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Key Points: 10 

• Storm surge forecast skill depends mainly on initial and lateral open boundary condition uncertainties, 11 
including the tidal components. 12 

• EPS members derived from different large scale ocean models, atmospheric forcing forecasts and an ad-hoc 13 
perturbations of the river runoff. 14 

• Development of an ensemble weighting method provides an improved ensemble mean forecast skill suitable 15 
for operational systems. 16 

Abstract 17 

We developed a storm surge Ensemble Prediction System (EPS) for the Goro lagoon (GOLFEM-18 

EPS) in the Northern Adriatic Sea. The lagoon is threatened every year by storm surge events with 19 

consequent risks for human life and economic losses. We show the advantages and limitations of an 20 

EPS with 45 members, using a very high-resolution unstructured grid finite element model. For five 21 

recent storm surge events, the EPS generally improves the forecast skill on the third forecast day 22 

compared to just one deterministic forecast, while they are similar in the first two days. A weighting 23 

system is implemented to compute an improved ensemble mean. The uncertainties regarding sea level 24 

due to meteorological forcing, river run-off, initial and lateral boundaries are evaluated, and the 25 

different forecasts are used to compose the EPS members. We conclude that the largest uncertainty 26 

is in the initial and lateral boundary fields at different time and space scales, including the tidal 27 

components. 28 

Plain Languages Summary 29 

Storm surges are extreme events generated by strong winds, low atmospheric pressure, tides and 30 

possibly other non-local phenomena. The Goro Lagoon, on the Italian side of the northern Adriatic 31 

Sea, is subject to storm surge, especially when a south-easterly wind (locally named Scirocco) occurs. 32 

We developed an ensemble system, called GOLFEM-EPS, to forecast with a numerical model the 33 
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sea level in the Goro lagoon and the adjacent areas. The “ensemble” approach consists in running a 34 

high number of forecasts (the “members”, 45 in this work) with different conditions in order to obtain 35 

different estimates and account for errors and inaccuracies in the model set-up and in the forcing data. 36 

GOLFEM-EPS generally improves the forecast skill on the third day of forecast while it is similar in 37 

the first two days to the reference forecast. The uncertainty connected to river-run off, meteorological 38 

forcing, initial and boundary conditions is evaluated. Initial, lateral boundary conditions and tidal 39 

components provide the largest uncertainty to the system. 40 

1 Introduction 41 

The operational forecast of sea level (SL) is a widely developed service used to prevent flooding and 42 

storm surge hazards that represent a potential threat for human life and activities (Chaumillon et al., 43 

2017; Forzieri et al., 2016). However, the forecast lead time is affected by the limited predictability 44 

of the atmospheric forcing and the uncertainties regarding the initial conditions, as well as lateral 45 

boundary forcing specifications. 46 

Addressing the problem of storm surge forecast reliability involves recasting the single, deterministic 47 

forecast in probabilistic terms (Gneiting and Katzfuss, 2014). Atmospheric seasonal and sub-seasonal 48 

forecasting systems feature several Ensemble Prediction Systems (EPSs), while EPSs are still in their 49 

infancy for short term ocean forecasting and coastal forecasting.  50 

The notion of ensemble forecasting was first proposed by Lorenz (1963), who demonstrated the 51 

sensitivity to initial conditions for a simple non-linear system. In the 1960s it was already clear that 52 

there was a “limit of deterministic predictability” in weather forecasting (Palmer, 2018). During the 53 

1980s and 1990s ensemble weather forecasting systems were developed leading to an operational 54 

system at ECMWF (European Medium Range Weather Forecast, Palmer et al., 1992; Molteni et al., 55 

1996; Buizza, 2019) and at NMC (National Meteorological Center; Toth and Kalnay, 1993). A further 56 

development was the concept of multimodel ensemble and superensemble (Krishnamurti et al., 2000). 57 

Considering outputs from different models to create an ensemble system limits the systematic errors 58 

that can affect each individual model. Another application of a multimodel uncertainty estimation is 59 

used for IPCC climate projections (IPCC, 2021). 60 

In oceanography, the multimodel super-ensemble concept was applied for the Mediterranean Sea SST 61 

forecasting by Pistoia et al., (2016) using a multiple linear regression technique applied to a multi-62 

physics and multi-model dataset. The Mediterranean Sea was the subject of early ensemble systems 63 

for the determination of the ocean response to surface wind uncertainty (Pinardi et al. 2008, 2011; 64 

Milliff et al., 2011). 65 



The first storm surge EPS for coastal systems was made operational by Flowerdew et al., (2009) with 66 

further verification of the results in Flowerdew et al., (2010) where the sensitivity of the surge forecast 67 

to meteorological forcing and initial conditions was studied. A recent study by Biolchi et al. 2022, 68 

applies EPS techniques for a coastal Early Warning System (EWS) employing a morphodynamic 69 

model. A multimodel storm surge EPS is operational in the North Sea, combining a series of storm 70 

surge forecasting systems using a Bayesian model average (BMA) to weight each individual forecast 71 

(Beckers et al., 2008). The same methodology was applied in the western Mediterranean (Pérez et al., 72 

2012). A multimodel EPS approach was also developed for the Adriatic Sea by Ferrarin et al., (2020), 73 

where several operational forecasting systems were used to generate a SL ensemble mean (EM) and 74 

to assess its uncertainty. Outside Europe, a mulitimodel EPS has been applied in the New York coastal 75 

area (Liberto et al., 2011). 76 

In this study we focus on the development of an EPS methodology for a limited area, coastal model 77 

at very high resolution. The novelty is that we explore a methodology to create a set of ensemble 78 

members to tackle the specific coastal modelling uncertainties. In coastal domains, the dimension of 79 

the domain, the bathymetry, the type of lateral boundary conditions (Chu, 1999), the tidal signal from 80 

the lateral boundaries as well as the atmospheric forcing and the river runoff may all represent a 81 

source of uncertainty. The physical parametrizations and the specific numerical schemes used in the 82 

ocean model add further uncertainty to the system. 83 

In the Adriatic Sea, storm surges are more common when Scirocco winds (south easterly) blow for 84 

several days (Orlić, Kuzmić, and Pasarić 1994). However, Bora winds (north easterly), which usually 85 

have the largest amplitude, are the most threatening, especially if concomitant with high tides and 86 

preceded by Scirocco winds (Lionello et al., 2021). 87 

Seiches can also be generated in response to the winds. The Scirocco blowing over the Adriatic Sea 88 

can trigger the fundamental mode of seiches with a period of 21.2 hr and a decay time of 3.2 days 89 

(Cerovečki et al.,1997) and amplitude rising up to 50 cm (Godin and Trotti 1975). Hence, seiches can 90 

contribute to high SL values if they overlap with a storm surge (Vilibić, 2006; Bajo et al., 2019). The 91 

second and third modes of Adriatic Seiches have a 10.7 hr and 6.7 hr period respectively (Raicich, 92 

1999) and a smaller amplitude. 93 

This study focuses on the Goro Lagoon (Fig. 1), which is exposed to storm surges that threaten the 94 

towns around the lagoon (Bondesan et al., 1995). In November 1966, a dramatic flood (Garnier et al., 95 

2018) caused by a persistent Scirocco wind, caused severe damage to buildings, roads and cultivated 96 

lands. In Goro town almost 80 families were moved away from their homes. In October  2018, another 97 

Scirocco event caused flooding in the Goro harbour. Thus, we tried to define an EPS that could 98 



potentially be beneficial to the local population if made operational and converted into an early 99 

warning decision support system. 100 

The forecasting model is a baroclinic very high-resolution model (GOLFEM) described in Maicu et 101 

al., (2021). We tested the EPS methodology considering five recent extreme events, using forcing 102 

from different meteorological and ocean operational models for initial and lateral boundary 103 

conditions, together with river discharge perturbations. We assessed the sources of uncertainties along 104 

with the performance of the ensemble considering specific ensemble mean algorithms. 105 

In Section 2 the storm surge, high SL events and the circulation model are described. Section 3 defines 106 

the ensemble methodology. The results are shown in Section 4. Section 5 contains summary and 107 

conclusions. 108 

2 Data and Methods 109 

2.1 Sea Level Extreme Events in the Goro Lagoon 110 

The GOLFEM-EPS area of interest is represented in Fig. 1. It contains the whole Goro Lagoon 111 

together with the Po River branches of Goro and Volano. The bathymetry of the lagoon is shallow, 112 

about 1.50 m on average and it gently slopes to the continental shelf of the northern Adriatic Sea. The 113 

lagoon has a wide opening of about 4 km and is thus exposed to sea level anomalies entering from 114 

the open Adriatic Sea. 115 



 116 

Figure 1: (a) Bathymetry and coastlines of the Goro Lagoon. The red triangles indicate the position of Faro and Porto Garibaldi tide 117 

gauges. The green circles indicate the position of rivers, starting from the south-west, the Po di Volano, the Po di Goro, the Po della 118 

Donzella, the Po di Pila and the Po di Maistra . The orange squares represent the three pumping plants discharging in the Goro 119 

lagoon: (G) Giralda, (R) Romanina, and (B) Bonello. (b) The domain position in the Adriatic Sea (source map: OpenStreetMap). 120 

