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Abstract17

El Niño Southern Oscillation (ENSO) flavours in the tropical Pacific are studied18

from a regime perspective. Five recurring spatial patterns or regimes characterising the19

diversity of ENSO are established using a clustering approach applied to the HadISST20

sea surface temperature anomalies (SSTA). Two warm (eastern and central El Niño),21

two cold (basin wide and central La Niña) and a neutral reference regimes are found. Sim-22

ulated SSTA by the models from the latest Coupled Model Intercomparison Project (CMIP6)23

are then matched to these reference regimes. This allows for a consistent assessment of24

the skill of the models in reproducing the reference regimes over the historical period and25

the change in these regimes under the high-warming Shared Socio-economic Pathway (SSP5.8.5)26

scenario. Results over the historical period show that models simulate well the reference27

regimes with some discrepancies. Models simulate overly strong and broad ENSO pat-28

terns and have issues in capturing the correct regime seasonality, persistence and tran-29

sition between regimes. Some models also have difficulty simulating the frequency of regimes,30

the eastern El Niño regime in particular. In the future, eastern El Niño and central La31

Niña regimes are expected to be more frequent accompanied with a less frequent neu-32

tral regime. The central Pacific El Niño and La Niña regimes are projected to increase33

in amplitude and variability. Compared to previous studies, our approach gives a com-34

mon characterisation across models and observations of the diversity of the warm and35

cold phases of ENSO at the same time established from observations.36

Plain Language Summary37

A new definition to characterise the diversity of sea surface temperature spatial pat-38

terns or regimes, typical of the El Niño Southern Oscillation (ENSO) and common to39

observation and climate model simulations, is established here. This allows for a con-40

sistent assessment of the models’ skills in reproducing ENSO patterns in the observa-41

tions and their change under the high-warming scenario. Two warm (eastern and cen-42

tral El Niño), two cold (basin wide and central La Niña) and a neutral reference regimes43

are found. Over the observed period, models simulate ENSO spatial patterns quite sim-44

ilar to those obtained from the observations with some discrepancies. Models simulate45

overly strong and broad ENSO patterns and have issues in capturing the correct regime46

seasonality, persistence and transition between regimes. In the future, eastern El Niño47

and central La Niña regimes are expected to be more frequent accompanied with a less48

frequent neutral regime. The central Pacific El Niño and La Niña regimes are projected49

to increase in amplitude and variability. The novelty of our approach resides in a com-50

mon characterisation across models and observations of the diversity of the warm and51

cold phases of ENSO at the same time established from observations.52

1 Introduction53

El Niño-Southern Oscillation (ENSO) is the leading mode of interannual climate54

variability (see, e.g., Rasmusson & Carpenter, 1982; Zhang et al., 1997; X. Chen & Wal-55

lace, 2015, and references therein). ENSO is a true mode of the coupled atmosphere-ocean56

system in the tropical Pacific (see Zebiak and Cane (1987) and the review papers by Neelin57

et al. (1998) and Battisti et al. (2019) and references therein): without the Southern Os-58

cillation, there would be no warm (El Nino event) or cold (La Nina event) phases of ENSO,59

and vice versa. Owing to the slow decay rate of the ENSO mode, the state of ENSO is60

predictable up to a year in advance.61

ENSO causes seasonal temperature and precipitation anomalies on a global scale62

(including the frequency of extreme events such has hurricanes) by way of oceanic and63

atmospheric teleconnections associated with, respectively, changes in the wind stress act-64

ing on the ocean and changes in the location of precipitation in the tropical Pacific, (Trenberth65
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et al., 1998; Davey et al., 2014; X. Chen & Wallace, 2015). As such, ENSO has nearly66

global impacts on agriculture (e.g., Phillips et al., 1998; Naylor et al., 2001; Iizumi et al.,67

2014), fisheries (e.g., Bertrand, 2020) and water resources (e.g., Hamlet & Lettenmaier,68

1999; Poveda et al., 2001; Nicholas & Battisti, 2008). However, the impact of ENSO on69

the climate beyond the tropical Pacific depends greatly on subtle differences in patterns70

of sea surface temperature anomalies associated with each ENSO warm and cold event71

– the so-called different “flavours” of ENSO (K. Takahashi et al., 2011; Thomas et al.,72

2018; Vimont et al., 2022) – that are a result of the stochastic nature of the atmospheric73

forcing that provides the energy for ENSO (Vimont et al., 2003). ENSO also alters the74

global carbon cycle by dominating the year-to-year variability in global atmospheric car-75

bon concentrations (P. J. Rayner et al., 1999). Roughly, land regions emit more CO276

during El Niño and less CO2 during La Niña (Betts et al., 2020). In the ocean, ENSO77

mostly affects the CO2 fluxes in the tropical Pacific, which is the largest carbon outgassing78

system to the atmosphere, but with anomaly signal that is the opposite of the land (Feely79

et al., 2006; T. Takahashi et al., 2009; Vaittinada Ayar et al., 2022).80

ENSO events are diverse in terms of the magnitude, duration, and location of sea81

surface temperature (SST) anomalies (Capotondi et al., 2020). Among the well-known82

flavours of ENSO are warm (El Niño) events that tend to feature maximum warm anoma-83

lies in the far eastern equatorial Pacific and those that tend to have maximum ampli-84

tude in the central equatorial Pacific, and cold (La Niña) events that mostly have max-85

imum amplitude in the central equatorial Pacific. That warm events can be more extreme86

than cold events stems from the non-linear relationship between thermocline displace-87

ments and SST anomalies in the eastern Pacific (Battisti et al., 2019).88

In order to better consider ENSO diversity, K. Takahashi et al. (2011) introduced89

an approach that differentiates between central and eastern Pacific warm anomaly pat-90

terns in observations or models. It is based on the nonlinear relationship between the91

two leading empirical orthogonal functions (EOF) of tropical Pacific SST anomalies. K. Taka-92

hashi et al. rotated the first and the second principal component (PC1 and PC2) axes93

by 45◦ to introduce two indices E and C defined as: E = PC1−PC2√
2

and C = PC1+PC2√
2

.94

They then showed that E and C represent, respectively, eastern and central Pacific warm95

events. E and C indices have been extensively used to study warm events in observa-96

tions and in different generations of numerical climate models (see, Dommenget et al.97

