loading page

Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models
  • Suki Cheuk-Kiu Wong,
  • Galen A McKinley,
  • Richard Seager
Suki Cheuk-Kiu Wong
Lamont-Doherty Earth Observatory at Columbia University

Corresponding Author:[email protected]

Author Profile
Galen A McKinley
Columbia University and Lamont-Doherty Earth Observatory
Author Profile
Richard Seager
Lamont Doherty Earth Observatory of Columbia University
Author Profile

Abstract

The El Niño-Southern Oscillation (ENSO) in the equatorial Pacific is the dominant mode of global air-sea CO2 flux interannual variability (IAV). Air-sea CO2 fluxes are driven by the difference between atmospheric and surface ocean pCO2, with variability of the latter driving flux variability. Previous studies found that models in Coupled Model Intercomparison Project Phase 5 (CMIP5) failed to reproduce the observed ENSO-related pattern of CO2 fluxes and had weak pCO2 IAV, which were explained by both weak upwelling IAV and weak mean vertical DIC gradients. We assess whether the latest generation of CMIP6 models can reproduce equatorial Pacific pCO2 IAV by validating models against observations-based data products. We decompose pCO2 IAV into thermally and non-thermally driven anomalies to examine the balance between these competing anomalies, which explain the total pCO2 IAV. The majority of CMIP6 models underestimate pCO2 IAV, while they overestimate SST IAV. Thermal and non-thermal pCO2 anomalies are not appropriately balanced in models, such that the resulting pCO2 IAV is too weak. We compare the relative strengths of the vertical transport of temperature and DIC and evaluate their contributions to thermal and non-thermal pCO2 anomalies. Model-to-observations-based product comparisons reveal that modeled mean vertical DIC gradients are biased weak relative to their mean vertical temperature gradients, but upwelling acting on these gradients is insufficient to explain the relative magnitudes of thermal and non-thermal pCO2 anomalies.