All the extreme events used in this work were collected from Perini et al. (2020, 2019), which details 121 

the extreme events and their impacts on the ER coast. Sea level observations collected at Faro and 122 

Porto Garibaldi (Fig. 1) are available every 10 minutes, thus giving a very good determination of 123 

extremes. Table 1 describe the five tide events from both Porto Garibaldi and Faro tide gauges. 124 

Fig. 2 shows the sea level observations at Faro (from late 2019 to early 2021), together with the surge 125 

residual (SR, orange line) and the fundamental and second seiche mode contribution to SL (green 126 

line). 127 

SR is calculated from SL using a de-tiding procedure described in the Appendix A. The residual 128 

signals only conserve the surge contribution due to local wind, atmospheric pressure, and large scale 129 

non-tidal remote forcing. Likewise, the tidal filter is used to compute the contribution of the seiches. 130 

The filter is inverted and the frequencies of the seiches are the only ones retained in the computation. 131 

The events listed in Table 1 all have a non-negligible surge component. 132 

The time of the peak sea level recorded for each event is indicated by the vertical dashed lines. The 133 

horizontal dashed lines indicate the 99th percentile of the sea level, in black for the SL data (0.64 m) 134 



and in red for the SR time series (0.49 m) considering all the data available starting from April 2016. 135 

Considering percentiles between 95 and 99 is quite common in extreme value analyses of the sea 136 

level (Wahl et al., 2017; Kirezci et al., 2020). In this work the 99th percentile is just taken as a 137 

reference threshold for the considered events. The same percentile computation was also done for the 138 

Porto Garibaldi station, where data are available starting from July 2009. The values found were 0.7 139 

m and 0.53 m for the SL and SR respectively. It is worth noting that all the peak events considered 140 

for this work exceed both the observed SL and SR 99th percentile. 141 

 142 

Figure 2: SL observations (blue), SR (orange) and seiches (green) at Faro (see Fig. 1 for reference position). The vertical black dashed 143 

lines indicate the 5 extreme events considered in this paper. The horizontal dashed black and red lines indicate the 99th percentile of 144 

the SL and SR, respectively. 145 

EVENT NO. DATE 

PORTO 

GARIBALDI 

TIME(UTC), SL(M), 

SR(M) 

FARO 

TIME(UTC), SL(M), 

SR(M) 

IMPACTS 
PREVAILING 

WINDS 

1 2019-12-23 07:40 -> 1.17, 0.56 07:50 -> 1.21, 0.60 Uniform large impacts NW 

2 2020-10-03 10:50 -> 0.86, 0.51 10:30 -> 0.82, 0.51 No impacts SE 

3 2020-12-02 08:20 -> 1.02, 0.61 08:30 -> 0.93, 0.54 Uniform large impacts N-NE 

4 2020-12-08 15:30 -> 1.06, 0.96 15:10 -> 1.10, 0.85 Ferrara province E-SE 

5 2020-12-28 08:30 -> 0.90, 0.72 09:00 -> 0.90, 0.78 Minor impacts Volano SE 

Table 1: The five events analyzed in this study, with date, hour, max observed sea level (SL) and max observed surge residual (SR) at 146 

P.to Garibaldi and Faro (Fig.1). Impacts and prevailing winds for each event are also indicated (NW-North Westerly; SE-South 147 

Easterly; N-NE-North-North Easterly; E-SE- East-South Easterly; SE- South Easterly). 148 

2.2 The circulation model 149 

GOLFEM is the implementation of the SHYFEM model (Umgiesser et al., 2004; Bellafiore et al., 150 

2010, Micaletto et al., 2022) in the Goro Lagoon. SHYFEM is an open-source 151 

(https://github.com/SHYFEM-model/shyfem) unstructured grid baroclinic ocean model that solves 152 
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the primitive equations for the ocean under Boussinesq and hydrostatic approximations. It has been 153 

already applied in operational (Federico et al., 2017) and relocatable (Trotta et al., 2021) forecasting 154 

systems, and for storm surge events (Park et al., 2022). GOLFEM has been extensively calibrated, 155 

validated and described in Maicu et al. (2021).  156 

GOLFEM is nested in large scale ocean models and is forced by atmospheric numerical weather 157 

prediction fields. The river runoff is also imposed as a lateral open boundary condition. All the ocean 158 

and meteorological products characteristics used to initialize and force the different members are 159 

described in the next section and are summarized in Table S1 of the Supporting information (SI). 160 

2.3 Nesting in large scale circulation models 161 

GOLFEM-EPS is nested within five ocean larger scale circulation models. Starting with the largest, 162 

the Copernicus Marine Service global model (Le Traon et al., 2019), offers daily global forecasts 163 

(hereafter referred to as GLOBAL; Lellouche et al., 2018) with a horizontal grid resolution of 1/12◦ 164 

(∼ 8 km) and 50 vertical levels. It uses the SAM-2 data assimilation scheme, based on a reduced-165 

order Kalman filter. It is forced at the surface with ECMWF meteorological fields. On a daily basis, 166 

the GLOBAL operational system provides a 10 day forecast (daily output), and every week it 167 

computes the best analysis for the previous 14 days. 168 

The Copernicus Marine Service Mediterranean Sea model (Clementi et al., 2017, 2021, hereafter 169 

MED-MFC) is a coupled current-wave model of the Mediterranean Sea and the adjacent Atlantic 170 

area. It is composed of the general circulation model NEMO (Nucleus for European Modelling of the 171 

Ocean-NEMO; Madec, 2008) and coupled 2-way with the third-generation spectral wave model 172 

WaveWatchIII (Tolman, 2009). The horizontal grid is at 1/24◦ resolution (∼ 4 km), with 141 unevenly 173 

vertical z levels. The analyses and forecasts are forced by ECMWF atmospheric fields and use 174 

climatological discharges from 36 rivers, including the Po. The model uses a 3D variational data 175 

assimilation scheme to correct the model output. The eight major tidal constituents were recently 176 

added providing a different forecasting and analysis current model, hereafter called MED-MFC-T. 177 

ADRIAC is an Adriatic Sea scale forecasting model operational at the Hydro-Meteo-Cimate Service 178 

of the Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, Arpae-SIMC 179 

(Bressan et al., 2017). It is based on the COAWST model (Warner et al., 2010) which is a coupled 180 

ocean-atmosphere-wave-sediment transport model. The ocean part is simulated with the ROMS 181 

model (Shchepetkin and McWilliams, 2005) at a resolution of about 1 km and 30 σ-layers. Hourly 182 

discharge data from the Po are used, while a climatology is used for the other 48 Adriatic rivers. 183 

Initial and boundary conditions are provided by the MED-MFC model for currents, salinity, 184 

temperature, and sea level. Tides (eight components: K1, O1, P1, S1, K2, S2, M2 and N2) are given 185 



at the Otranto strait computed by the TPXO model (Egbert and Erofeeva, 2002). Meteorological 186 

forcing is provided by COSMO-2I and COSMO-5M models (Gastaldo et al., 2021; Steppeler et al., 187 

2003; COSMO-newsletter, 2004). ADRIAC provides three day forecasts per day, with a one-day 188 

spin-up, using the analyses of the meteorological forcing and boundary conditions. 189 

ADRIAROMS is another operational model based on ROMS model and implemented by Arpae-190 

SIMC (Russo et al., 2013). It covers the entire Adriatic basin with a horizontal resolution of about 2 191 

km and 20 σ -layers. Initial and boundary conditions are provided by CMEMS MED-currents. Tides 192 

(four components: K1, O1, S2, M2) are computed and provided by TPXO to the Otranto strait. 193 

Meteorological forcing is provided by the COSMO-5M model. Rivers are the same as in ADRIAC. 194 

ADRIAROMS provides a three-day hourly forecast with a one-day spin-up as for ADRIAC. 195 

2.4 Meteorological forcing fields 196 

Three operational meteorological products are used as input fields by the circulation model to 197 

compute momentum, heat and water fluxes at the air-sea interface via bulk formulas (Maicu et al., 198 

2021). The ECMWF weather forecast fields are based on the deterministic high resolution global 199 

model at 12.5 km of nominal resolution (ECMWF-IFS; Owens and Hewson, 2018). It provides 10-200 

day forecast fields every three hours for the first three days and 6 hours for the subsequent days.  201 

COSMO-5M is a regional operational meteorological model (Garbero and Milelli, 2020). It is based 202 

on the COSMO model (Steppeler et al., 2003) and covers the Mediterranean region. It has a horizontal 203 

resolution of about 5 km and 45 vertical layers. It is initialized by the deterministic analysis of 204 

COMet-LETKF (the model used by the Italian air force) and takes the ECMWF-IFS fields as 205 

boundary conditions. It runs twice per day, at 00 and 12 UTC providing a 72-hour forecast (hourly 206 

output). The COSMO-5M input fields are given at hourly frequency for 3 forecast days. 207 

COSMO-2I is the highest resolution operational weather forecast model (Gastaldo et al., 2021) 208 

covering the Italian domain. It is nested in COSMO-5M. The initial state is computed from the 209 