(2013); K. Takahashi et al. (2011) for the Coupled Model Intercomparison Project Phase98

3, CMIP3, Cai et al. (2018); Karamperidou et al. (2017) for CMIP5 and Fredriksen et99

al. (2020) for CMIP6). This approach allows a better characterisation of warm event di-100

versity (Dommenget et al., 2013) and distinguishes climate models according to their abil-101

ity to simulate this EOF1/EOF2 non-linearity (Dommenget et al., 2013; Cai et al., 2018).102

However, the SST patterns associated with EOF1 and EOF2 (from which PC1 and103

PC2 are derived to calculate E and C indices) can differ greatly between observations104

and models and between models (Cai et al., 2018). Indeed, the two model-specific lead-105

ing EOFs of any given model do not necessarily capture the same SST variability as in106

observations, making comparisons difficult. Therefore, in order to consistently evaluate107

the diversity and asymmetry of ENSO events representation across models and obser-108

vations, a reference framework that provides a common definition of ENSO events based109

on spatial SST anomaly patterns has to be established.110

One approach to characterise modes of variability (for different climate variables)111

is through regime analysis which has been used to characterise recurrent spatio-temporal112

structures or regimes (characterising for instance, north Atlantic oscillation seasonal north113

Atlantic atmospheric circulation or rainfall patterns) , in observations (Vautard, 1990;114

Yiou & Nogaj, 2004; Cassou, 2008; Vrac & Yiou, 2010; Vrac et al., 2014; Hertig & Ja-115

cobeit, 2014) and in climate models (Sanchez-Gomez et al., 2009; Fabiano et al., 2021;116

Breton et al., 2022). In this paper, a statistical regime analysis of SST anomalies over117

the tropical Pacific, relying on clustering, is performed to identify recurring spatial pat-118
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terns (or regimes) of SST typical of ENSO. Their frequency of occurrence, persistence119

and transitions are studied in observations and CMIP6 models (Eyring et al., 2016) over120

the historical period (1870-2014). The changes in the regimes under high-warming sce-121

nario are also evaluated.122

The paper is structured as follows. Section 2.1 details the datasets and pre-processing123

requirements for the analysis. Section 2.2 explains the methodology. The results regard-124

ing the reference observation-based ENSO regimes are presented in Section 3.1. Section125

3.2 and 3.3 respectively describe the ability of the models to reproduce reference regimes126

and their future changes. Conclusions are discussed and summarised in Section 4.127

2 Data and Methods128

2.1 Data and Preprocessing129

The analysis is conducted on monthly sea surface temperature (SST) extracted from130

the Met Office Hadley Centre HadISST observation-based gridded analyses from 1870131

to 2014 (N. A. Rayner et al., 2003) at 1◦×1◦ spatial horizontal resolution and from an132

ensemble of opportunity of 16 Earth system model (ESM) simulations from the Coupled133

Model Intercomparison Project 6 (CMIP6, Eyring et al., 2016, see Table 1). In this study,134

HadISST is considered as the reference observational data-set used to define reference135

ENSO regimes for evaluating the simulations. All simulations are regridded onto a reg-136

ular 1◦×1◦ grid using bilinear interpolation provided by climate data operators (CDOs).137

In this study, analyses are conducted over the HadISST reference period 1870–2014 and138

the whole ESM simulation period of 1850-2100, combining historical experiment and the139

high CO2 Shared Socio-economic Pathway scenario (SSP5-8.5, O’Neill et al., 2016).140

Table 1. List of the 16 CMIP6 models used in this study with the horizontal resolution of the

ocean component, variant label, model and data references. Note that most of the models have

irregular grids and the resolution quoted in the table are approximate.

CMIP6 Model Name Horizontal Ocean Resolution Variant Label ESM Reference Data
(lon. by lat. in degree)

ACCESS-ESM1-5 1◦×1◦ r1i1p1f1 Law et al. (2017) Ziehn et al. (2019)
CanESM5 1◦×1◦ r1i1p2f1 Swart et al. (2019a) Swart et al. (2019b)
CESM2 1.125◦×0.53◦ r10i1p1f1 Danabasoglu et al. (2020) Danabasoglu (2019a)
CESM2-WACCM 1.125◦×0.53◦ r1i1p1f1 Liu et al. (2019) Danabasoglu (2019b)
CMCC-ESM2 1◦×1◦ r1i1p2f1 Lovato et al. (2022) Lovato et al. (2021)
CNRM-ESM2-1 .3◦-1◦ r1i1p1f2 Séférian et al. (2019) Seferian (2018)
GFDL-CM4 0.25◦×0.25◦ r1i1p1f1 Held et al. (2019) Guo et al. (2018)
GFDL-ESM4 0.5◦×0.5◦ r1i1p1f1 Dunne et al. (2020) Krasting et al. (2018)
IPSL-CM6A-LR .3◦-1◦ r1i1p1f1 Boucher et al. (2020) Boucher et al. (2018)
MIROC-ES2L 1◦×1◦ r1i1p1f2 Hajima et al. (2020) Hajima et al. (2019)
MPI-ESM1-2-HR 0.4◦×0.4◦ r1i1p1f1 Müller et al. (2018) Jungclaus et al. (2019)
MPI-ESM1-2-LR 1.5◦×1.5◦ r1i1p1f1 Mauritsen et al. (2019) Wieners et al. (2019)
MRI-ESM2-0 1◦×(0.3-0.5)◦ r1i2p1f1 Yukimoto, Kawai, et al. (2019) Yukimoto, Koshiro, et al. (2019)
NorESM2-LM 1◦×1◦ r1i1p1f1 Tjiputra et al. (2020) Seland et al. (2019)
NorESM2-MM 1◦×1◦ r1i1p1f1 Seland et al. (2020) Bentsen et al. (2019)
UKESM1-0-LL 1◦×1◦ r1i1p1f2 Sellar et al. (2019) Tang et al. (2019)

