References
- H.-K. Lyeo and D.G. Cahill. Thermal conductance of interfaces between
highly dissimilar materials. Physical Review B , Volume 73,
Issue 14, 2006, Article Number: 144301.
- T.S. English, J.C. Duda, J.L. Smoyer, D.A. Jordan, P.M. Norris, and
L.V. Zhigilei. Enhancing and tuning phonon transport at vibrationally
mismatched solid-solid interfaces. Physical Review B , Volume
85, Issue 3, 2012, Article Number: 035438.
- J.Xu, A. Munari, E. Dalton, A. Mathewson, and K.M. Razeeb. Silver
nanowire array-polymer composite as thermal interface material.Journal of Applied Physics , Volume 106, Issue 12, 2009, Article
Number: 124310.
- R.J. Warzoha and B.F. Donovan. High resolution steady-state
measurements of thermal contact resistance across thermal interface
material junctions. Review of Scientific Instruments , Volume
88, Issue 9, 2017, Article Number: 094901.
- D. Shin, S. Choi, S.E. Kim, C. Yun, Y.Y. Tan, and C.S. Lee.
Fabrication of multilayer Graphene-coated copper nanoparticles for
application as a thermal interface material. Applied Surface
Science , Volume 583, 2022, Article Number: 152488.
- D. Shia and J. Yang. A Hertzian contact based model to estimate
thermal resistance of thermal interface material for high-performance
microprocessors. Microelectronics Journal , Volume 112, 2021,
Article Number: 105058.
- Y. Jin, C. Shao, J. Kieffer, M.L. Falk, and M. Shtein. Spatial
nonuniformity in heat transport across hybrid material interfaces.Physical Review B , Volume 90, Issue 5, 2014, Article Number:
054306.
- F. Angeles, Q. Sun, V.H. Ortiz, J. Shi, C. Li, and R.B. Wilson.
Interfacial thermal transport in spin caloritronic material systems.Physical Review Materials , Volume 5, Issue 11, 2021, Article
Number: 114403.
- M. Obori, S. Nita, A. Miura, and J. Shiomi. Onsite synthesis of
thermally percolated nanocomposite for thermal interface material.Journal of Applied Physics , Volume 119, Issue 5, 2016, Article
Number: 055103.
- B. Feng, F. Faruque, P. Bao, A.-T. Chien, S. Kumar, and G.P. Peterson.
Double-sided tin nanowire arrays for advanced thermal interface
materials. Applied Physics Letters , Volume 102, Issue 9, 2013,
Article Number: 093105.
- D. Jeon, S.H. Kim, W. Choi, and C. Byon. An experimental study on the
thermal performance of cellulose-graphene-based thermal interface
materials. International Journal of Heat and Mass Transfer ,
Volume 132, 2019, Pages 944-951.
- A.J. McNamara, Y. Joshi, and Z.M. Zhang. Characterization of
nanostructured thermal interface materials - A review.International Journal of Thermal Sciences , Volume 62, 2012,
Pages 2-11.
- J.A. Jaszczak and D. Wolf. Thermoelastic behavior of structurally
disordered interface materials: Homogeneous versus inhomogeneous
effects. Physical Review B , Volume 46, Issue 4, 1992, Pages
2473-2480.
- H. Gades and H.M. Urbassek. Model study of keV-ion mixing of metallic
interfaces: Influence of materials properties and deposited energy.Physical Review B , Volume 51, Issue 20, 1995, Pages
14559-14569.
- A. Vass-Várnai, Z. Sárkány, and M. Rencz. Characterization method for
thermal interface materials imitating an in-situ environment.Microelectronics Journal , Volume 43, Issue 9, 2012, Pages
661-668.
- K.M.F. Shahil and A.A. Balandin. Thermal properties of graphene and
multilayer graphene: Applications in thermal interface materials.Solid State Communications , Volume 152, Issue 15, 2012, Pages
1331-1340.
- X. Liu, Y. Zhang, A.M. Cassell, and B.A. Cruden. Implications of
catalyst control for carbon nanotube based thermal interface
materials. Journal of Applied Physics , Volume 104, Issue 8,
2008, Article Number: 084310.
- Y. Ni, H.L. Khanh, Y. Chalopin, J. Bai, P. Lebarny, L. Divay, and S.