KENDA-LETFK system (Schraff et al., 2016; Gastaldo et al., 2021), and has a resolution of ∼ 2.2 210 

km and 65 vertical layers. It provides a 48 hr forecast (hourly output) and two forecasts per day at 00 211 

and 12 UTC. 212 

2.5 River Runoff Conditions 213 

The hourly discharge from the Po River is measured by Arpae at Pontelagoscuro. At the eastern side 214 

of the Goro lagoon (Fig. 1), the Po of Goro runoff is computed as a percentage of the Pontelagoscuro 215 

discharge values, based on a repartition equation that fits data from Arpav (2012). At the western side 216 

of the lagoon, the Po of Volano runoff is provided as the sum of all the pumping plant discharges 217 

which constitute the final flow of the Po of Volano. The runoff is imposed as a lateral boundary 218 



condition. In addition to the two Po branches, three pumping stations were considered for the 219 

freshwater discharge in the lagoon. Three simulations were performed: one with the nominal 220 

discharge of the Po of Volano, Po of Goro and the three pumping plants, and two others were defined 221 

by adding and subtracting 30% of the discharges. 222 

3 The Ensemble Prediction System 223 

3.1 The Ensemble Methodology 224 

GOLFEM-EPS has 45 members. The GOLFEM-EPS members are composed of a suitable 225 

combination of atmospheric and ocean models and perturbations to the river flow (Table 2).  226 

 227 

  Ocean Models 
Meteorological 

models 
River 

runoff 
ADRIAC ADRIAROMS MED-MFC GLOBAL MED-MFC-T 

COSMO 2I 

Data Exp-1 Exp 10 Exp 19 Exp 28 Exp 37 

-30 % Exp 2 Exp 11 Exp 20 Exp 29 Exp 38 

+30 % Exp 3 Exp 12 Exp 21 Exp 30 Exp 39 

COSMO 5M 

Data Exp 4 Exp 13 Exp 22 Exp 31 Exp 40 

-30 % Exp 5 Exp 14 Exp 23 Exp 32 Exp 41 

+30 % Exp 6 Exp 15 Exp 24 Exp 33 Exp 42 

ECMWF 

Data Exp 7 Exp 16 Exp 25 Exp 34 Exp 43 

-30 % Exp 8 Exp 17 Exp 26 Exp 35 Exp 44 

+30 % Exp 9 Exp 18 Exp 27 Exp 36 Exp 45 
Table 2: EPS members with the relative meteorological and ocean forcing and river perturbations. 228 

The EPS methodology is shown in Fig. 3: one day before the start of the forecast, GOLFEM-EPS is 229 

initialized and forced with surface analysis fields and lateral analysis boundary conditions from the 230 

circulation model outputs. Starting from the initial time of the forecast, always set at 00:00 UTC, 231 

forecast lateral boundary conditions and surface meteorological fields are used for a three days 232 

forecast, up to +72 hr. ADRIAC and ADRIAROMS models do not have an operational data 233 

assimilation scheme. For ADRIAC and ADRIAROMS the analyses are thus simulations forced by 234 

meteorological and open ocean lateral boundary analyses. Since COSMO-2I provide only a 48 hr 235 

forecast, from +48 hr to +72 hr, the meteo fields from COSMO-5M are used. 236 



 237 

Figure 3: The GOLFEM-EPS modelling scheme. The post-processing creates ensemble mean, ensemble spread and the weighted 238 

ensemble mean. 239 

Fig. 4 shows the GOLFEM-EPS basin average kinetic energy (KE) for one member simulation (exp-240 

1) initialized three days and one day before the nominal start of the forecast. The KE is initially zero 241 

for both simulations (all simulations are initialized with a zero-velocity field). After about 14 hours 242 

the simulations were found to reach a similar KE. This explains the choice of only one day as a spin-243 

up time for the forecast, which is a reasonable time for the ocean limited-area domains. It is also well 244 

known that the spin-up time decreases with the scale of the implemented computational domain, and 245 

one day of spin-up has also been used by authors dealing with very limited coastal models (Gaeta et 246 

al., 2016).  247 

The GLOBAL and MED-MFC products are provided without tides. In the case of non-tidal models, 248 

the tidal sea level is extracted from the TPXO model and added to the GOLFEM open boundaries. 249 

Despite the importance of baroclinic pressure gradients during storm surge events (Staneva et al., 250 

2016), preliminary simulations have compared the sea level of baroclinic and barotropic runs, 251 

highlighting only a negligible difference, probably due to the very small and shallow areas 252 

considered. We argue that for SL forecasts, the baroclinicity may be site-by-site dependent. However, 253 

building a multi-hazard system means that all processes need to be considered from the start. 254 

Incremental improvements will thus be made, also considering the progress in SL forecasting. 255 



 256 

Figure 4: Mean basin kinetic energy of exp-1 considering one (blue) and three (red) days of spin-up. 257 

3.2 Ensemble Mean 258 

The ensemble forecast is usually considered to be a better estimate of the forecast since the members 259 

sample the probability distribution function of the forecasts.  However, interpreting multiple forecasts 260 

can be complex, so very often the Ensemble Mean (EM) is used for the sake of simplicity. 261 

Using the notation of Salighehdar et al. (2017), a forecast matrix is defined as 𝑋 =262 

{𝑥𝑖
𝑗
}
(𝑖,𝑗)∈{1,…,𝑇}×{1,…,𝑚}

 where 𝑇 and 𝑚 are the forecast lead time and the total number of forecasts 263 

available respectively. The point 𝑥𝑖
𝑗
 thus represents the sea level or surge at time 𝑖 predicted by 264 

member 𝑗 . The EM produced by an EPS is denoted by a vector 𝐹𝑖 of all times 𝑖 . The EM is a simple 265 

average of the member forecasts defined as: 266 

𝐹𝑖  = 𝑥𝑖   =
1

𝑚
∑ 𝑥𝑖

𝑗𝑚
𝑗=1   ( 1) 267 

In this case each member has the same weight. However, during extreme events, when usually the 268 

forecast uncertainty is greatest, this may not be the best solution. Another method is to evaluate the 269 

weights of each member based on the performance achieved during a training period. Here the 270 

correlation method is tested to compute a Weighted EM (WEM). In addition, only a subset 𝑘 of the 271 

𝑚 members can be considered to compute a better average. The first 𝑘 forecasts are chosen based on 272 

the performance during the training period. However, selecting the value of 𝑘  is subjective. The 273 

specific WEM methodology is detailed in Appendix B. 274 



4 Results 275 

4.1 EPS Skill 276 

The SL and SR are shown for events 2, 3 in Fig. 5 and events 4 and 5 in Fig. 6. We will discuss event 277 

1 in the last part of this section. The thick green line (exp-1) is the member forced by the highest 278 

resolution models (Adriac and COSMO-2I; see Table 2). This is the deterministic reference model. 279 

The thick black and orange lines are the EM and WEM, respectively. Qualitatively the deterministic 280 

forecast overestimates the SR in two out of the four events. 281 

The ensemble spread grows and peaks at the time of the extreme event. This is another benefit of the 282 

EPS which alerts the forecaster of the possibility of a large event even if not capturing the correct 283 

amplitude. For SR, the maximum spread is at the peak of the event with values of 4.5, 7, 7 and 12 cm 284 

for event 2, 3, 4 and 5, respectively. Interestingly, in event 2 one of the members forced by 285 

ADRIAROMS overestimates the SL at the peak time (see the upper light green line in Fig. 5b), as do 286 

other members with the same nesting model (not shown). Since no overestimation is observed in the 287 

SR (Fig. 5a) the error may be attributed to a wrong tidal signal provided by ADRIAROMS. 288 

The performances of individual members during the forecast time are summarized for each event 289 

with Taylor diagrams (Figs. 7 and 8). An evident feature is the grouping of members with the same 290 

ocean initial and lateral boundary conditions. This is even clearer when the SL is considered (Figs. 291 

7b,d and 8b,d). If SR is considered (Figs. 7a,c and 8a,c), for each group there is a smaller dispersion 292 

due to the different meteorological forcings and to a lesser extent, due to the different river forcing. 293 

The initial/lateral boundary conditions (including the tidal forcing) therefore seem to be the greatest 294 

source of uncertainty (both for SR and SL), followed by the meteorological forcing and river forcing. 295 



296 

Figure 5: SR (left column) and total SL (right column) forecast comparison at Faro for event 2 (a,b) and event 3 (c,d). The green line 297 

shows exp-1 considering the reference deterministic forecast as described in Table 2. EM and WEM indicate the Ensemble Mean and 298 

the Weighted Ensemble Mean. The light green lines represent the members with maximum and minimum sea level values during the 299 

storm surge peak. The shaded areas are the ensemble spreads. 300 

 301 

Figure 6: As in Fig. 5 but for event 4 (a,b) and event 5 (c,d). 302 

In both events 2 and 3, the maximum surge occurred with the maximum tidal amplitude, with some 303 

impacts at the level of the coast. Conversely, event 4 reached the peak during a tidal minimum. A 304 

spectral analysis of the observed sea level revealed that there was a high contribution from the 305 

fundamental Adriatic seiche (~ 0.25 m), as shown in Fig. 2. The coincidence of remotely forced 306 



coastally trapped sea level maxima with tidal and local wind forcing has also been examined in detail 307 

for the US East Coast (Park et al., 2022). A correlation between the arrival time of remote signals 308 

was found to be the most important predictor of sea level extremes. 309 

The Taylor diagrams provide an indication of the members that most contribute to build the final 310 