ENSO regimes are usually defined using SST anomalies (SSTA) over the tropical141

Pacific. In our study, anomalies are computed over the Pacific domain between 20◦S-20◦N142

and from 140◦E to the west coast of the Americas from the regridded data (see Figure143

2 for the exact study area).144

Monthly SSTA at each grid-point are computed by separately removing the trend145

of each calendar month time-series using a cubic smoothing spline (implemented by the146

function smooth.spline in R software; R Core Team, 2020) over the period 1870-2014 for147

HadISST and 1850-2100 for the model simulations. For instance, the non-linear trend148

of Januaries at a given grid-point is removed from the respective time-series comprising149
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all January values. The degrees of freedom of the spline is set to 5 for a good compro-150

mise between the smoothness (smoothing parameter above 0.8) and the number of pa-151

rameters (knots) of the spline used to estimate the trend for all tropical Pacific grid-points152

(Chap.10, Hastie & Tibshirani, 1990).153

The Niño 3.4 index is also computed for HadISST and for each model. It corresponds154

to the standardised area-weighted mean SST anomalies over the Niño 3.4 region: 5◦S-155

5◦N × 190◦-240◦E. These anomalies are computed relative to the 1981-2010 climatol-156

ogy. For the CMIP6 models, the SST values are first detrended over the 1850-2100 pe-157

riod using a cubic spline. Then, the Niño 3.4 index for each model is computed relative158

to the respective 1981-2010 climatology.159

A principal component analysis (PCA) is applied to the reference SSTA fields from160

HadISST in order to reduce the dimension of the data while keeping most of the vari-161

ability. SSTA data are weighted by the square root of the cosine of the latitude to give162

equivalent weights to all grid-cells (Vrac et al., 2014). The first empirical orthogonal func-163

tion (EOF) accounts for more than 61% of the total SSTA variance while 11 are needed164

to retain 90%. In this study, the four leading EOFs containing more than 80% of the to-165

tal variance have been kept for clustering. This choice has been made based on the sta-166

bility of the clustering performed on these four PCs, and further presented below.167

This 4-dimensional (4-d) space defined from the four leading EOFs of HadISST SSTA168

(sometimes referred to as the “phase space”) will be used for the HadISST and the ESM169

simulations. All monthly anomalies are projected onto these four EOFs to obtain the170

four leading principal components (PCs) for HadISST and four called “pseudo-PCs” (since171

these are not the actual PCs) for each ESM. Using the same phase space for all mod-172

els allows for a consistent comparison of the regime patterns. Indeed, performing a PCA173

for each model simulation produces model-specific EOFs and constitutes an additional174

factor to take into account in the analysis. For instance, in some cases information con-175

tained in the 4th EOF in HadISST can be contained in the 5th EOF of the model which176

would penalize the model in terms of performance.177

2.2 ENSO Regimes Definition178

Our approach consists of clustering the 4-d time series of PCs, xm, representing179

monthly HadISST SSTA in the phase space to define the observation-based reference ENSO180

regimes that are used as benchmark regimes to evaluate the models. The time series of181

xm is divided into several groups based on the assumption that the probability density182

function (pdf) of the xm can be approximated by a weighted sum of K Gaussian pdfs183

fk (k = 1, · · · ,K) also called Gaussian mixture model (GMM; Pearson (1894); Peel and184

McLachlan (2000)). Each one of these K Gaussians characterises one cluster (or regime)185

Ck. Thus the multivariate pdf f of xm fitted to our data is given by:186

f (x ) =

K∑
k = 1

πk fk(x ; αk ), (1)187

where αk corresponds to the parameters (means µk and covariance matrix Ωk) of fk and188

πk is the mixture ratio also referred to as the prior probability that xm belongs to Ck.189

The parameters αk and πk of the GMM are to be estimated. The estimation of µk, Ωk190

and πk is performed iteratively using the Expectation Maximization (EM, Dempster et191

al., 1977) algorithm by maximizing the likelihood (Fraley & Raftery, 2002). GMM pa-192

rameters are initialized by the result of a hierarchical model-based agglomerative clus-193

tering. Thus, local maxima are avoided when optimising the likelihood function (e.g. Scrucca194

and Raftery (2015)). EM is based on the principle that the πk is calculated when know-195

ing αk and vice-versa, thus optimizing both. To be more specific, after the initialization:196
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1. the Expectation-step (or E-step) estimates the posterior probability τ ik (update197

of πi
k) that the xm belongs to cluster Ck described by distribution fk with the cur-198

rent parameter estimates of αk (at iteration i):199

τ ik(xm) =
πi
k fk (xm , αi

k )∑K
k = 1 π

i
k fk (xm , αi

k )
. (2)200

2. Then, the Maximization-step (or M-step) uses the posterior probabilities to im-201

prove the estimates of GMM parameters (iteration i+ 1):202

πi+1
k =

1

n

n∑
m= 1

τ ik(xm), (3)203

204

µi+1
k =

1

nπi+1
k

n∑
m= 1

xm τ ik(xm), (4)205

206

Ωi+1
k =

1

nπi+1
k

n∑
m= 1

τ ik(xm) (xm − µi+1
k )′ (xm − µi+1

k ), (5)207

where n is the number of grid-points. The algorithm repeats the E- and M-steps208

iteratively until the maximum likelihood is reached (convergence of the log-likelihood209

function) or after a maximum number of iterations.210

Finally, each cluster Ck of xm is defined based on the Gaussian pdfs, according to211

the principle of posterior maximum:212

Ck = {xm ; πk fk (xm ; αk ) ≥ πj fj (xm ; αj ) , ∀ j = 1, . . . K}. (6)213

In other words, a cluster contains every month whose probability of belonging to that214

cluster is maximised. The freedom of EM in the definition of the regimes depends on the215

number K of clusters and on the constraints applied to the covariance matrices (Ωk).216

K is determined by applying the Bayesian Information Criterion (BIC; Schwarz, 1978).217

