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Key Points:
· The first comprehensive heatwave study with a spatial resolution 0.01° in China.
· Heatwave indicators in most China areas are increase
· Four categories divided by hazard and its slope and ten furnace cities of China are defined


Abstract
Heatwaves occurred frequently in summers, severely harming natural environment and human society. While a few long-term spatiotemporal heatwave studies have been conducted in China at the grid scale, their shortcomings involve discrete distribution and poor spatiotemporal continuity. We used daily data of 691 meteorological stations to obtain torridity index (TI) and heatwave index (HWI) datasets (0.01°), to evaluate the spatiotemporal distribution of heatwaves in Chinese mainland for 1990-2019. The results were as follows: (1) TI rose but with fluctuations. The largest increase occurred in North China in July. Areas with hazard levels of medium and above accounted for 22.16%, mainly in the eastern and southern provinces of China, South Tibet, East and South Xinjiang, and Chongqing. The hazard indicators in Chongqing and central Zhejiang were at especially high levels, which is concerning. (2) Average heatwave frequency, intensity, and duration reached relatively high levels of 6-8, 20-25, and 11-16, respectively, in East and South Xinjiang and Southeast Tibet. (3) The study areas were divided into four categories according to the spatiotemporal distribution of hazards. The “high hazard and rapidly increasing” and “low hazard and keep increasing” areas accounted for 8.71% and 41.33%, respectively. (4) The proportions of units with significantly increased average hazard (AH) at city and county levels were 57% and 68%, respectively. Jinhua, Zhengzhou, Nanchang, Wuhan, Shaoxing, Changsha, Shijiazhuang, Nanjing, Wuxi, and Changzhou accounted for the top 10 AH among the 49 first-tier, new first-tier, and second-tier cities. “Ten Furnaces” at the top of the provincial capitals were Zhengzhou, Nanchang, Wuhan, Changsha, Shijiazhuang, Nanjing, Hangzhou, Haikou, Chongqing, and Hefei. Suzhou’s AH rose the fastest. While the strategy of west development and of revitalizing northeast China progressed, and the urbanization level and population aging of developed areas were further developed, the continuously increasing heatwave hazard should be fully considered.
Plain Language Summary
In the context of global warming, heatwaves occurred frequently in summers in Chinese mainland, severely harming human health and economic society. However, spatial and temporal distributions and changes of heatwave hazards of the region are inadequately quantified and relative high-resolution mapping. Here, we assess heatwave hazards based on heatwave index calculated by quality-controlled air temperature and relative humidity data,  and heatwave frequency-intensity-duration assessment model. We show that the heat degree rose but with fluctuations for the period 1990-2019, and changes differed in different regions. The largest increase occurred in North China in July. Heatwave became longer, more frequent and more intense in most areas, representing heatwave hazards were high level and continuous rising, especially in Chongqing, provinces in East China, Southwestern Tibet and Xinjiang, which needed concening. We also ranked the top ten provincial capitals called “Ten Furnaces” based on average hazards, and they are Zhengzhou, Nanchang, Wuhan, Changsha, Shijiazhuang, Nanjing, Hangzhou, Haikou, Chongqing, and Hefei.
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1 Introduction
Global warming has led to the increasing frequency and intensity of extreme climate disasters (IPCC, 2021; Suarez-Gutierrez et al., 2020), and heatwaves account for the highest mortality rate among all extreme disasters (Borden & Cutter, 2008; Pengelly et al., 2007). The 2003 European heatwave caused approximately 70,000 deaths (Armstrong et al., 2019; Mitchell et al., 2016; Suarez-Gutierrez et al., 2020), and at least 5758 heat-related deaths were caused by the 2013 Chinese heatwave (Gu et al., 2016; Kotharkar & Ghosh, 2021a; Luo & Lau, 2018). The 2019 Indo-Pakistani heatwave caused at least 400 deaths, accompanied by widespread drought and water scarcity (Kotharkar & Ghosh, 2021b), and was one of the factors that led to the Bihar encephalitis outbreak(Chatterjee, 2019). Furthermore, the 2021 heatwave in Western North America led to a record temperature of 49.6°C in Canada (World Weather Attribution, 2021), resulting in more than 1,400 deaths (Lin et al., 2022; Silberner, 2021). Therefore, research on heatwaves is imperative in the context of global warming. 