WEM for each event. In most cases members initialized/forced with MED-MFC-T (from exp-37 to 311 

exp-45) show the best scores ( between 0.95 and 0.99; ~ 0.7 for event 1 SR) followed by members 312 

initialized/forced with ADRIAC (exp-1 to exp-9;  between 0.85 and 0.95; ~ 0.5 for event 1 SR) and 313 

MED-MFC (exp-19 to exp-27;  between 0.85 and 0.99; ~ 0.7 for event 1 SR). Members 314 

initialized/forced by ADRIAROMS (exp-10 to exp-18) usually show the worst performance ( 315 

between 0.3 and 0.95; ~ 0.1 - 0.2 for event 1 SR) together with the members initialized/forced by the 316 

GLOBAL product (exp-28 to exp-36;  between 0.4 to 0.9; ~ -0.4 for event 1 SR).  317 

 318 

319 

 320 

Figure 7: Taylor diagrams for SR and total SL for event 2 (a,b) and event 3 (c,d). 321 



 322 

 323 

Figure 8: Taylor diagrams for SR and total SL for event 4 (a,b) and event 5 (c,d). 324 

If SL Taylor diagrams are considered, we note again that members forced by MED-MFC-T have the 325 

best performance. This suggests that a Mediterranean scale ocean model may be more effective in 326 

representing the non-linear interactions that occur between tides, bathymetry and Adriatic basin 327 

modes compared to Adriatic scale models (ADRIAC or ADRIAROMS) that imposes TPXO tides at 328 

the southern boundary. 329 

Event 1 is a special case because the contribution of the Adriatic Sea seiches reached values close to 330 

40 cm (Fig. 2). Fig. 9a shows that the SL peak coincides with a decreasing SR (Fig. 9a and b). The 331 

storm surge is thus generated mainly by the seiches and the tides.  332 

Of the events analyzed, this case shows the worst performance for most of the ensemble members, 333 

with a negative correlation for the one forced by GLOBAL (Fig. 9c and d). However, EM and WEM 334 

benefit from error compensation and show satisfactory results in terms of SR, although none of the 335 

members reproduced the peak of SL occurring on 23 December 2019 at 07:50. This highlights the 336 

fundamental importance of tide-seiche resonant phenomena without the contribution from local 337 



meteorological forcing and underline some limitation of regional and large-scale ocean models in 338 

simulating such interaction. 339 

The members initialized/forced by the GLOBAL model have usually the worst results. This is not 340 

surprising since the GLOBAL product has the lower resolution and its daily output is not able to catch 341 

appropriately the surge components due to wind during extreme events. Indeed, members forced by 342 

GLOBAL are most of the times excluded by the weighting procedure. 343 

 344 

 345 

Figure 9: SR (a) and SL (b) forecast comparison for event 1. The light green lines represent the members with maximum and minimum 346 

sea level values during the peak. The shaded area is the ensemble spread. Taylor diagrams for SR (c) and SL (d) are also shown. 347 

4.2 Ensemble Member Analysis 348 

Any analysis of an EPS should consider its degree of the over or under-dispersiveness of the members. 349 

To do this, we analyzed the root mean square error (RMSE) as a function of the ensemble spread 350 

(Figs. 10a and b), aggregating all the events in Porto Garibaldi and Faro, considering 6 h intervals. 351 

The RMSE-spread plot provides information on the dispersion of the ensemble members. 352 

In an ideal case the RMSE should be linearly proportional to the ensemble spread. Fig. 10a shows 353 

that there is a slight over-dispersion of the members for spreads greater than 0.05 cm. This implies 354 

that during peak events, there is more dispersion of the ensemble members than expected. We argue 355 

that this over-dispersion of the ensemble is due to the very different initial and lateral boundary 356 

conditions used. If the SL is considered, over-dispersion appears for spread values greater than 0.13 357 



cm, while a slight under-dispersion appears for smaller spread values, probably connected to the tidal 358 

components. 359 

The SR RMSE error increases with time up to a maximum at 48 h for EM and WEM. The exp-1 360 

seems to perform slightly better between 36 and 48 hr, while after 48 hr, both EM and WEM 361 

performances are slightly better. The SL RMSE shows almost a linear increase with time for all 362 

forecasts with slightly better performances for the WEM at the end of the forecast period. The RMSEs 363 

considered for all the forecasts and all events are 5.7, 5.5 and 5 cm for EM, exp-1 and WEM 364 

respectively for SR, while for SL, the RMSEs are 12, 11.5 and 11 cm. 365 

 366 

Figure 10: RMSE against ensemble spread and forecast time for SR (a,c) and total sea level (b,d). Data are computed aggregating 367 

all the events at Porto Garibaldi and Faro stations. 368 

We conclude this section by analyzing the spatial distribution of the ensemble spread at the time of 369 

each peak event, taking into account only the SR. Considering first the river and meteorological 370 

forcing induced ensemble spread, the river run-off has a small influence on the SR ensemble spread 371 

(Fig. 11a), which remains confined at the river mouths along the coast, reaching low values of 0.3 372 

and 0.4 cm. The meteorological forcing leads to a bigger ensemble spread but with a maximum value 373 

of 1-3 cm (Fig. 11b). Although the winds are one of the main drivers of storm surges in the area and 374 

may represent a big source of uncertainty, we argue that the low spread values found here are a 375 

consequence of the small size of the domain, and the fact that the storm surge component due to 376 

remote wind effects is important, as discussed earlier.  377 



378 

 379 

Figure 11: Spread due to river forcing (a), meteorological forcing (b), boundary conditions (c) and tidal signal (d). Data are computed 380 

aggregating all the events. 381 

The ensemble spread due to initial and lateral boundary conditions is clearly a dominant contribution 382 

(Fig. 11c), exceeding by one order of magnitude the spread due to local meteorological forcing. The 383 

SR spread (Fig. 11c) is almost uniform throughout the entire domain with values between 12 and 13 384 

cm. The tidal signal extracted inverting the filtering procedure reveals that the contribution of tides 385 

to the sea level spread is of the same order of magnitude (Fig. 11d), with slightly smaller values 386 

between 9 and 10 cm. This suggests that both for computational efficiency and system performance, 387 

the storm surge EPS implemented in small domains should focus on the initial and lateral boundary 388 

condition uncertainties, further substantiating previous results (Chu, 1999). 389 

5 Summary and Conclusions 390 

We designed and developed a coastal Ensemble Prediction System for the Goro Lagoon (GOLFEM-391 

EPS) using a baroclinic very high-resolution unstructured grid model. The EPS is composed of 45 392 



members produced by model forecasts carried out with different meteorological forcing, initial and 393 

lateral boundary conditions from coarser resolution ocean models and perturbations to the river 394 

discharge. The forecast lead time is 3 days with a one day spin-up in analysis/simulation mode.  395 

The total SL RMSE computed at the two reference stations is 11 and 12 cm respectively for WEM 396 

and EM, while it is 11.5 cm for the deterministic reference forecast. One case, event 1, showed large 397 

errors, due to the specific importance of seiches and tidal elevation in the process and the limitation 398 

of the circulation models to reproduce such basin modes and their non -linear interaction with tides. 399 

The correct simulation of the tidal phase is also crucial and a way to account for the shifts in the tidal 400 

peak is to consider the skew surge (Williams et al., 2016). Such an approach will be further 401 

investigated for the domain considered here. 402 

A post-processing ensemble mean (EM) procedure was carried out and a weighted ensemble mean 403 

(WEM) methodology was tested based on the performance of the members during the spin-up which 404 

was considered to be equivalent to a training period. Of the 45 members used for the ensemble, most 405 

of the variability was reached including only members that differed in initial and lateral boundary 406 

conditions. An estimate of the uncertainty due to different initial/lateral boundary conditions, river 407 

runoff and atmospheric forcings was provided. A perturbation of ± 30 % in the river run off was 408 

found to contribute with 3-4 mm in the ensemble sea level spread limited to the river mouths. 409 

Meteorological forcing had a greater impact of between 1 and 3 cm, while initial/boundary conditions 410 

(including tides) provided most of the sea level uncertainty between 9 and 13 cm.  411 

It is found that EM and WEM forecasts have better skill from 48 to 72 hr forecast lead time while in 412 

the first two days they are equivalent to a single deterministic forecast skill. 413 

The conclusions regarding the skill of WEM or EM for 3 days sea level forecast is probably ultimately 414 

connected to the specific model domain size and the specific area dynamics. For general ensemble 415 

coastal forecasting, several areas should be tried with the same WEM and EM methodologies. For 416 

the Goro Lagoon specifically, different model size domains are needed, and the optimal model 417 

domain size should be found in order to obtain a reduced SL forecast error. The limitations in 418 

validating the model domain size derive from the small number of observations available which 419 

makes it difficult to produce a robust probabilistic verification of the EPS. In the future it is possible 420 

that coastal scale altimetry will offer a convenient data set for validation/calibration of a storm surge 421 