The BIC is used for model selection and helps to prevent overfitting by introducing penalty218

terms for the complexity of the GMM (i.e., the number of parameters). In our case, min-219

imizing the BIC achieves a good compromise between keeping the model simple and a220

good representation of the data. The BIC is given by:221

BIC (K ) = p log (n ) − 2 log (L ), (7)222

where K is the number of clusters, L the likelihood of the parameterized mixture model,223

p the number of parameters of the GMM to estimate, and n the size of the sample (i.e.,224

total number of months from January 1870 to December 2014, which is 1740 months).225

The clustering described above is performed using the R package ’Mclust’ (Scrucca226

& Raftery, 2015).227

A different approach is used to assign each month in the model data to a specific228

regime. The EM algorithm is not applied, but 4-d representation of monthly SSTA (pseudo-229

PCs from 1850-2100) of each model is associated with the most appropriate HadISST230

regime based on the principle of posterior maximum (see Eq. 6). Thus, the regimes are231

consistently defined for all simulations in the sense that, in the following, ENSO regimes232

in the models actually represent similar type of ENSO events to those determined from233

HadISST SSTA. In addition, the variability in the clustering itself as a possible source234

of noise is ruled out. Such defined regimes are used to compare the regime patterns and235

their temporal properties across different model simulations within a common reference236

framework. In practice, the common reference is ensured by computing τ ik from Eq. 2237

using the GMM parameters estimated from HadISST (hence the common framework)238

but using pseudo-PCs from each model.239
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3 Results240

3.1 Reference HadISST ENSO Regimes241

The EM algorithm has been run to define the optimal number K of ENSO regimes242

that best describes SSTA spanned by the four leading PCs. From testing K ranging from243

2 to 16, the BIC optimisation provides K = 5 as the best number of ENSO regimes. To244

test the robustness of the number of regimes selected by the BIC, a bootstrap-like pro-245

cedure has been implemented. The EM algorithm has been applied 250 times to a sub-246

sample of the total set containing 75% of the data randomly selected (i.e. without re-247

placement) and the BIC has been computed for each K from 2 to 10 for each sub-sample.248

BIC values are presented as violin plots in Figure 1. It confirms the choice of K = 5 regimes249

since in the clustering of the 250 sub-samples, K=5 comes out as the optimal number250

of clusters 61.2% of the time.251

2 3 4 5 6 7 8 9 10

−40770

−40670

−40570

−40470

−40370

−40270

Number of clusters

K3 = 1.6%
K4 = 9.2%

K5 = 61.2%
K6 = 21.2%

K7 = 6.4%
K8 = 0.4%

BIC

Figure 1. Violin plots represent BIC values as a function of K obtained by applying the EM

algorithm 250 times to sub-samples of the total set containing 75% of the data randomly se-

lected. Yellow boxes indicate BIC inter-quartile range and the median is indicated by white dots.

The BIC is computed for each K from 2 to 10 for each sub-sample. The ratio (in %) of how often

a given value of K is selected as optimal is also given in the bottom.

The sensitivity of the clustering results to the number of PCs has been tested (not252

shown). Results from the bootstrap-like procedure produce unclear results on the op-253

timal number of clusters and yield a higher optimal number of clusters, some of which254

are not well liked to known ENSO phases.255

Figure 2 a) represents the average HadISST pattern of the five reference regimes256

determined with the EM algorithm. Two La Niña regimes (basin-wide La Niña BW-LN,257

central La Niña C-LN), two El Niño regime (central El Niño C-EN, eastern El Niño E-258

EN) and one Neutral regime are obtained. BW-LN is the most frequent (17.5%) La Niña259

configuration showing strong negative SSTA covering a large portion of the tropical Pa-260

cific. C-LN shows negative anomalies more circumscribed to the equatorial area with pos-261

itive anomalies in the southeastern part of the domain. Both La Niña regimes have sim-262

ilar ranges of intensity with similar average Niño 3.4 indices (see Fig. 2 b). C-EN is the263

most frequent El Niño regime with strongest positive SSTA close to the equator. E-EN264

is the most intense regime with large positive anomalies in the eastern Pacific. Similar265

results are obtained from the clustering obtained over a shorter period (1950-2014) and266

from JRA-55 reanalyses over the 1958-2019 period (see supplementary Figure S1; Kobayashi267

et al. (2015) and Harada et al. (2016)).268
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Figure 2. a) Maps of the five ENSO regimes in observations defined by EM. Colours corre-

spond to average SSTA within a regime in ◦C. The frequency (in %) of occurrence of each regime

is given in the bottom left corner of each panel. The blue contour in the Neutral panel indicates

the area used to perform the clustering. b) Monthly Niño 3.4 index time series (solid line with

red or blue shading when Niño 3.4 is positive or negative). The coloured dots show the assigned

regime for each month with the vertical position indicating the average Niño 3.4 value of that

cluster (given at the bottom, in ◦C). c) Boxplots showing the distributions of the four standard-

ised PCs within each regime. Boxes indicate inter-quartile range, whiskers indicate 1.5 times the

inter-quartile range from the box and the dots are the values beyond that range and the middle

bar the median of the PCs over the 1870-2014 historical period.

The time series of the Niño 3.4 index and the cluster assigned to each month are269

shown in Fig. 2 b), which depicts that El Niño and La Niña events are well captured by270

the cluster index. For example, the cluster E-EN corresponds to the strong El Niño events271
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(e.g., 1877-78,1972-73, 1982-83, 1997-98, K. Takahashi et al., 2011; Ren et al., 2018). Cen-272

tral Pacific El Niño events (1986-87, 1991-92, 1994-1995, 2002-03, 2004-05, and 2009-10)273

are consistent with cluster C-EN. Similarly, the BW-LN regime contains strong La Niña274

events (e.g., 1954-56, 1973-74, 1975-76, 1988-89, 1998-2000, 2007-08, Ren et al., 2018,275

and references therein). C-LN either corresponds to moderate La Niñas, a regime that276

is in transition from an extreme El Niño (in 1983 and 1998) to an extreme La Niña.277

To identify which of the four leading PCs are the most important for each regime,278

boxplots of the PC distribution for each shown are represented in Fig. 2 c). The warm279

