite materials with weakly conducting interfaces.International Journal of Heat and Mass Transfer , Volume 108, Part B, 2017, Pages 1727-1739.
  71. J.P. Gwinn and R.L. Webb. Performance and testing of thermal interface materials. Microelectronics Journal , Volume 34, Issue 3, 2003, Pages 215-222.
  72. R.J. Warzoha, D. Zhang, G. Feng, and A.S. Fleischer. Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon , Volume 61, 2013, Pages 441-457.
  73. M. Ekpu, R. Bhatti, M.I. Okereke, S. Mallik, and K. Otiaba. Fatigue life of lead-free solder thermal interface materials at varying bond line thickness in microelectronics. Microelectronics Reliability , Volume 54, Issue 1, 2014, Pages 239-244.
  74. H. Wang, A.S. Tazebay, G. Yang, H.T. Lin, W. Choi, and C. Yu. Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes. Carbon , Volume 106, 2016, Pages 152-157.
  75. G.D. Mey, J. Pilarski, M. Wójcik, M. Lasota, J. Banaszczyk, B. Vermeersch, and A. Napieralski. Influence of interface materials on the thermal impedance of electronic packages. International Communications in Heat and Mass Transfer , Volume 36, Issue 3, 2009, Pages 210-212.
  76. B. Ramos-Alvarado, D. Brown, X. Chen, B. Feng, and G.P. Peterson. On the assessment of voids in the thermal interface material on the thermal performance of a silicon chip package. Microelectronics Reliability , Volume 53, Issue 12, 2013, Pages 1987-1995.
  77. I. Sevostianov and M. Kachanov. On discontinuities of thermal, electric and diffusion fluxes at interfaces of different materials.International Journal of Engineering Science , Volume 102, 2016, Pages 1-3.
  78. C. Lin and D.D.L. Chung. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon , Volume 47, Issue 1, 2009, Pages 295-305.
  79. D. Marcos-Gómez, J. Ching-Lloyd, M.R. Elizalde, W.J. Clegg, and J.M. Molina-Aldareguia. Predicting the thermal conductivity of composite materials with imperfect interfaces. Composites Science and Technology , Volume 70, Issue 16, 2010, Pages 2276-2283.
  80. Z. Liu and D.D.L. Chung. Calorimetric evaluation of phase change materials for use as thermal interface materials. Thermochimica Acta , Volume 366, Issue 2, 2001, Pages 135-147.
  81. L. Maguire, M. Behnia, and G. Morrison. Systematic evaluation of thermal interface materials-a case study in high power amplifier design. Microelectronics Reliability , Volume 45, Issues 3-4, 2005, Pages 711-725.
  82. D.Y. Tzou. Reflection and refraction of thermal waves from a surface or an interface between dissimilar materials. International Journal of Heat and Mass Transfer , Volume 36, Issue 2, 1993, Pages 401-410.
  83. B. Sponagle and D. Groulx. Measurement of thermal interface conductance at variable clamping pressures using a steady state method. Applied Thermal Engineering , Volume 96, 2016, Pages 671-681.
  84. R.J. Warzoha, L. Boteler, A.N. Smith, E. Getto, and B.F. Donovan. Steady-state measurements of thermal transport across highly conductive interfaces. International Journal of Heat and Mass Transfer , Volume 130, 2019, Pages 874-881.
  85. D.-C. Pham and T.-K. Nguyen. Thermal conductivity in spherical and circular inclusion composites with highly- and lowly-conducting imperfect interfaces. International Journal of Heat and Mass Transfer , Volume 196, 2022, Article Number: 123245.
  86. B. Davier, P. Dollfus, N.D. Le, S. Volz, J. Shiomi, and J. Saint-Martin. Revisiting thermal conductivity and interface conductance at the nanoscale. International Journal of Heat and Mass Transfer , Volume 183, Part A, 2022, Article Number: 122056.
  87. A. Dąbrowski and A. Dziedzic. Stability of low ohmic thick-film resistors under pulsed operation. Microelectronics Reliability , Volume 84, 2018, Pages 95-104.
  88. D.D.L. Chung. Self-monitoring structural materials. Materials Science and Engineering: R: Reports , Volume 22, Issue 2, 1998, Pages 57-78.