EPS. 422 

The lesson learnt from this exercise, most probably a generalizable conclusion, is that limited area 423 

storm surge forecasting uncertainty is dominated by initial and lateral boundary conditions and by 424 

phase/amplitude errors in tidal components. The former are also influenced by remotely forced 425 

propagating signals such as seiches for the specific case of the Adriatic but more generally remotely 426 



forced circulation signals. Given the necessity of having resolutions of ~100 m at the coasts, we 427 

conclude that an EPS might be useful also at the scale of the regional models that embed the limited 428 

area coastal models. 429 

Appendix A 430 

The tidal filter methodology  431 

The surge component (i.e., SR), the seiches and the tides extracted from model results were found 432 

using a frequency domain filter procedure based on the Fourier transform. The basic principles of 433 

the digital filter used here are described in Thomson and Emery (2014). If we consider a variable 434 

x(t) in the time domain t and its transformed X(f) in the frequency domain f found applying the 435 

discrete Fourier transform (DFT), the application of the digital filter can be summarized in the 436 

following three steps: 437 

1. Take the DFT, X(f) of the original dataset x(t). 438 

2. Multiply X(f) by the appropriate frequency response function W(f) or FRF, of a high, low or 439 

bandpass filter. 440 

3. Take the IFT of the results to obtain a filtered dataset in the time domain. 441 

The power of this method is its simplicity. Unlike the filters in the time domain that require a 442 

convolution (e.g., Doodson filter), in the frequency domain, our solution just entails a simple 443 

multiplication 444 

𝑋′(𝑓) = 𝑊(𝑓)𝑋(𝑓) 445 
A 1 446 

The filtered time series is then simply found by applying the IFT to X’(f). However, the form of W(f) 447 

is extremely important in order to have a reliable filter. Ideally the FRF should be near unity in the 448 

frequency band to be passed, and zero in the bands to be stopped, with a narrow transition band to 449 

prevent contamination by unwanted frequencies. 450 

Unfortunately, a very narrow and steep transition band is the main cause of large Gibbs phenomenon, 451 

affecting the time series obtained by IFT of X’(f) which manifests itself as large side lobs in the initial 452 

and final part of the time series (ringing). The Gibbs phenomenon can be reduced by “tapering” the 453 

filter (W(f)) with a smooth function to ensure a smooth transition to non-zero Fourier coefficients 454 

(Forbes, 1988). We tapered the transition bands using a Tukey window (also called cosine-taper), 455 

defined as 456 
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where x are the L points of the windows, and r is the ratio of the cosine-tapered section length to the 459 

entire window length with 0 < 𝑟 < 1 . A value r=0.5 produces a Tukey window where half of the 460 

entire window length consists of segments of a phase shifted cosine with period 2r=1. If 𝑟 ≤ 0  a 461 

rectangular window is returned, while for 𝑟 ≥ 1 a Von Hann window is generated (Bloomfield, 462 

2000).  463 

The energy density spectrum (ESD) of the observed sea level at Faro is shown in Fig. S1 of SI together 464 

with the ESD of the filtered signal using the Fourier transform filter. The green line is the FRF which 465 

was calibrated to exclude tidal and seiche signals from the time series in order to retain only the surge 466 

component. The resulting time series after the filter has been applied is the orange line in Fig. S1 of 467 

SI. The FRF can be easily inverted and the windows can be moved if there is a need to focus on 468 

particular frequencies (e.g., tides or seiches).  469 

On the other hand, the initial and final parts of the time series must be excluded because they are the 470 

ones most affected by the Gibbs phenomenon. If in time domain filters, the initial and final part of 471 

the time series are automatically excluded, in frequency domain filters, there is no clear threshold, 472 

and which part of the time series should be excluded is subjective. However, Walters and Heston 473 

(1982) suggest that in both time domain and frequency domain filters, the same amount of data are 474 

lost. The version of the tidal filter used for this work can be found at the Zenodo repository of the 475 

Oceanography group of the University of Bologna at the link: 476 

https://doi.org/10.5281/zenodo.6478113. 477 

Appendix B  478 

The Weighted Ensemble Mean method 479 

The steps for the WEM are as follows. 480 

1. First the bias between the model output and observations during the training period in a 481 

determined station is removed for each member (this step is also done for the simple average). 482 

𝐵𝑗   =
1

𝑇
∑(𝑥𝑖

𝑗 − 𝑜𝑖)

𝑇

𝑖=1

 483 

B.1 484 
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where 𝐵𝑗 is the bias for member j. 𝑥𝑖
𝑗
 is the member j variable value at time i. 𝑜𝑖 is the observation at 485 

time i and 𝑇 is the length of the training period. 486 

2. The standard Pearson correlation coefficient, defined by 487 


𝑜
𝑗 =

1
𝑇
∑ (𝑥𝑖

𝑗 − 𝑥𝑗) (𝑜𝑖 − 𝑜)
𝑇
𝑖=1

𝑥𝜎𝑗𝑜𝜎
 488 

B.2 489 

is computed for each member of the ensemble during the training period, where 𝑥𝑗 is the mean 490 

value of member j, 𝑜 is the mean observed value, 𝑥𝜎𝑗 is the model member j standard deviation, and 491 

𝑜𝜎is the observed standard deviation.  492 

3. The forecasts are ranked based on the correlation and the first k members are retained and 493 

used to compute the weights 𝑤𝑗  494 

𝑤𝑗 =

𝑜
𝑗

∑ 
𝑜
𝑗𝑘

𝑗=1

 495 
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4. the WEM is computed as the weighted average of the selected forecasts 497 

𝐹𝑖 =∑𝑤𝑗(𝑥𝑖
𝑗 − 𝐵𝑗)

𝑘

𝑗=1

 498 

B.4 499 

The accuracy of the member forecasts and of EM and WEM are evaluated by computing the 500 

correlation for the forecast period and RMSE defined by 501 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥𝑖

𝑗 − 𝑜𝑖)
2

𝑁

𝑖=1
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B.5 503 

for both SL and SR. 504 

The RMSE is evaluated against the ensemble spread computed as the root mean square of the 505 

ensemble variance. For sufficiently large ensemble sizes, the following equation should be 506 

approximately verified (Fortin et al. 2014). 507 



𝑅𝑀𝑆𝐸 ≈ √
1

𝑁
∑𝑠𝑡

2

𝑁

𝑡=1

= (𝑠𝑡
2)

1
2
 508 

B.6 509 

where 𝑠2 indicates the variance of the ensemble. 510 

Taylor diagrams (Taylor, 2001) are produced for chosen events, evaluating the model performances 511 

in terms of correlation, standard deviation (𝜎 ) and CRMSE (centered root mean square error) defined 512 

as 513 

𝐶𝑅𝑀𝑆𝐸 = √
1

𝑁
∑((𝑥𝑖

𝑗 − 𝑥𝑖
𝑗) − (𝑜𝑖 − 𝑜𝑖))

2𝑁
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 514 
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In eqs. B.5, B.6 and B.7, N is the maximum number of observations in the forecast period. 516 

Acknowledgments 517 

This work was supported by ARPAE grant to the University of Bologna and the Department of 518 

Physics and Astronomy supporting the PhD of Jacopo Alessandri. All the computations were done 519 

on the ZEUS supercomputing facilities, provided by CMCC. 520 

Data Availability Statement 521 

Model data of COSMO-5M, COSMO-2I, ADRIAC and ADRIAROMS models were provided by 522 

Arpae. Observed Sea level and Po river data were provided by Arpae through the dext3r webapp 523 

(https://simc.arpae.it/dext3r/). The GLOBAL product was provided by COPERNICUS-CMEMS 524 

(https://marine.copernicus.eu/it). ECMWF, MED-MFC and MED-MFC-T data were provided by 525 

CMCC. The open-source model SHYFEM (version 7_5_70) used in this work is freely available on 526 

the Zenodo repository (https://doi.org/10.5281/zenodo.3833857). Figures 2, 4, 5, 6, 9 and 10 were 527 

made with Matplotlib version 3.4.0 (Caswell et al., 2021; Hunter, 2007), available under the 528 

matplotlib license at https://doi.org/10.5281/zenodo.4638398. Taylor diagrams of figures 7, 8 and 9 529 

were made with Skillmetrics python package (Rockford, 2016; version 1.1.8). Figure 11 was made 530 

with PyNGL (version 1.6.1), a graphical python package developed by the National Center for 531 

Atmospheric Research (NCAR). Figure 1 was made with QGIS 3.22 geographic information 532 

system. 533 

https://simc.arpae.it/dext3r/
https://marine.copernicus.eu/it
https://doi.org/10.5281/zenodo.3833857
https://doi.org/10.5281/zenodo.4638398


References 534 

ARPAV. (2012). Sulla ripartizione delle portate del Po tra i vari rami e le bocche a mare del delta: esperienze storiche e nuove 535 
indagini all’anno 2011. Technical report 02/2012. Vicenza: Arpa Veneto. 536 

Bajo, M., Meugorac, I., Umgiesser, G., & Orlić M. (2019). Storm Surge and Seiche Modelling in the Adriatic Sea and the Impact of 537 
Data Assimilation. Quarterly Journal of the Royal Meteorological Society 145 (722): 2070–84. https://doi.org/10.1002/qj.3544. 538 