ENSO patterns are mainly determined by PC1 and PC2 with PC1 dominating for C-280

EN. Although cold patterns are partly explained by PC1 and PC2, PC3 and PC4 are281

indispensable for capturing them. In particular, these latter PCs are needed to differ-282

entiate BW-LN from the C-LN regimes.283

In the next section, consistency in the pseudo-PC weighting across nearly all the284

models and observations is shown, especially for the two La Niña patterns and the C-285

EN pattern (see supplementary Figure S2). This indicates that models are able to sim-286

ulate regime patterns that are similar to those in the observations, and that by project-287

ing model data onto the observed EOFs, temporal information (about e.g., pattern fre-288

quencies and probabilities of transition) can be extracted from the models and compared289

to those in observations. This also advocates for our approach instead of using the data-290

set specific EOFs.291

3.2 Model Evaluation over 1870-2014292

ENSO regimes from CMIP6 models are evaluated relative to the reference regimes293

(HadISST) in terms of spatial patterns, frequency of occurrence of each ENSO regime,294

the average persistence within each regime (defined as average duration in months a model295

remains in each regime from the moment that model enters it), and the transition prob-296

ability from one regime to another.297

First, the ability of each model to reproduce the reference patterns is assessed by298

associating pseudo-PCs from the models with the most appropriate reference regime. Sup-299

plementary Figure S3 shows spatial patterns of the ENSO regimes obtained for CMIP6300

models and HadISST over the historical period. Interestingly, every model is able to re-301

produce patterns resembling the reference regimes in terms of spatial distribution and302

intensity of SSTA. In particular, the asymmetry and the diversity of ENSO event spa-303

tial patterns in the reference regimes are well reproduced in the CMIP6 models.304

However, there are some notable differences: the extrema in SSTA regimes are usu-305

ally more intense and spatially broader. (BW-LN, C-EN and E-EN) in the models than306

in the observations. The extrema of the E-EN regime in the models are not located as307

far east as in the E-EN regime in HadISST. SSTA patterns are also zonally more extended308

in the models compared to the patterns in the observations and extend too far west (all309

except the neutral regime). Figure 3 presents the Taylor diagram for the average SSTA310

of each ENSO regime in the 1870-2014 historical period. Taylor diagrams are used to311

evaluate the agreement between average simulated and reference regime patterns. They312

summarise three statistics comparing simulated grid point ‘centred’ values (‘centred’ means313

that the spatial average is subtracted from to each grid-point value) to a reference value314

(represented by the red diamonds and lines): 1) the Pearson correlation coefficient mea-315

suring the ‘similarity’ between pairs of centred simulated and reference values is given316

by the azimuthal position; 2) the centred root mean square error (CRMSE) between the317

mean centred values of the observations and the simulation is given by the green curves;318

3) the standard deviation of simulated and observed pattern values are proportional to319

the radial distance from the origin (for more details, see Taylor, 2001). Therefore the closer320

a simulation marker is to the reference one (red diamond), the better is the model.321
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Figure 3. Taylor diagrams for each of the regime patterns from each CMIP6 model and ob-

servations (HadISST) over the 1870-2014 period. Each coloured marker refers to one climate

model. Red diamonds and red curves indicate the spatial standard deviation of the clusters

obtained from the observations.

For each regime, all models show similar spatial patterns as HadISST (spatial cor-322

relation typically between 0.8 to 0.9) but with amplitudes that vary greatly across mod-323

els. Note that the E-EN regime shows greater differences between models and observa-324

tions, and accordingly, has a larger CRMSE. Models are then ranked based on their statis-325

tic performance depicted in the Taylor diagrams. The models are first ranked accord-326

ing each regime and all ranks are then added (the smaller the sum, the better the model)327

to obtain the rank reported in the first column of Table 2. UKESM1-0-LL, GFDL-CM4,328

GFDL-ESM4, MPI-ESM1-2-LR and IPSL-CM6A-LR are the top five ESMs for the spa-329

tial representation of ENSO.330
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Figure 4. (Bottom) Barplots of each ENSO regime frequency for all the models and HadISST

(observations) over the 1870-2014 period. (Top) The boxplots above indicate the Niño 3.4 index

distribution for each model and regime.
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The frequency of occurrence of each ENSO pattern over the historical period is shown331

in Figure 4. These vary from one model to another but they roughly agree with the regime332

frequency in the observations. In particular, the warm E-EN (resp. cold C-LN) regime333

occurring less frequently than the C-EN (resp. the BW-LN) regimes, is well represented334

in the models. However, a few models too infrequently simulate the E-EN pattern (CanESM5,335

and MPI models), or produce too evenly distributed regime frequencies (NorESM2-MM).336

In order to rank the models, the absolute value of relative frequency bias (in %) is com-337

puted for each regime (see supplementary Fig. S4 for actual and absolute bias). Rela-338

tive frequency biases are larger for C-LN and E-EN, which is expected given their lower339

occurrence frequency. The frequency bias for each pattern is then combined to produce340

the “average frequency bias” metric reported in column 2 of Table 2 alongside their cor-341

responding ranks. IPSL-CM6A-LR, GFDL-CM4, MPI-ESM1-2-LR, GFDL-ESM4, and342

ACCESS-ESM1-5 are the top five ESMs for the frequency representation of ENSO regimes.343
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Figure 5. Monthly occurrence ratio (%) for all regimes and all the models and HadISST over

the 1870-2014 period.