Volz. Highly efficient thermal glue for carbon nanotubes based on
azide polymers. Applied Physics Letters , Volume 100, Issue 19,
2012, Article Number: 193118.
- C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, R.W. Knight, and
D.K. Harris. Thermal performance of low melting temperature alloys at
the interface between dissimilar materials. Applied Thermal
Engineering , Volume 99, 2016, Pages 72-79.
- C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, J.L. Nguyen, R.W.
Knight, and D.K. Harris. Investigation into the application of low
melting temperature alloys as wet thermal interface materials.International Journal of Heat and Mass Transfer , Volume 85,
2015, Pages 996-1002.
- P.E. Hopkins, T. Beechem, J.C. Duda, K. Hattar, J.F. Ihlefeld, M.A.
Rodriguez, and E.S. Piekos. Influence of anisotropy on thermal
boundary conductance at solid interfaces. Physical Review B ,
Volume 84, Issue 12, 2011, Article Number: 125408.
- D. Saha, X. Yu, M. Jeong, M. Darwish, J. Weldon, A.J. Gellman, and
J.A. Malen. Impact of metal adhesion layer diffusion on thermal
interface conductance. Physical Review B , Volume 99, Issue 11,
2019, Article Number: 115418.
- A. Hamdan, A. McLanahan, R. Richards, and C. Richards.
Characterization of a liquid-metal microdroplet thermal interface
material. Experimental Thermal and Fluid Science , Volume 35,
Issue 7, 2011, Pages 1250-1254.
- M.A. Peacock, C.K. Roy, M.C. Hamilton, R.W. Johnson, R.W. Knight, and
D.K. Harris. Characterization of transferred vertically aligned carbon
nanotubes arrays as thermal interface materials. International
Journal of Heat and Mass Transfer , Volume 97, 2016, Pages 94-100.
- R. Kempers, P. Kolodner, A. Lyons, and A.J. Robinson. A high-precision
apparatus for the characterization of thermal interface materials.Review of Scientific Instruments , Volume 80, Issue 9, 2009,
Article Number: 095111.
- K.M. Razeeb and S. Roy. Thermal diffusivity of nonfractal and fractal
nickel nanowires. Journal of Applied Physics , Volume 103, Issue
8, 2008, Article Number: 084302.
- S. Merabia and K. Termentzidis. Thermal conductance at the interface
between crystals using equilibrium and nonequilibrium molecular
dynamics. Physical Review B , Volume 86, Issue 9, 2012, Article
Number: 094303.
- Z. Liang, K. Sasikumar, and P. Keblinski. Thermal transport across a
substrate-thin-film interface: Effects of film thickness and surface
roughness. Physical Review Letters , Volume 113, Issue 6, 2014,
Article Number: 065901.
- J. Due and A.J. Robinson. Reliability of thermal interface materials:
A review. Applied Thermal Engineering , Volume 50, Issue 1,
2013, Pages 455-463.
- N. Bajaj, G. Subbarayan, and S.V. Garimella. Topological design of
channels for squeeze flow optimization of thermal interface materials.International Journal of Heat and Mass Transfer , Volume 55,
Issues 13-14, 2012, Pages 3560-3575.
- M.F. Thompson, X. Wu, D. Huang, Y. Zhang, N.C.A. Seaton, C. Zhang,
M.T. Johnson, J.P. Podkaminer, V. Ho, and X. Wang. Direct measurements
of thermal transport in glass and ceramic microspheres embedded in an
epoxy matrix. Applied Physics Letters , Volume 119, Issue 2,
2021, Article Number: 023904.
- J.E. Martin and G. Gulley. Field-structured composites for efficient,
directed heat transfer. Journal of Applied Physics , Volume 106,
Issue 8, 2009, Article Number: 084301.
- C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, R.W. Knight, and
D.K. Harris. Accelerated aging and thermal cycling of low melting
temperature alloys as wet thermal interface materials.Microelectronics Reliability , Volume 55, Issue 12, Part B,
2015, Pages 2698-2704.
- Y. Koutsawa, A. Karatrantos, W. Yu, and D. Ruch. A micromechanics
approach for the effective thermal conductivity of composite materials
with general linear imperfect interfaces. Composite Structures ,
Volume 200, 2018, Pages 747-756.