Beckers, J. V. L., Sprokkereef, E., & Roscoe K. L. (2008). Use of Bayesian Model Averaging to Determine Uncertainties in River 539 
Discharge and Water Level Forecasts. In: proc. 4th International Symposium on Flood Defence: Managing Flood Risk, Reliability 540 
and Vulnerability, Toronto, Ontario, Canada. 541 

Bellafiore, D., Umgiesser, G. (2010). Hydrodynamic coastal processes in the north Adriatic investigated with a 3D finite element 542 
model. Ocean Dynamics, 60(2):255-273. Doi: 10.1007/s10236-009-0254-x. 543 

Biolchi L.G., Unguendoli S., Bressan L., Giambastiani M.S.B., Valentini A. (2022). Ensemble technique application to an XBeach-544 
based coastal Early Warning System for the Northwest Adriatic Sea (Emilia-Romagna region, Italy). Coastal Engineering, Volume 545 
173, 104081. https://doi.org/10.1016/j.coastaleng.2022.104081 546 

Bloomfield, P. (2000). Fourier Analysis of Time Series. John Wiley & Sons, Inc. https://doi.org/10.1002/0471722235. 547 

Bondesan, M., Castiglioni, G. B., Elmis, C., Gabbianellis, G., Marocco R., Pirazzoli, P. A., & Tomasin A. (1995). Coastal Areas at 548 
Risk from Storm Surges and Sea-Level Rise in Northeastern Italy. Journal of Coastal Research 11 (4): 1354–79. 549 

Bressan, L., Valentini, A., Paccagnella, T., Montani, A., Marsigli, C., & Tesini, M. S.(2017). Sensitivity of sea-level forecasting to 550 
the horizontal resolution and sea surface forcing for different configurations of an oceanographic model of the Adriatic Sea. Adv. Sci. 551 
Res., 14, 77–84, https://doi.org/10.5194/asr-14-77-2017. 552 

Buizza, R. (2019). Introduction to the special issue on “25 years of ensemble forecasting.”. Q. J. R. Meteorol. Soc. 145, 1–11. 553 
https://doi.org/10.1002/qj.3370. 554 

Caswell, T. A., Droettboom, M., Lee, A., Andrade, E. S. D., Hunter, J.,Hoffmann, T., Firing, E., Klymak, J., Stansby, D., Varoquaux, 555 
N., Nielsen, J. H., Root, B., May, R., Elson, P., Seppänen, J. K., Dale, D., Jae-Joon Lee, McDougall, D., Straw, A., Hobson, P., 556 
Gohlke, C., Yu, T. S, Ma, E., Hannah, A., Vincent, A. F., Silvester, S., Moad, C., Kniazev, N., Ernest, E., & Ivanov, P. (2021). 557 
Matplotlib v3.4.0. [Software] https://doi.org/10.5281/zenodo.3633844. 558 

Cerovečki, I., Orlić, M., & Hendershott, M. C. (1997). Adriatic Seiche Decay and Energy Loss to the Mediterranean. Deep Sea 559 
Research Part I: Oceanographic Research Papers 44 (12): 2007–29. https://doi.org/10.1016/s0967-0637(97)00056-3. 560 

Chaumillon, E., Bertin, X., Fortunato, A. B., Bajo, M., Schneider, J. L., Dezileau, L., Patrick Walsh, J., et al. (2017). Storm-Induced 561 
Marine Flooding: Lessons from a Multidisciplinary Approach. Earth-Science Reviews 165 (February): 151–84. 562 
https://doi.org/10.1016/j.earscirev.2016.12.005. 563 

Chu, P. C. (1999). Fundamental Problems in Coastal Ocean Prediction. Proceedings of Oceanology International 99, 37–46. 564 

Clementi, E., Goglio, A. C., Aydogdu, A., Pistoia, J., Escudier, R., Drudi, M., Grandi A., Mariani, A., Lyubartsev, V., Lecci, R., 565 
Creti, S., Masina, S., Coppini, G., & Pinardi, N. (2021). The New Mediterranean Sea Analysis and Forecasting System Including 566 
Tides: Description and Validation. EGU general assembly 2021, online, 19–30 Apr 2021, EGU21-13531 . 567 
https://doi.org/10.5194/egusphere-egu21-13531. 568 

Clementi, E., Oddo, P., Drudi, M., Pinardi, N., Korres, G., & Grandi, A. (2017). Coupling Hydrodynamic and Wave Models: First 569 
Step and Sensitivity Experiments in the Mediterranean Sea. Ocean Dynamics 67 (10): 1293–1312. https://doi.org/10.1007/s10236-570 
017-1087-7. 571 

COSMO-newsletter. (2004). Operational Applications - ARPA-SIM (BOLOGNA). 25-26. Deutsch. WetterDienst (DWD) Offenbach 572 
6. 573 

Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient Inverse Modelling of Barotropic Ocean Tides. J. Atmosph. Oceanic Technol. 19 574 
(2): 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2. 575 

Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., & Mossa, M. (2017). Coastal Ocean Forecasting with an Unstructured Grid 576 
Model in the Southern Adriatic and Northern Ionian Seas. Natural Hazards and Earth System Sciences 17 (1): 45–59. 577 
https://doi.org/10.5194/nhess-17-45-2017. 578 

Ferrarin, C., Valentini, A., Vodopivec, M., Klaric, D., Massaro, G., Bajo, M., De Pascalis, F., Fadini, A., Ghezzo, M., Menegon, S., 579 
Bressan, L., Unguendoli, S., Fettich, A., Jerman, J., Ličer, M., Fustar, L., Papa, A., and Carraro, E. (2020). Integrated Sea Storm 580 
Management Strategy: The 29 October 2018 Event in the Adriatic Sea. Natural Hazards and Earth System Sciences 20 (1): 73–93. 581 
https://doi.org/10.5194/nhess-20-73-2020. 582 

https://doi.org/10.1002/qj.3544
https://doi.org/10.1002/0471722235
https://doi.org/10.5194/asr-14-77-2017
https://doi.org/10.1002/qj.3370
https://doi.org/10.5281/zenodo.3633844
https://doi.org/10.1016/s0967-0637(97)00056-3
https://doi.org/10.1016/j.earscirev.2016.12.005
https://doi.org/10.5194/egusphere-egu21-13531
https://doi.org/10.1007/s10236-017-1087-7
https://doi.org/10.1007/s10236-017-1087-7
https://doi.org/10.1175/1520-0426(2002)019%3C0183:eimobo%3E2.0.co;2
https://doi.org/10.5194/nhess-17-45-2017
https://doi.org/10.5194/nhess-20-73-2020


Flowerdew, J., Horsburgh, K., & Mylne, K. (2009). Ensemble Forecasting of Storm Surges. Marine Geodesy 32 (2): 91–99. 583 
https://doi.org/10.1080/01490410902869151. 584 

Flowerdew, J., Horsburgh, K., Wilson, C., & Mylne, K. (2010). Development and Evaluation of an Ensemble Forecasting System for 585 
Coastal Storm Surges. Quarterly Journal of the Royal Meteorological Society 136 (651): 1444–56. https://doi.org/10.1002/qj.648. 586 

Forbes, A. M. G. (1988). Fourier Transform Filtering: A Cautionary Note. Journal of Geophysical Research 93 (C6): 6958. 587 
https://doi.org/10.1029/jc093ic06p06958. 588 

Fortin, V., Abaza, M., Anctil, F., & Turcotte, R. (2014). Why Should Ensemble Spread Match the RMSE of the Ensemble Mean? 589 
Journal of Hydrometeorology 15 (4): 1708–13. https://doi.org/10.1175/jhm-d-14-0008.1. 590 

Forzieri, G., Feyen L., Russo S., Vousdoukas, M., Alfieri, L., Outten, S., Migliavacca, M., Bianchi, A., Rojas, R., & Cid, A. (2016). 591 
Multi-Hazard Assessment in Europe Under Climate Change. Climatic Change 137 (1-2): 105–19. https://doi.org/10.1007/s10584-592 
016-1661-x. 593 

Gaeta, M. G., Samaras, A.G., Federico, I., Archetti, R., Maicu, F., & Lorenzetti, G. (2016). A Coupled Wave 3-d Hydrodynamics 594 
Model of the Taranto Sea (italy): A Multiple-Nesting Approach. Natural Hazards and Earth System Sciences 16 (9): 2071–83. 595 
https://doi.org/10.5194/nhess-16-2071-2016. 596 

Garbero, V. & Milelli, M. (2020). Reforecast of the November 1994 flood in Piedmont using ERA5 and COSMO model: an 597 
operational point of view. Bull. of Atmos. Sci.& Technol. 1, 339–354. https://doi.org/10.1007/s42865-020-00027-0 598 

Garnier, E., Ciavola, P., Spencer, T., Ferreira, O., Armaroli, C., & McIvor, A. (2018). Historical Analysis of Storm Events: Case 599 
Studies in France, England, Portugal and Italy. Coastal Engineering 134 (April): 10–23. 600 
https://doi.org/10.1016/j.coastaleng.2017.06.014. 601 