ENSO events generally peak during boreal winter. Figure 5 depicts the monthly344

ratio (in %) of how each regime is distributed throughout the year. For the reference regimes,345

the Neutral pattern occurs more often outside the winter months while C-EN ad C-LN346

show higher frequencies during the winter. In contrast, BW-LN and E-EN seem to be347

quite evenly distributed throughout the year. In the models, the seasonality is generally348

consistent with HadISST for the Neutral regime only. The other regimes do not show349
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a consistent seasonal cycle in the models. This is consistent with previous studies show-350

ing the inability of CMIP6 (and also CMIP3 and CMIP5) models to correctly simulate351

ENSO peaking in winter (see, H.-C. Chen & Jin, 2021, and references therein). The cor-352

responding Taylor diagram is given in Fig. S5 of the supplementary material. Correla-353

tion does not exceed 0.6 for any model meaning that the seasonal variation of pattern354

occurrences is not well represented in the models. This can be explained by the regime355

sequences in the models being different from the ones in the reference data-set. Sequences356

of regime occurrence are evaluated by the average persistence and transitions.357

The average persistences of the reference ENSO regimes are 4.3, 3.3, 6.6, 5 and 4.3358

months for, respectively the BW-LN, C-LN, Neutral, C-EN and E-EN regimes. Supple-359

mentary Fig. S4 gives the persistence bias in the models. Models are in general over-estimating360

the persistence in the BW-LN (up to 3.5 months) and C-EN regimes (up to 2 months)361

and under-estimating the persistence in the Neutral regime (up to 2 months). Persistences362

of E-EN and C-LN regimes, which have lower occurrence frequencies, can be either over-363

or under-estimated. Consensus between models for these regimes persistence is more dif-364

ficult to reach given their lower frequency. Similar to the frequency, the absolute per-365

sistence bias is computed (see Fig. S4) for each model and the average is reported with366

their rank in column 2 of Table 2. The top five models are MIROC-ES2L, CMCC-ESM2,367

MRI-ESM2-0, MPI-ESM1-2-HR and GFDL-CM4.368

Figure 6a) shows the month-to-month transition diagram from one reference ENSO369

regime to another. The probability of remaining in any given regime ranges from 70 to370

88%, which is higher than any other transition. The second most favoured transition for371

BW-LN, C-LN and C-EN is towards the Neutral regime (resp. at 11, 20 and 17%). For372

the E-EN regime, the second transition is towards C-EN (18%) and there is no direct373

transition towards the Neutral regime. Direct transitions from either La Niña regime to374

C-EN and between La Niña regimes are rare. The extreme E-EN sometimes transitions375

directly to the C-LN regime. Interestingly, this happened after the very strong El Niño376

events of 1982-83 and 1997-98.377
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Figure 6. a) Transition diagram from one regime to another obtained for HadISST; values are

the transition probability (in %). b) The Taylor diagram evaluating the regime transition proba-

bilities in the CMIP6 models compared to the regime transition probabilities in the observations.

Transition probability matrices for each model and for observations are given in378

supplementary Figure S6. The Taylor diagram in Fig. 6b compares the ability of the mod-379

els to reproduce the transitions of the reference regimes. The poorest performing mod-380
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els tend to underestimate the persistence of E-EN and transition too frequently from E-381

EN to C-EN (lower right corner of the matrices in Fig. S6), mostly due to the low fre-382

quency of occurrence of the E-EN regime. Models are ranked according to their tran-383

sition behaviour based on the Taylor diagram in column 4 of Table 2. The top five mod-384

els are MRI-ESM2-0, UKESM1-0-LL, CESM2, CMCC-ESM2 and GFDL-CM4.385

Table 2. Model rank for each of four metrics based on model bias (given in parenthesis) or

Taylor diagram. The top five models according each metric are bolded. The overall rank is calcu-

lated by adding the rank according each metric (given in parenthesis in column 5). The top five

models according to the overall rank are highlighted in grey.
Spatial pattern Average frequency Average persistence Transition Overall

absolute relative bias (%) absolute bias (month) probability rank (total)

ACCESS-ESM1-5 12 5 (32.9%) 11 (1.31) 13 12 (41)
CanESM5 13 6 (33.1%) 14 (1.41) 16 16 (49)
CESM2 6 13 (85.0%) 8 (1.13) 3 5 (30)
CESM2-WACCM 10 12 (84.2%) 16 (1.78) 7 13 (45)
CMCC-ESM2 16 10 (52.7%) 2 (0.84) 4 6 (32)
CNRM-ESM2-1 9 8 (44.5%) 7 (1.05) 10 8 (34)
GFDL-CM4 2 2 (22.8%) 5 (1.02) 5 1 (14)
GFDL-ESM4 3 4 (31.8%) 15 (1.45) 14 11 (36)
IPSL-CM6A-LR 5 1 (19.5%) 12 (1.36) 11 4 (29)
MIROC-ES2L 14 14 (131.7%) 1 (0.76) 6 9 (35)
MPI-ESM1-2-HR 7 9 (46.7%) 4 (0.98) 15 9 (35)
MPI-ESM1-2-LR 4 3 (30.3%) 13 (1.37) 12 6 (32)
MRI-ESM2-0 8 11 (53.4%) 3 (0.85) 1 3 (23)
NorESM2-LM 15 15 (132.7%) 9 (1.17) 9 15 (48)
NorESM2-MM 11 16 (145.5%) 10 (1.31) 8 13(45)
UKESM1-0-LL 1 7 (42.8%) 6 (1.03) 2 2 (16)

3.3 Future Changes386

The changes in the regime frequencies under a high-warming future scenario are387

analysed. As described in section 2.2, the frequency of the model regimes is obtained by388

matching the pseudo-PC of each model to the most appropriate reference regime. Thus,389

changes in regime frequency in the models are not artefacts of potential changes in the390

spatial patterns of regimes with global warming. Figure 7 shows the ENSO regime fre-391

quency over the 1965-2014 historical and 2051-2100 future periods.392
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Figure 7. Regime frequencies over the 1965-2014 historical (blue) and the 2051-2100 future

(yellow) periods. Grey shading designates the models with lower regime frequency in the future

compared to historical period. The number of models with lower, equal and higher occurrence in

the future is given in blue, grey and yellow, respectively, for each regime.