- K. Fujiwara and M. Shibahara. Thermal transport mechanism at a
solid-liquid interface based on the heat flux detected at a subatomic
spatial resolution. Physical Review E , Volume 105, Issue 3,
2022, Article Number: 034803.
- G. Varnavides, A.S. Jermyn, P. Anikeeva, and P. Narang. Nonequilibrium
phonon transport across nanoscale interfaces. Physical Review
B , Volume 100, Issue 11, 2019, Article Number: 115402.
- S.H. Taylor and S.V. Garimella. Capacitive sensing of local bond layer
thickness and coverage in thermal interface materials.International Journal of Heat and Mass Transfer , Volume 97,
2016, Pages 26-31.
- R. Kempers, P. Ahern, A.J. Robinson, and A.M. Lyons. Modeling the
compressive deformation of metal micro-textured thermal interface
materials using SEM geometry reconstruction. Computers &
Structures , Volumes 92-93, 2012, Pages 216-228.
- K.J. Solis and J.E. Martin. Field-structured magnetic platelets as a
route to improved thermal interface materials. Journal of
Applied Physics , Volume 111, Issue 7, 2012, Article Number: 073507.
- Z. Liang and M. Hu. Tutorial: Determination of thermal boundary
resistance by molecular dynamics simulations. Journal of Applied
Physics , Volume 123, Issue 19, 2018, Article Number: 191101.
- A. Dinler, R.W. Barber, S.K. Stefanov, and D.R. Emerson. Curvature
dependence of heat transfer at a fluid-solid interface. Physical
Review E , Volume 98, Issue 3, 2018, Article Number: 033104.
- K. Sääskilahti, J. Oksanen, J. Tulkki, and S. Volz. Spectral mapping
of heat transfer mechanisms at liquid-solid interfaces. Physical
Review E , Volume 93, Issue 5, 2016, Article Number: 052141.
- V. Goyal and A.A. Balandin. Thermal properties of the hybrid
graphene-metal nano-micro-composites: Applications in thermal
interface materials. Applied Physics Letters , Volume 100, Issue
7, 2012, Article Number: 073113.
- T. Yang, J.G. Kang, P.B. Weisensee, B. Kwon, P.V. Braun, N. Miljkovic,
and W.P. King. A composite phase change material thermal buffer based
on porous metal foam and low-melting-temperature metal alloy.Applied Physics Letters , Volume 116, Issue 7, 2020, Article
Number: 071901.
- M. Kumar and G. Natarajan. Diffuse-interface immersed-boundary
framework for conjugate-heat-transfer problems. Physical Review
E , Volume 99, Issue 5, 2019, Article Number: 053304.
- H. Masoud and J.P. Rothstein. Diffusive mass transfer from a Janus
sphere. Physical Review Fluids , Volume 7, Issue 7, 2022,
Article Number: 070501.
- V. Varshney, J. Lee, A.K. Roy, and B.L. Farmer. Modeling of interface
thermal conductance in longitudinally connected carbon nanotube
junctions. Journal of Applied Physics , Volume 109, Issue 8,
2011, Article Number: 084913.
- F. Gao, J. Qu, and M. Yao. Interfacial thermal resistance between
metallic carbon nanotube and Cu substrate. Journal of Applied
Physics , Volume 110, Issue 12, 2011, Article Number: 124314.
- A. Sarkar and B. Issac. Geometry optimization of thermal interface
material with the help of heat propagation speed subjected to a pulsed
heat source. International Journal of Thermal Sciences , Volume
111, 2017, Pages 100-107.
- D.D.L. Chung. Carbon materials for structural self-sensing,
electromagnetic shielding and thermal interfacing. Carbon ,
Volume 50, Issue 9, 2012, Pages 3342-3353.
- K. Sääskilahti, J. Oksanen, J. Tulkki, and S. Volz. Role of anharmonic
phonon scattering in the spectrally decomposed thermal conductance at
planar interfaces. Physical Review B , Volume 90, Issue 13,
2014, Article Number: 134312.
- D. Korba and L. Li. Lattice Boltzmann model for conjugate heat
transfer across thin walls. Physical Review E , Volume 103,
Issue 4, 2021, Article Number: 043304.
- M. Goni, M. Patelka, S. Ikeda, T. Hartman, T. Sato, and A.J. Schmidt.
