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Abstract 13 
Many regions across the globe broke their surface temperature records in recent years, further 14 

sparking concerns about the impending arrival of “tipping points” later in the 21st century. This 15 
study analyzes observed global surface temperature trends in three target latitudinal regions: the 16 
Arctic Circle, the Tropics, and the Antarctic Circle. We show that global warming is accelerating 17 
unevenly across the planet, with the Arctic warming at approximately three times the average rate 18 
of our world. We further analyzed the reliability of latitude-dependent surface temperature 19 
simulations from a suite of Coupled Model Intercomparison Project Phase 6 models and their 20 
multi-model mean. We found that GISS-E2-1-G and FGOALS-g3 were the best-performing 21 
models based on their statistical abilities to reproduce observational, latitude-dependent data. 22 
Surface temperatures were projected from ensemble simulations of the Shared Socioeconomic 23 
Pathway 2-4.5 (SSP2-4.5).  We estimate when the climate will warm by 1.5, 2.0, and 2.5 ℃ relative 24 
to the preindustrial period, globally and regionally. GISS-E2-1-G projects that global surface 25 
temperature anomalies would reach 1.5, 2.0, and 2.5 ℃ in 2024 (±1.34), 2039 (±2.83), and 2057 26 
(±5.03) respectively, while FGOALS-g3 predicts these “tipping points” would arrive in 2024 27 
(±2.50), 2054 (±7.90), and 2087 (±10.55) respectively. Our results reaffirm a dramatic, upward 28 
trend in projected climate warming acceleration, with upward concavity in 21st century projections 29 
of the Arctic, which could lead to catastrophic consequences across the Earth. Further studies are 30 
necessary to determine the most efficient solutions to reduce global warming acceleration and 31 
maintain a low SSP, both globally and regionally. 32 

1 Introduction 33 
In 2022, crippling heat waves swept across the globe, taking a dramatic and deadly turn as they 34 

killed thousands and gave rise to devasting continent-wide wildfires (Gillespie et al., 2022; 35 
Mustafa, 2022; Reese, 2022). At least 90 people were killed in India and Pakistan alone due to a 36 
record-shattering heat wave in late March that soon led to one of the hottest March-April periods 37 
in South Asian history, and temperatures in Pakistan even reached a scorching 49.5 ºC in May. A 38 
record 47.0 ºC daily high was recorded in Portugal (Kwon, 2022), and heat-induced complications 39 
greatly contributed to the 53,000 excess deaths across the European continent in July (Mandiá, 40 
2022).  41 
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Historically, fatal heatwaves have been linked to anthropogenic global warming (Mitchell et 1 
al., 2016). Hansen et al., (2020) reaffirmed the prevalence of global warming acceleration in the 2 
past half decade through the large deviation of global temperature anomalies from the linear 3 
warming rate of 1970-2020. The study attributes this pronounced acceleration to the energy 4 
imbalance of our planet and an increase in net climate forcing. Accelerated global warming has 5 
had substantial impacts on the global hydrologic cycle, food production, energy, health, natural 6 
disasters, and socioeconomics (Gou et al., 2020; Asseng et al., 2015; Mcglade and Ekins, 2015; 7 
Colón-González et al., 2018; Diffenbaugh et al., 2017; Burke et al., 2015). 8 

However, the effects of global warming are not uniform across the planet. In recent decades, 9 
the Arctic has been warming at more than three times the global mean (AMAP, 2020), and the 10 
region’s surface temperatures demonstrate an exponential growth that many of the world’s 11 
foremost climate models fail to replicate. Continued acceleration will likely amplify the positive 12 
ice-albedo feedback loop and lead to disastrous polar vortexes in the Northern Hemisphere (NH, 13 
Kretschmer et al., 2018) and worldwide sea level rises that induce major flooding (Box et al., 14 
2018). Latitudes in the equatorial region and Southern Hemisphere (SH, i.e., the Equator, Southern 15 
Temperate, and Antarctic Circle) have demonstrated slower warming trends compared to higher 16 
latitudes (Gleisner et al., 2020). Although sea-ice loss is noted in both the Arctic and Antarctic 17 
Circles, the Antarctic Circle has a warming acceleration that is observed to be lower than the global 18 
mean. The Tropics, Southern Temperate, and Antarctic Circle maintain linear trends with a low 19 
rate of warming. 20 