Gastaldo, T., Poli, V., Marsigli, C., Cesari, D., Alberoni, P. P., & Paccagnella, T. (2021). Assimilation of radar reflectivity volumes 602 
in a pre‐operational framework. Quarterly Journal of the Royal Meteorological Society. Royal Meteorological Society (Great 603 
Britain), (qj.3957). doi:10.1002/qj.3957 604 

Gneiting, T. & Katzfuss, M. (2014). Probabilistic Forecasting. Annual Review of Statistics and Its Application, 1:1, 125-151  605 

Godin, G., & Trotti, L. (1975). Trieste, Water Levels 1952-1971: A Study of the Tide, Mean Level and Seiche Activity. Vol. 28. 606 
Miscellaneous Special Publcation. 607 

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, vol. 9, no. 3, pp. 90-95, May-608 
June 2007, doi: 10.1109/MCSE.2007.55. 609 

IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report 610 
of the Intergovernmental Panel on Climate Change. Cambridge University Press. 611 
 612 
Kirezci, E., Young, I.R., Ranasinghe, R., Muis, S., Nicholls, R.J., Lincke, D., & Hinkel, J. (2020). Projections of Global-Scale 613 
Extreme Sea Levels and Resulting Episodic Coastal Flooding over the 21st Century. Scientific Reports 10 (1). 614 
https://doi.org/10.1038/s41598-020-67736-6. 615 

Krishnamurti, T. N., Kishtawal, C.M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, E., Gadgil, S., & Surendran, S. (2000). 616 
Multimodel Ensemble Forecasts for Weather and Seasonal Climate. Journal of Climate 13 (23): 4196–216. 617 
https://doi.org/10.1175/1520-0442(2000)013<4196:meffwa>2.0.co;2. 618 

Lellouche, J.M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., et al. (2018). Recent Updates to 619 
the Copernicus Marine Service Global Ocean Monitoring and Forecasting Real-Time 1∕12 High-Resolution System. Ocean Science 620 
14 (5): 1093–1126. https://doi.org/10.5194/os-14-1093-2018. 621 

Le Traon P.Y., Reppucci A., Alvarez Fanjul E., Aouf L., Behrens A., Belmonte M., Bentamy A., Bertino L., Brando V.E., Kreiner 622 
M.B., Benkiran M., Carval T., Ciliberti S.A., Claustre H., Clementi E., Coppini G., Cossarini G., De Alfonso Alonso-Muñoyerro M., 623 
Delamarche A., Dibarboure G., Dinessen F., Drevillon M., Drillet Y., Faugere Y., Fernández V., Fleming A., Garcia-Hermosa M.I., 624 
Sotillo M.G., Garric G., Gasparin F., Giordan C., Gehlen M., Gregoire M.L., Guinehut S., Hamon M., Harris C., Hernandez F., 625 
Hinkler J.B., Hoyer J., Karvonen J., Kay S., King R., Lavergne T., Lemieux-Dudon B., Lima L., Mao C., Martin M.J., Masina S., 626 
Melet A., Buongiorno Nardelli B., Nolan G., Pascual A., Pistoia J., Palazov A., Piolle J.F., Pujol M.I., Pequignet A.C., Peneva E., 627 
Pérez Gómez B., Petit de la Villeon L., Pinardi N., Pisano A., Pouliquen S., Reid R., Remy E., Santoleri R., Siddorn J., She J., 628 
Staneva J., Stoffelen A., Tonani M., Vandenbulcke L., von Schuckmann K., Volpe G., Wettre C. & Zacharioudaki A. (2019) From 629 
Observation to Information and Users: The Copernicus Marine Service Perspective. Front. Mar. Sci. 6:234. Doi: 630 
10.3389/fmars.2019.00234 631 

Liberto, T. D., Colle, B.A., Georgas, N., Blumberg, A.F., & Taylor, A.A. (2011). Verification of a Multimodel Storm Surge 632 
Ensemble Around New York City and Long Island for the Cool Season. Weather and Forecasting 26 (6): 922–39. 633 
https://doi.org/10.1175/waf-d-10-05055.1. 634 

https://doi.org/10.1080/01490410902869151
https://doi.org/10.1002/qj.648
https://doi.org/10.1029/jc093ic06p06958
https://doi.org/10.1175/jhm-d-14-0008.1
https://doi.org/10.1007/s10584-016-1661-x
https://doi.org/10.1007/s10584-016-1661-x
https://doi.org/10.5194/nhess-16-2071-2016
https://doi.org/10.1016/j.coastaleng.2017.06.014
https://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1038/s41598-020-67736-6
https://doi.org/10.1175/1520-0442(2000)013%3C4196:meffwa%3E2.0.co;2
https://doi.org/10.5194/os-14-1093-2018
https://doi.org/10.1175/waf-d-10-05055.1


Lionello, P., Barriopedro, D., Ferrarin, C., Nicholls, R., Orlić, M., Raicich, F., Reale M., Umgiesser, G., Vousdoukas, M., & 635 
Zanchettin, D. (2021). Extreme Floods of Venice: Characteristics, Dynamics, Past and Future Evolution (review Article). Natural 636 
Hazards and Earth System Sciences 21 (8): 2705–31. https://doi.org/10.5194/nhess-21-2705-2021. 637 

Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences 20 (2): 130–41. 638 
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2. 639 

Madec, G. 2008. NEMO Ocean Engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN 640 
No 1288-1619. 641 

Maicu, F., Alessandri, J., Pinardi, N., Verri, G., Umgiesser, G., Lovo, S., Turolla, S., Paccagnella, T., & Valentini, A. (2021). 642 
Downscaling with an Unstructured Coastal-Ocean Model to the Goro Lagoon and the Po River Delta Branches. Front. Mar. Sci. 8: 643 
647781. https://doi.org/10.3389/fmars.2021.647781. 644 

Micaletto, G., Barletta, I., Mocavero, S., Federico, I., Epicoco, I., Verri, G., Coppini, G., Schiano, P., Aloisio, G., & Pinardi, N. 645 
(2022). Parallel implementation of the SHYFEM (System of HydrodYnamic Finite Element Modules) model. Geosci. Model Dev., 646 
15, 6025–6046, https://doi.org/10.5194/gmd-15-6025-2022. 647 

Milliff, R. F., Bonazzi, A., Wikle, C.K., Pinardi, N., & Berliner, L.M. (2011). Ocean Ensemble Forecasting. Part I: Ensemble 648 
Mediterranean Winds from a Bayesian Hierarchical Model. Quarterly Journal of the Royal Meteorological Society 137 (657): 858–649 
78. https://doi.org/10.1002/qj.767. 650 

Molteni, F., Buizza, R., Palmer, T.N., & Petroliagis, T. (1996). The ECMWF Ensemble Prediction System: Methodology and 651 
Validation. Quarterly Journal of the Royal Meteorological Society 122 (529): 73–119. https://doi.org/10.1002/qj.49712252905. 652 

Orlić, M., Kuzmić, M., & Pasarić, Z. (1994). Response of the Adriatic Sea to the Bora and Sirocco Forcing. Contin. Shelf Res. 14 (1): 653 
91–116. https://doi.org/10.1016/0278-4343(94)90007-8. 654 

Owens, R, & Hewson, T. (2018). ECMWF Forecast User Guide. https://doi.org/10.21957/M1CS7H. 655 

Palmer, T. N., Molteni, F., Mureau, R., Buizza, R., Chapelet, P., & Tribbia, J. (1992). Ensemble Prediction, no. 188 (July): 43. 656 
https://doi.org/10.21957/igxccor4n. 657 

Palmer, T. (2018). The ECMWF Ensemble Prediction System: Looking Back (more than) 25 years and Projecting Forward 25 years. 658 
Quarterly Journal of the Royal Meteorological Society 145 (S1): 12–24. https://doi.org/10.1002/qj.3383. 659 

Park, K., Federico, I., Di Lorenzo, E., Ezer, T., Cobb, K.M., Pinardi, N. & Coppini, G. (2022). The Contribution of Hurricane 660 
Remote Ocean Forcing to Storm Surge along the Southeastern U.S. coast. Coastal Engineering, 173. 661 

Perini, L., Calabrese, L., & Luciani, P. (2019). Mareggiate: Analisi Dati Del 2019 e Aggiornamento Della Sintesi 1946-2019. 662 
Bologna: Regione Emilia-Romagna. 663 

Perini, L., Calabrese, L., Luciani P. (2020). Mareggiate e Impatti Sulla Costa: Aggiornamento Dei Dati Al 2020, Degli Indicatori e 664 
Analisi Delle Tendenze. Bologna: Regione Emilia-Romagna. 665 

Pérez, B., Brouwer, R., Beckers, J., Paradis, D., Balseiro, C., Lyons, K., Cure, M., Sotillo, M.G., Hackett, B., Verlaan, M. & Fanjul 666 
E. A. (2012). ENSURF: Multi-Model Sea Level Forecast Implementation and Validation Results for the IBIROOS and Western 667 
Mediterranean Regions. Ocean Science 8 (2): 211–26. https://doi.org/10.5194/os-8-211-2012. 668 