The most consistent result is the projected decrease in the BW-LN regime (15 out393

of 16 models). This decrease is not a mere consequence of the warming since the SSTA394

–13–



manuscript submitted to Earth’s Future

computation has removed the spatial warming trend signals (see section 2.1). In contrast,395

the other La Niña regime (C-LN) is expected to occur more frequently in the future for396

12 out of 16 models. Similarly, E-EN frequency is also expected to increase in the fu-397

ture for the majority (12) of the models. For the C-EN and Neutral regimes, there is no398

clear consensus, respectively, 10 and 9 models out of 16 projecting increased frequency399

in the future.400

Another way to investigate regime frequency days is through continuous long-term401

trends in both HadISST and CMIP6 model simulations (respectively over the 1870-2014402

and 1850-2100 periods). The linear trends are estimated from the 30-year running mean403

of the regime frequency time series (see supplementary Figure S7). Figure 8 presents the404

sign of significant linear trends of ENSO regime frequencies. A trend is considered sig-405

nificant at the 95% confidence level (α = 0.05) based on a t-test on the null hypothe-406

sis that there is no trend (slope is equal to 0, estimated with lm function; R Core Team,407

2020). This trend analysis shows that the frequencies of E-EN and C-LN regimes are pro-408

jected to increase significantly in 13 and 15 models, respectively, by the end of the 21st
409

century. This is consistent with their higher occurrences in the future period shown in410

Fig. 7 and the historical trends of the reference regimes (Figure S7). The Neutral regime411

frequencies shows a significant decreasing trend in 11 models and in observations while412

BW-LN is projected to significantly decrease in only in 50% of the models. Finally, no413

consensus is reached for C-EN. Same trends are obtained using the non-parametric trend414

test (e.g., the Theil-Sen test, not shown).415

AC
C

ES
S−

ES
M

1−
5

C
an

ES
M

5
C

ES
M

2
C

ES
M

2−
W

AC
C

M
C

M
C

C
−E

SM
2

C
N

R
M

−E
SM

2−
1

G
FD

L−
C

M
4

G
FD

L−
ES

M
4

IP
SL

−C
M

6A
−L

R
M

IR
O

C
−E

S2
L

M
PI

−E
SM

1−
2−

H
R

M
PI

−E
SM

1−
2−

LR
M

R
I−

ES
M

2−
0

N
or

ES
M

2−
LM

N
or

ES
M

2−
M

M
U

KE
SM

1−
0−

LL

O
BS

C
M

IP
6 

m
ea

n

BW−LN

Neutral

E−EN

C−LN

C−EN

pos neg non−sign

Figure 8. ENSO regime frequency trends over 1850-2100 for CMIP6 models and 1870-2014 of

the observations. Significant positive (negative) trends are given in red (blue) and non significant

trends are given in grey. The CMIP6 ensemble mean trends are also given.

Figure 9 shows the median and the standard deviation of the Niño 3.4 index, within416

each cluster, for the reference and model regimes over the 1965-2014 historical and the417

2051-2100 future periods. The C-EN and C-LN clusters are associated with more intense418

SSTA in the future for the 13 models with a larger median Niño 3.4 index. For BW-LN419

and E-EN, the results are mixed with, respectively, 9 and 8 of the models projecting more420

intense patterns. In terms of variability, the C-LN, Neutral and C-EN regimes are ex-421

pected to show increased variability with, respectively, 12, 15 and 15 with higher intra-422

regime Niño 3.4 standard deviation in the future. Similar to the median, only 9 mod-423

els project an increase in Niño 3.4 variability for the BW-LN and E-EN regimes.424
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Figure 9. Median a) and standard deviation b) of Niño 3.4 for each regime over the 1965-

2014 historical (blue) and the 2051-2100 future (yellow) periods. Grey shading designates the

models with smaller median and standard deviation in the future compared to the historical pe-

riod. The number of models with smaller, equal and larger Niño 3.4 statistics in the future are

given in blue, grey and yellow, respectively, for each regime. The Neutral panel is greyed out for

the median because it is not meaningful and hence is not considered.

4 Conclusions and Discussions425

ENSO diversity is studied using sea surface temperature anomaly data from a HadISST426

reference dataset and 16 CMIP6 climate models to characterize historical (1870-2014)427

and future (to the end of 21st century) ENSO patterns. A clustering approach has been428

used to perform the analysis, allowing new insight into the ENSO diversity.429

4.1 Regime Definition430

ENSO events are diverse in terms of the magnitude, duration, and location of the431

SST anomalies (Capotondi et al., 2020; Cai et al., 2021). For example, strong El Niño432

events with maximum warm anomalies located in the eastern Pacific region are less fre-433

quent and more intense (larger SSTA) than strong La Niña which have maximum cold434

anomalies. Warm anomalies concentrated in the central Pacific tend to be associated with435

moderate El Niño events. This diversity has been studied using combinations of indices436

defined by SSTA averaged over specific regimes (e.g., Niño 3.4) and those defined by EOF437

analysis pf the SSTA (Trenberth & Stepaniak, 2001; Larkin & Harrison, 2005; Ashok et438

al., 2007; K. Takahashi et al., 2011). Applying such approaches to models is, however,439

problematic given know biases in their representation of spatial patterns and EOF-partitioning440

of the tropical Pacific variability (Battisti et al., 2019).441

In this study, the GMM-based clustering approach has been used to define ENSO442

regimes. The more commonly used k-means approach (see, Fabiano et al., 2021, and the443

references therein) can be seen as a particular case of GMM where each month is assigned444
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to one (and only one) of the K components and covariance matrices are forced to be di-445

agonal, equal and with very small variances (see section 16.1 of Press et al., 2007, for more446

details). In GMM, the assignment to the K components is probabilistic (see, Eq. 2 and447

6), and there are fewer restrictions on the covariance matrices (see Eq. 5). Our choice448

of GMM over k-means is motivated by two factors:449

1. The number of clusters in GMM is objectively defined by the BIC, hence there450

is no need for a priori knowledge about the clusters themselves.451

2. More flexibility in the covariance matrices in the GMM using the EM algorithm452

allows for very different shape and size of cluster which is required given the di-453

versity of ENSO. These clusters are better able to represent the diversity of ENSO,454

including extreme or rare events. Using k-means with all equal shaped clusters tends455

to generate equal size clusters.456

Thus, the diversity of ENSO event is well captured by our GMM-based clusters in457

the observations (see Fig. 2). From this method each monthly SSTA pattern is classi-458

fied into one of five possible regimes, including two El Niño regimes (a strong Eastern459