As global warming continues to accelerate, warming-induced tipping points become 21 
increasingly imminent. A tipping point in the climate system is a critical threshold that leads to 22 
large, irreversible changes when crossed. The crossing of the next major tipping point is estimated 23 
at 1.5 °C warming above pre-industrial levels and becomes highly probable with drastic global 24 
effects at 2 °C (Lenton et al., 2019). The 2021 NOAA Global Climate report warns that surface 25 
temperatures in 2021 have already reached 1.04 °C of warming above levels in the pre-industrial 26 
period (NOAA, 2021). According to the 2018 IPCC special report on the impacts of global 27 
warming at 1.5 °C, temperature increases above this threshold will lead to unprecedented changes 28 
in all facets of life — from the increased frequency of extreme events to food insecurity to a 29 
significant decrease in biodiversity (IPCC, 2018). Warming at this level is projected to lead to 30 
glaciers melting in the high mountains of Asia (Yao et al., 2012; Kraaijenbrink et al., 2017). 31 
Warming of 2 °C will have even more disastrous results; in the agricultural industry alone, it will 32 
lead to substantially smaller yields of essential crops such as maize and rice, especially in sub-33 
Saharan Africa, Southeast Asia, and the Americas, compounding the issue of food security (Mbow 34 
et al., 2019). Crossing this tipping point is projected to lead to an average global ocean rise of 20 35 
cm (Jevrejeva et al., 2016), and large increases in extreme storms, drought, and fire weather in 36 
numerous regions (IPCC, 2021). Different regions will reach these temperature thresholds at 37 
different times due to the aforementioned variations in warming rates. Because of differences in 38 
warming rates across different areas and the approaching perils as surface temperatures continue 39 
to accelerate, it is becoming increasingly vital to understand what the future of surface 40 
temperatures will look like — not just globally, but also across different latitudinal regions. 41 

GCMs (Global Climate Models), which simulate climate systems on both regional and global 42 
scales, are imperative in understanding climate variability and change (IPCC, 2013), and therefore 43 
are a crucial tool in predicting the future of surface temperatures. However, it is well known that 44 
GCMs have large variabilities in simulating historical surface temperatures and some models have 45 
failed to reproduce historical temperature trends (Knutti et al., 2017; Liang et al., 2020). Recently, 46 
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a more advanced wave of GCMs were used in the Coupled Model Intercomparison Project Phase 1 
6 (CMIP6) with more extensive physical simulations and higher spatial resolution (Eyring et al., 2 
2016).  3 

Papalexiou et al. (2020) analyzed the accuracy and reliability of CMIP6 global mean 4 
temperature simulations based on various criteria such as trend conformity and autocorrelation. 5 
The team found that all models showed differences in distributional shapes when compared to 6 
historical data and there were significantly varied performances between models across all metrics. 7 
The study also revealed that although models are able to reproduce historical trends, many 8 
simulations fall short in other areas such as long-term potentiation (LTP) and distributional shapes. 9 
Additionally, Fan et al. (2020) analyzed mean and extreme surface air temperatures produced by 10 
16 different CMIP6 models. The study found that although the majority of models are able to 11 
accurately reproduce spatial patterns of global climatological mean temperatures, there still exists 12 
a large spread across different models and regions. Drastic differences in climate sensitivities and 13 
warming rates in different regions of the planet underscore the need for closer analyses of climate 14 
models’ latitude-dependent robustness, which will in turn reveal patterns in regional surface 15 
temperature acceleration. 16 