Pinardi, N., Bonazzi, A., Dobricic, S., Milliff, R.F., Wikle, C.K. & Berliner, L.M. (2011). Ocean Ensemble Forecasting. Part II: 669 
Mediterranean Forecast System Response. Quarterly Journal of the Royal Meteorological Society 137 (657): 879–93. 670 
https://doi.org/10.1002/qj.816. 671 

Pinardi, N., Bonazzi, A., Scoccimarro, E., Dobricic, S., Navarra, A., Ghiselli, A. & Veronesi, P. (2008). Very Large Ensemble Ocean 672 
Forecasting Experiment Using the Grid Computing Infrastructure. Bulletin of the American Meteorological Society 89 (6): 799–804. 673 
https://doi.org/10.1175/2008bams2511.1. 674 

Pistoia, J., Pinardi, N., Oddo, P., Collins, M., Korres, G. & Drillet, Y. (2016). Development of Super-Ensemble Techniques for 675 
Ocean Analyses: The Mediterranean Sea Case. Natural Hazards and Earth System Sciences 16 (8): 1807–19. 676 
https://doi.org/10.5194/nhess-16-1807-2016. 677 

Raicich, F. F. (1999). A Case Study of the Adriatic Seiches (december 1997). Nuovo Cimento Della Societa Italiana Di Fisica C 22 678 
(5): 715–26. 679 

Rochford, P. A. (2016). SkillMetrics: A Python package for calculating the skill of model predictions against observations. 680 
[Software]. http://github.com/PeterRochford/SkillMetrics 681 

https://doi.org/10.5194/nhess-21-2705-2021
https://doi.org/10.1175/1520-0469(1963)020%3C0130:dnf%3E2.0.co;2
https://doi.org/10.3389/fmars.2021.647781
https://doi.org/10.1002/qj.767
https://doi.org/10.1002/qj.49712252905
https://doi.org/10.1016/0278-4343(94)90007-8
https://doi.org/10.21957/M1CS7H
https://doi.org/10.21957/igxccor4n
https://doi.org/10.1002/qj.3383
https://doi.org/10.5194/os-8-211-2012
https://doi.org/10.1002/qj.816
https://doi.org/10.1175/2008bams2511.1
https://doi.org/10.5194/nhess-16-1807-2016
http://github.com/PeterRochford/SkillMetrics


Russo, A., Coluccelli, A., Carniel, S., Benetazzo, A., Valentini, A., Paccagnella, T., Ravaioli, M., & Bortoluzzi, G. (2013). 682 
Operational models hierarchy for short term marine predictions: the Adriatic Sea example, in: OCEANS-Bergen, 2013 MTS/IEEE 683 
Jun 10 (pp. 1–6), IEEE. 684 

Salighehdar, A., Ye, Z., Liu, M., Florescu, I., & Blumberg, A.F. (2017). Ensemble-Based Storm Surge Forecasting Models. Weather 685 
and Forecasting 32 (5): 1921–36. https://doi.org/10.1175/waf-d-17-0017.1. 686 

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Periáñez, A. & Potthast, R. (2016). Kilometre-Scale Ensemble Data 687 
Assimilation for the COSMO Model (KENDA). Quarterly Journal of the Royal Meteorological Society 142 (696): 1453–72. 688 

Shchepetkin, A. F. & McWilliams, J.C. (2005). The Regional Oceanic Modeling System (ROMS): A Split-Explicit, Free-Surface, 689 
Topography-Following-Coordinate Oceanic Model. Ocean Modelling 9 (4): 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002. 690 

Staneva, J., Wahle, K., Koch, W., Behrens, A., Fenoglio-Marc, L. & Stanev, E.V. (2016). Coastal Flooding: Impact of Waves on 691 
Storm Surge During Extremes, a Case Study for the German Bight. Natural Hazards and Earth System Sciences 16 (11): 2373–89. 692 
https://doi.org/10.5194/nhess-16-2373-2016. 693 

Steppeler, J., Doms, G., Schättler, U., Bitzer, H.W., Gassmann, A., Damrath, U. & Gregoric, G. (2003). Meso-Gamma Scale 694 
Forecasts Using the Nonhydrostatic Model LM. Meteorog. Atmos. Phys. 82 (1-4): 75–96. https://doi.org/10.1007/s00703-001-0592-695 
9. 696 

Taylor, K. E. (2001). Summarizing Multiple Aspects of Model Performance in a Single Diagram. Journal of Geophysical Research: 697 
Atmospheres 106 (D7): 7183–92. https://doi.org/10.1029/2000jd900719. 698 

Thomson, R. E. & Emery, W.J. (2014). Chapter 6 - Digital Filters. In Data Analysis Methods in Physical Oceanography (third 699 
Edition), edited by Richard E. Thomson and William J. Emery, Third Edition, 593–637. Boston: Elsevier. 700 
https://doi.org/https://doi.org/10.1016/B978-0-12-387782-6.00006-5. 701 

Tolman, H. L. (2009). User Manual and System Documentation of WAVEWATCH III Version 3.14. NOAA/NWS/NCEP/MMAB 702 
Tech. Note 276, pp 194. 703 

Toth, Z. & Kalnay, E. (1993). Ensemble Forecasting at NMC: The Generation of Perturbations. Bulletin of the American 704 
Meteorological Society 74 (12): 2317–30. https://doi.org/10.1175/1520-0477(1993)074<2317:efantg>2.0.co;2. 705 

Trotta F., Federico I., Pinardi N., Coppini G., Causio S., Jansen E., Iovino D. & Masina S. (2021). A Relocatable Ocean Modeling 706 
Platform for Downscaling to Shelf-Coastal Areas to Support Disaster Risk Reduction. Front. Mar. Sci. 8:642815. Doi: 707 
10.3389/fmars.2021.642815 708 

Umgiesser, G., Canu, D.M., Cucco, A., Solidoro, C. (2004). A Finite Element Model for the Venice Lagoon. Development, set-up, 709 
calibration and validation. Journal of Marine Systems, 51 (1-4):123-145. Doi: 10.1016/j.jmarsys.2004.05.009. 710 

Umgiesser, G., Ferrarin, C., Bajo, M., Federico, I., Alessandri, J., Bellafiore, D., Chegini, T, & Pinsky, A. (2020). SHYFEM-711 
model/shyfem: Covid edition (VERS_7_5_70). [Software] Zenodo. https://doi.org/10.5281/zenodo.3833857. 712 

Vilibić, I. (2006). The Role of the Fundamental Seiche in the Adriatic Coastal Floods. Continental Shelf Research 26 (2): 206–16. 713 
https://doi.org/10.1016/j.csr.2005.11.001. 714 

Wahl, T., Haigh, I.D., Nicholls, R.J., Arns, A., Dangendorf, S., Hinkel, J. & Slangen, A.B.A. (2017). Understanding Extreme Sea 715 
Levels for Broad-Scale Coastal Impact and Adaptation Analysis. Nature Communications 8 (1). 716 
https://doi.org/10.1038/ncomms16075. 717 

Walters, R. A. & Heston, C. (1982). Removing Tidal-Period Variations from Time-Series Data Using Low-Pass Digital Filters. 718 
Journal of Physical Oceanography 12 (1): 112–15. https://doi.org/10.1175/1520-0485(1982)012<0112:rtpvft>2.0.co;2. 719 

Warner, J. C., Armstrong, B., He, R. & Zambon, J.B. (2010). Development of a Coupled Ocean-atmosphere-wave-sediment 720 
Transport (COAWST) Modeling System. Ocean Modelling 35 (3): 230–44. https://doi.org/10.1016/j.ocemod.2010.07.010.1 721 

Williams, J., Horsburgh, K.J., Williams, J.A. & Proctor, R.N.F. (2016). Tide and skew surge indepen-dence: New insights for flood 722 
risk. Geophys. Res. Lett.,43, 6410–6417, doi:10.1002/2016GL069522. 723 

https://doi.org/10.1175/waf-d-17-0017.1
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.5194/nhess-16-2373-2016
https://doi.org/10.1007/s00703-001-0592-9
https://doi.org/10.1007/s00703-001-0592-9
https://doi.org/10.1029/2000jd900719
https://doi.org/10.1016/B978-0-12-387782-6.00006-5
https://doi.org/10.1175/1520-0477(1993)074%3C2317:efantg%3E2.0.co;2
https://doi.org/10.5281/zenodo.3833857
https://doi.org/10.1016/j.csr.2005.11.001
https://doi.org/10.1038/ncomms16075
https://doi.org/10.1175/1520-0485(1982)012%3C0112:rtpvft%3E2.0.co;2
https://doi.org/10.1016/j.ocemod.2010.07.010

	Abstract
	Plain Languages Summary
	1 Introduction
	2 Data and Methods
	2.1 Sea Level Extreme Events in the Goro Lagoon
	2.2 The circulation model
	2.3 Nesting in large scale circulation models
	2.4 Meteorological forcing fields
	2.5 River Runoff Conditions
	3 The Ensemble Prediction System
	3.1 The Ensemble Methodology

	3.2 Ensemble Mean
	4 Results
	4.1 EPS Skill
	4.2 Ensemble Member Analysis
	5 Summary and Conclusions
	Appendix A
	The tidal filter methodology
	Appendix B
	The Weighted Ensemble Mean method

	Acknowledgments
	Data Availability Statement
	References