Pacific one, E-EN and a more frequent moderate central Pacific one, C-EN); two La Niña460

regimes (a more frequent long lasting La Niña covering almost the whole Pacific domain,461

BW-LN, that includes the strongest La Niña events and a central La Niña, C-LN) and462

finally a Neutral pattern regrouping light to very tenuous SSTA.463

As seen in section 3.1, between warm ENSO patterns, E-EN is mainly determined464

by PC1 and PC2 while PC1 dominating for C-EN. Although cold patterns are partly465

explained by PC1 and PC2, PC3 and PC4 are indispensable to determine them, and in466

particular, to differentiate BW-LN from the C-LN regimes. K. Takahashi et al. (2011)467

found that warm events that peak in the eastern Pacific are well described by the dif-468

ference in the first two EOFs (i.e., by PC1*E1 - PC2*E2) while those for central Pacific469

warm events could be described by the sum of the first EOFs (i.e., PC*E1 + PC2*E2).470

This is consistent with our result except in our case we found that PC2 does not con-471

tribute to discriminate central warm events. One of the added-values of our approach472

is the use of four EOFs allows a more comprehensive characterisation. In particular, it473

allows to characterise both warm and cold ENSO regimes and the transitions between474

them suggesting that the PCs describe evolution rather than different types of events475

In addition, this study focuses on retrieving the observed SSTA pattern in the mod-476

els by matching models data to the reference regimes. Our definition of the model regime477

allows for a direct comparison between SSTA pattern from the CMIP6 models and those478

from the HadISST reference data.479

4.2 Reference and Modelled Historical ENSO Regimes480

ENSO-induced SST anomaly patterns in HadISST over 1870-2014 are quite well481

represented in the models. However, there are some discrepancies between the observed482

and simulated regimes:483

1. models generally show broader and more intense ENSO patterns that extend fur-484

ther west;485

2. a few models too infrequently simulate the extreme E-EN pattern (CanESM5, and486

MPI models), or produce too evenly distributed regime frequencies (e.g. CESM2487

and NorEMS2 and MIROC-ES2L models);488

3. seasonal distributions of El Niño and La Niña regimes are not well represented in489

the models;490

4. persistence of C-EN and BW-LN regimes are overestimated while the persistence491

in the Neutral regime is underestimated in the models;492

–16–



manuscript submitted to Earth’s Future

5. overall transitions between the reference and models regimes are similar except493

for the models with too infrequency E-EN events.494

Compared to conventional ENSO indices or the two leading EOFs approach, our495

four-dimensional (4 EOFs) clusters not only capture essential features of the SSTA spa-496

tial patterns along the equator (Central or Eastern) but also the meridional features. These497

patterns provide valuable information about ENSO evolution, particularly, the zonal and498

meridional span of the SSTA and the zonal motion along the equator reflecting the in-499

trinsic dynamic processes of ENSO. Our GMM-based clustering approach has the ad-500

vantage of showing the transitions among regimes of the ENSO associated SSTA pat-501

tern as well as its magnitude. The characterisation of ENSO dynamic simulated in CMIP6502

models by matching model data to the reference ENSO clusters allows to evaluate the503

quality of the models in simulating ENSO and their ability to produce the associated SSTA504

reference patterns. In addition, in previous ENSO studies, only the properties of one phase505

(El Niño or La Niña) with filtered data (often seasonally) are analysed (see Cai et al.,506

2021, and the references therein). The method developed in this study allows to study507

the ENSO in the models continuously without filtering the data (PCA put aside).508

This method also may provide some potential for ENSO forecast from SST fore-509

cast. In particular, pseudo-PCs can be computed from SSTA forecasts and Eq. 2 can then510

be used to forecast the most probable ENSO regime that will develop (in particular, the511

type of El Niño or La Niña).512

Last but not least, future studies should further investigate local implications of513

the different regimes, by defining regimes accounting for local-scale meteorological pat-514

terns (e.g., precipitation, wind speed) and large-scale patterns (e.g., Vrac & Yiou, 2010).515

Understanding the effects of ENSO changes locally is important to anticipate future changes516

in weather conditions and the consequences for nature and society.517

4.3 ENSO Regime Changes in the Future518

Under a high warming scenario, the ENSO regimes are expected to change as fol-519

lows:520

1. The more extreme La Niña (BW-LN) regime is in general projected to become less521

frequent but there is no consensus in terms of changes in magnitude and variabil-522

ity;523

2. There is a strong consensus among the models that the central, moderate La Niña524

(C-LN) regime will become more frequent (significantly), intense and variable;525

3. The Neutral regime will become significantly less frequent and more variable in526

the future;527

4. There is no consensus for the moderate El Niño (C-EN) in terms of frequency, but528

it is projected to become more intense and variable by the majority of the mod-529

els;530

5. Similarly the strong El Nino (E-EN) regime is projected to become significantly531

more frequent but there is no consensus in terms of changes in magnitude and vari-532

ability.533

Given the diversity of ENSO-related SSTA principal modes of variability in the mod-534

els (typically located in central or eastern Pacific), the use of model-specific indices (cf.535

E and C definition in the introduction) has typically been favoured to reach a better agree-536

ment among the models regarding the assessment of ENSO changes (e.g, Cai et al., 2018).537

However, using model-specific indices presumes that the simulated spatial ENSO pat-538

terns across the different models are similar (i.e., according to those indices) while it is539

not the case in reality. The methodology developed in this study is able to capture ro-540

bust trends of the different regimes based on a common definition of SSTA patterns. In541
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addition to providing information on which types of ENSO events are expected to be-542

come more or less likely in the future, the conclusions are more robust compared to pre-543

vious studies in the sense that eastern or central patterns in the models are actually lo-544

cated in the same circumscribed area in all models. Another advantage of our approach545

is the ability to analyse changes in the magnitude and variability using well known Niño546

indices (Niño 3.4 index here) and not only in model-specific variability indices as pre-547

viously done. In particular, it is possible to study ENSO features within each regime and548

state how their magnitude and variability will change in the future.549
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