In this study, we first analyze the global and regional warming trends based on observations, 17 
including GISS Surface Temperature (GISTEMP) and Berkeley Earth temperature datasets. We 18 
substantiate trend variance amongst latitudes and analyze their historical behaviors. Then, we 19 
examine the reliability of CMIP6 models and project 21st century global and regional surface 20 
temperatures to foster a better understanding of future surface temperatures and be better equipped 21 
to predict when tipping points will be reached. The selected CMIP6 models with best performance 22 
and their multi-model mean (MMM) were evaluated by comparing latitude-dependent surface 23 
temperature warming rates with observational data from the two sources. The MMM was 24 
considered because no single model excels in every metric (Papalexiou et al., 2020; Fan et al., 25 
2020), especially when analyzed regionally. The best models were then selected and ensemble 26 
members were averaged with an associated margin of error to project 21st century surface 27 
temperatures, both globally and in three regions – the Arctic, Antarctica, and the Tropics – to 28 
estimate the arrival of tipping points. The results are important for effectively organizing and 29 
prioritizing different regions in the battle against global warming. 30 

2 Data and Methodology 31 
2.1 Observational Surface Temperature Data 32 

Two observational datasets were considered:  33 
(a) The GISS Surface Temperature Analysis (https://data.giss.nasa.gov/gistemp) Land-Ocean 34 

Temperature Index (L-OTI) on a regular 2º × 2º grid. The L-OTI is compiled by combining 35 
NOAA GHCN v4 SAT anomalies over land and sea ice with ERSST v5 SST oceanic data 36 
over water (Hansen et al., 2010). GISTEMP is widely used to observe regional temperature 37 
trends and has greater polar coverage than most other datasets. 38 

(b) The Monthly Land + Ocean Average Temperature Dataset from Berkeley Earth 39 
(http://berkeleyearth.org/data/), calculated by averaging air temperatures at sea ice. The 40 
combined dataset was created by concatenating Berkeley Earth land data with a spatially-41 
kriged version of HadSST3 (Rohde et al., 2020).  42 

We converted monthly data to annual data using resampling techniques. Berkeley Earth data 43 
was linearly interpolated from a 1º × 1º grid onto a regular 2º × 2º grid, and only data from 1975-44 
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2021 was considered. To observe trends in our target regions, we spliced data latitudinally using 1 
the following boundaries: the Arctic Circle (66ºN-90ºN), the Antarctic Circle (90ºS-66ºS), and the 2 
tropics (24ºS-24ºN). To compare warming rates and verify the prevalence of acceleration in 3 
different regions, ordinary least-squares were used to compare the 60-month running averages of 4 
regional surface temperatures to global surface temperatures. 5 
2.2 CMIP6 Data 6 

Surface temperature projections from CMIP6 models were accessed through the Earth System 7 
Grid Federation (ESGF). All available variants were used for each model and simulation outputs 8 
were linearly interpolated onto a regular 2º × 2º grid. To compare CMIP6 models in terms of their 9 
historical simulation performance, we resampled the time coordinate to an annual frequency. We 10 
sliced historical data to the years 1975-2014, and SSP2-4.5 projections were averaged annually for 11 
the years 2015-2099 for all selected models. When compared to historical data, the base period of 12 
1951-1980 was used for conformity with observed datasets. Margins of error were calculated based 13 
on nuances in the realizations of both historical and forecasted data. Since the historical datasets’ 14 
anomalies are calculated by subtracting absolute temperatures with unspecified individual station 15 
data, to obtain anomalies from absolute temperatures we subtracted the average of surface 16 
temperatures using the base period 1880-1920 for each historical simulation of the model. 17 
Differences in the anomalies were the main consideration for quantifying margins of error. Details 18 
regarding each of the 11 models are illustrated in Table 1.  19 

Table 1 – List of CMIP6 Models and Properties. 20 
 21 
# Model Region Institution 
1 AWI-CM-1-1-MR Germany Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research 

2 BCC-CSM2-MR China Beijing Climate Center 

3 CESM2 USA National Science Foundation 

4 E3SM-1-1 USA Department of Energy 

5 EC-Earth3 Europe Europe-wide Consortium 

6 FGOALS-g3 China Chinese Academy of Sciences 

7 GFDL-CM4 USA National Oceanic and Atmospheric Administration, Geophysical Fluid 
Dynamics Laboratory 

8 GISS-E2-1-G USA Goddard Institute for Space Studies 

9 IPSL-CM6A-LR France Institut Pierre Simon Laplace 

10 KIOST-ESM Korea Korea Institute of Ocean Science and Technology 

11 NorESM2-LM Norway NorESM Climate Modeling Consortium 

2.3 Methods 22 
In order to create quantitative latitude-dependent analysis, we examined the linear trends of 23 

models and observational datasets from 1975-2014 at each latitude increment, averaged out over 24 
all respective longitudes. Ordinary, least-square is the standard approach for linear regression 25 
analysis, which minimizes the sum of the squares of the differences between the dependent 26 