A technique to measure the thermal resistance at the interface between
a micron size particle and its matrix in composite materials.Journal of Applied Physics , Volume 124, Issue 10, 2018, Article
Number: 105303.
- I.O. Thomas and G.P. Srivastava. Effect of interface density, quality
and period on the lattice thermal conductivity of nanocomposite
materials. Journal of Applied Physics , Volume 127, Issue 2,
2020, Article Number: 024304.
- Y. Zhang, H. Wang, Z. Wang, and F. Blaabjerg. An empirical model for
thermal interface materials based on experimental characterizations
under realistic conditions. Microelectronics Reliability ,
Volumes 88-90, 2018, Pages 806-811.
- S.-H. Chung, H. Kim, and S.W. Jeong. Improved thermal conductivity of
carbon-based thermal interface materials by high-magnetic-field
alignment. Carbon , Volume 140, 2018, Pages 24-29.
- K. Joulain, J. Drevillon, and P. Ben-Abdallah. Noncontact heat
transfer between two metamaterials. Physical Review B , Volume
81, Issue 16, 2010, Article Number: 165119.
- Y.A. Kosevich, L.G. Potyomina, A.N. Darinskii, and I.A. Strelnikov.
Phonon interference control of atomic-scale metamirrors,
meta-absorbers, and heat transfer through crystal interfaces.Physical Review B , Volume 97, Issue 9, 2018, Article Number:
094117.
- E. Lee and T. Luo. Thermal transport across solid-solid interfaces
enhanced by pre-interface isotope-phonon scattering. Applied
Physics Letters , Volume 112, Issue 1, 2018, Article Number: 011603.
- Y. Jin, A. Yadav, K. Sun, H. Sun, K.P. Pipe, and M. Shtein. Thermal
boundary resistance of copper phthalocyanine-metal interface.Applied Physics Letters , Volume 98, Issue 9, 2011, Article
Number: 093305.
- S.A. Bender and Y. Tserkovnyak. Interfacial spin and heat transfer
between metals and magnetic insulators. Physical Review B ,
Volume 91, Issue 14, 2015, Article Number: 140402(R).
- K. Asheichyk, B. Müller, and M. Krüger. Heat radiation and transfer
for point particles in arbitrary geometries. Physical Review B ,
Volume 96, Issue 15, 2017, Article Number: 155402.
- T. Beechem, S. Graham, P. Hopkins, and P. Norris. Role of interface
disorder on thermal boundary conductance using a virtual crystal
approach. Applied Physics Letters , Volume 90, Issue 5, 2007,
Article Number: 054104.
- B.A. Slovick and S. Krishnamurthy. Thermal insulator transition
induced by interface scattering. Applied Physics Letters ,
Volume 109, Issue 14, 2016, Article Number: 141905.
- J.B. Pendry, K. Sasihithlu, and R.V. Craster. Phonon-assisted heat
transfer between vacuum-separated surfaces. Physical Review B ,
Volume 94, Issue 7, 2016, Article Number: 075414.
- W.J.M. Kort-Kamp, P.I. Caneda, F.S.S. Rosa, and F.A. Pinheiro.
Enhancing near-field heat transfer in composite media: Effects of the
percolation transition. Physical Review B , Volume 90, Issue 14,
2014, Article Number: 140202(R).
- T. Beechem and P.E. Hopkins. Predictions of thermal boundary
conductance for systems of disordered solids and interfaces.Journal of Applied Physics , Volume 106, Issue 12, 2009, Article
Number: 124301.
- X. Wu and T. Luo. The importance of anharmonicity in thermal transport
across solid-solid interfaces. Journal of Applied Physics ,
Volume 115, Issue 1, 2014, Article Number: 014901.
- A.J. McNamara, Y. Joshi, and Z.M. Zhang. Thermal resistance of thermal
conductive adhesive anchored carbon nanotubes interface material.International Journal of Thermal Sciences , Volume 96, 2015,
Pages 221-226.
- N. Bonfoh, C. Dreistadt, and H. Sabar. Micromechanical modeling of the
anisotropic thermal conductivity of ellipsoidal inclusion-reinforced
composite materials with weakly conducting interfaces.International Journal of Heat and Mass Transfer , Volume 108,
Part B, 2017, Pages 1727-1739.