A heatwave is a weather process involving high temperatures, high humidity levels, and a long duration, which leads to bodily discomfort and may threaten public health and safety, increase energy consumption, and affect social production activities (Grade of the Heat Wave, 2012). At present, various temperature indices are available to define heatwaves, such as air temperature (KNMI, 2020; Met Office, 2017; SMHI, 2020), surface temperature (Y. Liu & Quan, 2014), and dew point temperature (Alduchov & Eskridge, 1996); dew point temperatures are relevant due to high correlations with air temperature. There is a growing tendency to analyze heatwaves using apparent temperature indices such as physiological equivalent temperature (PET) (China Meteorological Administration, 2013), standard effective temperature (SET) (Zare et al., 2018), temperature-humidity-wind index (THW) (Steadman, 1984), humidex (Masterton et al., 1979), wet-bulb globe temperature (WBGT) (Yaglou & Minaed, 1957), universal thermal climate index (UTCI) (Dong et al., 2020; Emmanuel, 2005), and heat index (HI) (Z. Huang et al., 2011), which take into consideration additional indicators such as relative humidity, wind speed, and atmospheric precipitation. Notably, no consistent definition exists regarding the temperature threshold and the number of days of a heatwave (Anderson & Bell, 2011). Previous studies have shown that there are differences in how populations in different regions adapt to climate (Bobb et al., 2014; K. Chen et al., 2015; Song et al., 2017; Yan et al., 2022), which means that it is rather unreasonable to judge a heatwave in a complex climate region based on a single absolute threshold or a simple relative temperature threshold. 
In the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation(IPCC, 2012) and the Fifth Assessment Report (AR5) (IPCC, 2014) of the Intergovernmental Panel on Climate Change (IPCC), a risk-centered assessment framework was presented, in which risk was expressed as a function of hazard, exposure, and vulnerability (Estoque et al., 2020). Therefore, clarifying the spatiotemporal distribution of heatwave hazards is a necessary prerequisite for judging the evolutionary trend of heatwave risks. In the given framework, hazard was defined as the external factors of a system that pose a serious threat to the system (Wu et al., 2019). Some researchers have directly used the temperature index to define hazards (Dong et al., 2020; Estoque et al., 2020); however, the scientific literature shows that a heatwave hazard is a measure of the severity of heatwave events, usually determined by the intensity, duration, frequency, and extent of heatwaves (Anderson & Bell, 2011; Kang & Eltahir, 2018; Raei et al., 2018; Savić et al., 2018; S. Wang, 2021; Yao & Wang, 2021; Yin et al., 2020) and calculated using the graphic overlay method (Dai, Liu, Huang, et al., 2021; Dai, Liu, Wu, et al., 2021; Ian L. McHarg, 1969; Wu et al., 2022). 
China is a sensitive and significant area for the impact of global climate change (Beijing Climate Center, 2021). Since the 21st century, heatwaves have frequently occurred in China, and heatwaves are expected to form the new normal of the country’s summer weather in 2030 (Y. Ding, 2018). In addition, the results of Sun’s (2018) study on Chinese heatwaves showed a linear increase in intensity and a significant increase in frequency. Early studies involving heatwave hazard assessments in China used different definitions based on the meteorological stations considered and focused on small areas and short time periods, resulting in the shortcomings of discrete distribution and poor spatiotemporal continuity. For instance, Zhao et al. (2022) used the weighted average of surface temperature, air temperature, and air pressure to assess the hazard level in Ningxia for the years 2014–2019. Wang (2021) defined heatwave hazards based on the interpolated data of meteorological stations; duration, intensity, accumulated heat days, and the length and intensity of the return period were used to analyze the heatwave hazard level of the Yangtze River Delta region. Zhan et al.(2019) used 35℃ as the temperature for a heatwave and analyzed the heatwave characteristics, such as intensity and duration, of the North China Plain on a 0.5° grid scale interpolated by maximum temperature data. Relatively few long-term studies of Chinese heatwave hazards have been conducted with a finer grid unit scale and without the use of relative heat thresholds.
Since the 21st century, the intensity and extent of Chinese heatwaves have continued to increase, causing serious impacts on residents. For the present study, heatwaves were defined based on a heatwave index (HWI) calculated using the torridity index (TI) and heat index (HI), and an annual heatwave hazard dataset with a spatial resolution of 0.01° was built based on the daily monitoring data of 691 meteorological stations from May to September 1990–2019 in the Chinese mainland (hereinafter referred to as China). The spatiotemporal distribution of heatwave hazards in China was further evaluated for this period, and the average hazard (AH) trends at the city and county levels were determined.