 5 

variable and the linear function of the independent variable. For each latitude, we calculate the 1 
slope b of surface temperature linear trends through least-squares regression using the following 2 
equation: 3 

b =
Σ(𝑥! − 𝑥)(𝑦! − 𝑦)

Σ(𝑥! − 𝑥)"
 4 

In this equation, xi = value of the independent variable (latitude) at the ith data point, yi = value 5 
of the dependent variable (surface temperature) at the ith data point, 𝑥  = mean value of the 6 
independent variable, and 𝑦  = mean value of the dependent variable. 7 

Three metrics were then used to compare latitude-dependent model simulations with 8 
observational data to determine the most reliable CMIP6 models: (1) the coefficient of 9 
determination (𝑟"), where values of 𝑟"	closer to 1 indicate a stronger performance; (2) the root 10 
mean square error (RMSE), where the best-performing model simulations with respect to RMSE 11 
have values close to 0; (3) the mean squared error (MSE), where the best performing model 12 
simulations also have values close to 0. 13 

Furthermore, we constructed Taylor diagrams to graphically analyze the models’ conformities 14 
with observational data (Taylor, 2001). Taylor diagrams are advantageous when determining the 15 
relative performance of several different models (IPCC, 2001) and they quantify degrees of 16 
correspondence between modeled and observed behavior using RMSE, as well as two additional 17 
metrics: (4) the Pearson correlation coefficient (r’) and (5) the standard deviation (s). The Pearson 18 
correlation measures the linear relationship between two sets of data — observational and modeled. 19 
The sign of the obtained value indicates the positive/negative correlation, and the magnitude of r’ 20 
indicates the strength of that correlation. The standard deviation is a widely used measure of the 21 
variation of a set of values and is calculated by the square root of the sample’s variance. The 22 
standard deviation was also used to quantify margins of error for tipping point estimations. 23 

3 Results 24 
3.1 Observational Analysis 25 

Figure 1 depicts the 60-month running means of surface temperature anomalies from 1975 to 26 
2021 with the base period of 1951-1980, as well as their linear trends. Polar regions have 27 
significantly more intra-annual variation than the planet as a whole, while tropical surface 28 
temperatures have less variation both intra-annually and interannually. Berkeley Earth data 29 
estimates more dramatic temperature extremes for the polar regions, but the two datasets generally 30 
corroborate each other in terms of linear trends. GISTEMP estimates a higher warming rate in all 31 
regions than does Berkeley Earth data except for the Arctic, where the two datasets only vary by 32 
approximately 4%. The greatest disagreement occurs in the global dataset, with the two 33 
observational datasets’ linear trends differing by 45%. These differences are accounted for during 34 
the evaluation of CMIP6 models in comparison to historical data. 35 

Based on the 60-month moving average of global and arctic surface temperatures from 1975-36 
2021, the Arctic is warming at around 3 times the rate of the planet. This result is consistent with 37 
the estimate from the Arctic Monitoring and Assessment Programme (2021). Significant 38 
deviations from the linear trend are attributed to unforced ENSO variability. The difference in 39 
warming rates between the Arctic region and the planet is explained through Arctic polar 40 
amplification (Lee, 2014), which can be attributed to various factors such as the ice-albedo 41 
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feedback loop (Petoukhov and Semenov, 2010; Screen, 2013; Tang et al., 2013), changing oceanic 1 
currents (Lee, 2012; 2014), and polar jet streams (Francis and Vavrus, 2012).  2 