- J.P. Gwinn and R.L. Webb. Performance and testing of thermal interface
materials. Microelectronics Journal , Volume 34, Issue 3, 2003,
Pages 215-222.
- R.J. Warzoha, D. Zhang, G. Feng, and A.S. Fleischer. Engineering
interfaces in carbon nanostructured mats for the creation of energy
efficient thermal interface materials. Carbon , Volume 61, 2013,
Pages 441-457.
- M. Ekpu, R. Bhatti, M.I. Okereke, S. Mallik, and K. Otiaba. Fatigue
life of lead-free solder thermal interface materials at varying bond
line thickness in microelectronics. Microelectronics
Reliability , Volume 54, Issue 1, 2014, Pages 239-244.
- H. Wang, A.S. Tazebay, G. Yang, H.T. Lin, W. Choi, and C. Yu. Highly
deformable thermal interface materials enabled by covalently-bonded
carbon nanotubes. Carbon , Volume 106, 2016, Pages 152-157.
- G.D. Mey, J. Pilarski, M. Wójcik, M. Lasota, J. Banaszczyk, B.
Vermeersch, and A. Napieralski. Influence of interface materials on
the thermal impedance of electronic packages. International
Communications in Heat and Mass Transfer , Volume 36, Issue 3, 2009,
Pages 210-212.
- B. Ramos-Alvarado, D. Brown, X. Chen, B. Feng, and G.P. Peterson. On
the assessment of voids in the thermal interface material on the
thermal performance of a silicon chip package. Microelectronics
Reliability , Volume 53, Issue 12, 2013, Pages 1987-1995.
- I. Sevostianov and M. Kachanov. On discontinuities of thermal,
electric and diffusion fluxes at interfaces of different materials.International Journal of Engineering Science , Volume 102, 2016,
Pages 1-3.
- C. Lin and D.D.L. Chung. Graphite nanoplatelet pastes vs. carbon black
pastes as thermal interface materials. Carbon , Volume 47, Issue
1, 2009, Pages 295-305.
- D. Marcos-Gómez, J. Ching-Lloyd, M.R. Elizalde, W.J. Clegg, and J.M.
Molina-Aldareguia. Predicting the thermal conductivity of composite
materials with imperfect interfaces. Composites Science and
Technology , Volume 70, Issue 16, 2010, Pages 2276-2283.
- Z. Liu and D.D.L. Chung. Calorimetric evaluation of phase change
materials for use as thermal interface materials. Thermochimica
Acta , Volume 366, Issue 2, 2001, Pages 135-147.
- L. Maguire, M. Behnia, and G. Morrison. Systematic evaluation of
thermal interface materials-a case study in high power amplifier
design. Microelectronics Reliability , Volume 45, Issues 3-4,
2005, Pages 711-725.
- D.Y. Tzou. Reflection and refraction of thermal waves from a surface
or an interface between dissimilar materials. International
Journal of Heat and Mass Transfer , Volume 36, Issue 2, 1993, Pages
401-410.
- B. Sponagle and D. Groulx. Measurement of thermal interface
conductance at variable clamping pressures using a steady state
method. Applied Thermal Engineering , Volume 96, 2016, Pages
671-681.
- R.J. Warzoha, L. Boteler, A.N. Smith, E. Getto, and B.F. Donovan.
Steady-state measurements of thermal transport across highly
conductive interfaces. International Journal of Heat and Mass
Transfer , Volume 130, 2019, Pages 874-881.
- D.-C. Pham and T.-K. Nguyen. Thermal conductivity in spherical and
circular inclusion composites with highly- and lowly-conducting
imperfect interfaces. International Journal of Heat and Mass
Transfer , Volume 196, 2022, Article Number: 123245.
- B. Davier, P. Dollfus, N.D. Le, S. Volz, J. Shiomi, and J.
Saint-Martin. Revisiting thermal conductivity and interface
conductance at the nanoscale. International Journal of Heat and
Mass Transfer , Volume 183, Part A, 2022, Article Number: 122056.
- A. Dąbrowski and A. Dziedzic. Stability of low ohmic thick-film
resistors under pulsed operation. Microelectronics Reliability ,
Volume 84, 2018, Pages 95-104.
- D.D.L. Chung. Self-monitoring structural materials. Materials
Science and Engineering: R: Reports , Volume 22, Issue 2, 1998, Pages
57-78.