 3 
Figure 1: (A) GISTEMP and (B) Berkeley Earth Regional Surface Temperature Anomalies from 4 

the years 1975-2021, with respect to the 1951-1980 base period. 5 

Antarctica is warming at slightly more than half the rate of the planet (0.56 times), largely due 6 
to high ice sheet orography (Singh et al., 2020), weaker Antarctic surface albedo feedback, ocean 7 
heat uptake in the Southern Ocean, Antarctic ozone depletion (Masson-Delmotte et al., 2013), and 8 
varying Antarctic surface heights (Salzmann, 2017). There is also significant intra-annual variation, 9 
begetting a low coefficient of determination with respect to the Antarctic 60-month moving 10 
average. 11 

Tropical surface temperatures yield a linear trend with the highest conformity to the warming 12 
rate of the planet, illustrated by its near linear warming rate of 0.86 times the planet. The Tropics 13 
have lower intra-annual temperature variation when compared with latitudinal extremes and follow 14 
the trend of the overall planet more closely. This is explained by radiative resistance to temperature 15 
change caused by tropical tropospheric temperature variations (Spencer et al., 2019). 16 

 17 
Figure 2: Northern Vs. Southern Hemispheric Surface Temperature Anomalies. 18 

Figure 2 reaffirms the significant difference in warming rates between the NH and the SH, 19 
with the NH warming at 2.62 times the rate of the SH. The discrepancy in warming rates between 20 
the two hemispheres is largely due to the higher amount of landmass in the NH, the cross-21 
equatorial Atlantic Ocean heat transport, and the albedo difference between Antarctica and the 22 
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Arctic (Feulner et al., 2013; Kang et al., 2015). As the north warms at a faster rate, equatorial 1 
tropical rain bands shift northward, consequentially drying out the SH. If this trend continues and 2 
the temperature difference between the two hemispheres continue to enlarge, it could lead to 3 
significant alteration of tropical rainfall patterns, affecting all corners of the world (Friedman et 4 
al., 2013). 5 
 6 
3.2 CMIP6 Model Evaluation 7 

Figure 3 illustrates the latitude-dependent warming rates of each of the 11 CMIP6 models, as 8 
well as the multi-model mean (MMM). While most models are able to reproduce general spatial 9 
patterns of surface temperatures, there remain substantial deviations and variation amongst the 10 
models. Furthermore, although all models and the MMM conform to the trends in the tropical 11 
region, there is a significant spread in mid-latitudinal and polar regions. The MMM performs, on 12 
average, better than most of the individual models. 13 

 14 
Figure 3: Latitude-dependent analysis of CMIP6 model; the rate of warming across latitudes 15 

from 1975-2014. 16 

The Taylor diagrams shown in Figure 4 support the conclusions from the tables (see Table S1 17 
and S2 in the Supplementary: Supporting Information section.) EC-Earth3 deviates significantly 18 
from the reference dataset and the cluster of models, and E3SM-1-1 also differs from the other 19 
models. GISS-E2-1-G performs the best in both diagrams in terms of its conformity to the standard 20 
deviations of the reference datasets. The RMSE of each model is signified by the distance from 21 
the point representing the model to the reference point on the x-axis. Despite having more deviance 22 
in terms of its standard deviation, FGOALS-g3 has a lower relative RMSE than GISS-E2-1-G in 23 
Figure 4A. 24 

Table S1-I in the supplementary section shows the statistical indices (RMSE, MSE, and r2) of 25 
each latitude-dependent simulation with respect to Berkeley Earth historical data, Table S1-II 26 
depicts the indices with respect to GISTEMP data. While there is slight variation in the rankings 27 
of the models, the top two positions in both tables are composed of GISS-E2-1-G and FGOALS-28 
g3. E3SM-1-1 and EC-Earth3 consistently perform significantly worse than the other models. The 29 
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MMM performs better with respect to Berkeley Earth data than GISTEMP data, although it 1 
remains in the top five for both comparisons. 2 

 3 
Figure 4: Taylor diagrams evaluating CMIP6 models relative to both observational datasets. 4 

3.3 Temperature Projections  5 
Tables S2-I through S2-VIII in the supplementary section lists estimations of the calendar years 6 

in which the 1.5 °C, 2.0 °C, and 2.5 °C tipping points will be reached globally and in the three 7 
target regions. Only models with more than one realization for SSP2-4.5 were used to estimate 8 
tipping points, although projections from all 11 models were used to calculate the MMM. In all 9 
models and the MMM, the 1.5 °C, 2.0 °C, and 2.5 °C thresholds in the Arctic have already been 10 
passed prior to 2014. Models such as CESM2 have significant deviations from FGOALS-g3 and 11 
GISS-E2-1-G in the Antarctic, which can be attributed to a lack of simulated dynamic ice sheets 12 
in the region. FGOALS-g3 and GISS-E2-1-G, the two models deemed most reliable by the indices 13 
in the previous section, generally agree with each other in terms of the estimation of the arrival of 14 
tipping points. However, there exists a large spread amongst the models altogether, especially in 15 
the highest temperature threshold of 2.5 °C.  16 

 17 
Figure 5: Spread of tipping point timing estimations for 1.5, 2.0 and 2.5 oC of warming. 18 
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Figure 5 shows the regional distributions of simulated tipping points. Ranges increase as the 1 
degrees of warming increase, along with the difference between the 2nd and 3rd quartiles. To make 2 
the calculations more tractable, calendar years greater than 2100 - a period that is beyond the scope 3 
for CMIP6 projections - were counted as the year 2100. There is no separate figure for the Arctic 4 
region because models unanimously agreed that the tipping point had been passed before 2014. 5 
Significant ranges reveal that projection models still do not agree with each other despite being 6 
able to reproduce past general trends in surface temperatures.  7 

 8 
Figure 6: 21st century projections for global and regional temperature changes. The shadings 9 

denote symmetrical margins of errors. 10 

Figure 6 shows projections for the two models deemed most reliable through latitude-11 
dependent analysis: FGOALS-g3 and GISS-E2-1-G. There is a significant difference between the 12 
two models’ Antarctic surface temperature projections, but the models agree closely in their 13 
tropical projections. Based on the projections, the Arctic will continue to be the most severely 14 
impacted by global warming, with temperatures estimated to exceed 6 °C above pre-industrial 15 
times by the end of the 21st century. The upward concavity of FGOALS-g3 projections in the 16 
Arctic suggests continued warming acceleration in the region. This dramatic degree of warming 17 
would be expected to have significant impacts globally, especially in regard to polar vortexes and 18 
rises in global sea levels. All regions are expected to surpass the 2.0 °C tipping point well before 19 
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the end of the 21st century, should no countermeasures be taken. All regions, except the tropical 1 
projections from FGOALS-g3, are estimated to pass the 2.5 °C threshold by the end of the 21st 2 
century.  3 

4 Conclusions and Discussions 4 
Two observational datasets and 11 CMIP6 models were used in this study to determine reliable 5 

regional surface temperature projections for the 21st century. We analyzed regional observational 6 
datasets to determine warming rates relative to the global linear trend, finding that the Antarctic 7 
circle and the tropics are warming slower than the planet as a whole while the Arctic warms 8 
significantly faster. We confirmed the inter-hemispheric difference in warming rates and found a 9 
dramatic positive trend in projected global warming in three target regions, especially in the Arctic.  10 

FGOALS-g3 and GISS-E2-1-G were deemed the most reliable CMIP6 models for surface 11 
temperature projections based on statistical indices when evaluating the models’ ability to 12 
reproduce historical, latitude-dependent values adapted from the observational datasets. Particular 13 
acceleration in Arctic temperatures is observed, with the region estimated to reach 6 °C above pre-14 
industrial levels by the end of the 21st century.  15 

Based on analyses of CMIP6 models, there exists a large variability between different 16 
realizations of each model, as well as significant spreads between different models. The MMM 17 
generally performs better than most individual models, and we identified areas of improvement 18 
needed to create more accurate projections in the next phase. Inaccurate projections, especially in 19 
polar regions, can often be explained by an insufficiency of dynamic simulations for those areas.  20 

Understanding when tipping points will be reached in different regions, as well as deepening 21 
apprehension of global warming acceleration, is a key element in planning solutions to curb this 22 
pressing issue. Further research on solutions to mitigate global warming acceleration, as well as 23 
analysis on different SSPs both globally and regionally, will be imperative in fighting climate 24 
change and ensuring the survival of our planet. 25 
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