2 Materials and Methods
2.1 Definitions of HWI and heatwaves
The heat index (HI) uses the relative and absolute thresholds to define a heat day, and considers the cumulative effect of adjacent days’ TI. The results of previous study showed that HI is a valid index for predicting heatwave weather (Z. Huang et al., 2011); therefore, we used HI to identify and define the heatwave index (HWI) and heatwaves.
TI is similar to apparent temperature indices, while HI considers the cumulative effect of a heatwave. Considering the long durations of high-temperature heatwaves, in this study, the HWI of a heatwave was defined as the average value of the daily HI, and a heatwave was defined as an event with TI ≥ TI' for three consecutive days or more and HWI ≥ 2.8; the HWI threshold was based on a comprehensive HI finding, indicating that the heat grade of the day reaches the heatwave standard if HI ≥ 2.8. The calculation model is given below.
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TI' is the threshold of TI; TIi represents TI of the i-th day before the current day; ndi represents the number of days from the i-th day before the current day to the current day; HIi represents the i-th day in a heatwave event; N represents the duration of the heatwave event, and the unit is day (d).
TI' was calculated from the quantiles of TI. First, samples (MT and RH) with MT > 33°C were selected from the daily meteorological data, and the TI sequence of samples was arranged in ascending order. The 50th quantile was selected as the local TI'. The calculation method is given below:
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Here,  is the i-th quantile value; X is the TI sequence in ascending order;p is the quantile (0.50); n represents the total number of sequences; and j is the j-th sequence number.
First, daily TI raster datasets were determined based on the interpolated MT and RH, and then the TI' raster was calculated based on equation (4). Following this, TI' was used as the comparison data, and each TI was traversed. The obtained value was compared with the value at the corresponding pixel in the comparison data; a pixel value greater than the comparison data indicated heat and was marked as 1, while the opposite was marked as 0, resulting in a daily raster dataset of 0 and 1, for a total of 4590. The HI dataset was calculated based on the judgment dataset. According to the definition of a heatwave, the pixels with a single heat event (without interruption) comprising less than three heat days or HWI < 2.8 were ignored to obtain the HWI dataset; thus, the pixels in the heatwave represented the HWI of the heatwave, the corresponding pixel of a single day with the highest HI in a single heatwave was marked as the HI of that day, and the pixel marked as 0 represented no heatwave occurrence.
2.2 Heatwave hazard assessment and classification
A heatwave hazard is usually defined based on the heatwave frequency, intensity, and duration. In this study, heatwave frequency (HWF), maximum HI of a heatwave (HWMHI), and maximum heatwave duration (HWMD) in a year—representing frequency, intensity, and duration, respectively—were used to calculate the heatwave hazard. To make the hazard values comparable from year to year, we calculated the maximum value of each indicator for the 30-year period, used this value to normalize the data, and then added the indicators with equal weight, as given in Equation (5):
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Based on the HWI dataset, the data were calculated separately for each year and for each pixel. The heatwaves were judged day by day, and the HWF value was increased by 1 in the case of a consecutive heatwave. If there was no value for HWMHI, the maximum value in this heatwave was assigned to HWMHI. If a value already existed, the new HWMHI value was compared with the existing value, and it was used if it was greater than the existing value. If there was no value for HWMD, the number of days for which the heatwave lasted was assigned to HWMD; if a value already existed, it was compared with the new value and replaced with the new value if the latter was greater than the existing value. This process was followed to obtain the HWF, HWMHI, and HWMD datasets for each year.
The natural breaks method was used to classify the spatial distribution and temporal trends of the average hazard (AH) values, and each was categorized as high, medium high, middle, medium low, or low (red section in Figure 2) and increasing, slightly increased, basically unchanged, slightly decreased, or decreased (green section in Figure 2). Apart from the above two classifications, the hazards in China were further divided into four categories: high hazard and rapidly increasing, high hazard and slightly decreased or no significant change, low hazard and keeps increasing, and others (blue section in Figure 2). Figure 2 presents the classification standards. In the spatiotemporal classification of hazards, an “or” relationship was present between bands of the same color section and an “and” relationship between bands of different color sections; for example, the “high hazard and rapidly increasing” category consisted of the following four scenarios: high hazard and increased, high hazard and slightly increased, medium high hazard and increased, and medium high hazard and slightly increased.
The AH values were used to rank heatwave hazards in the Chinese administrative divisions, and the zoning statistics methodology was used in this study. We first obtained the AH means of each administrative division for the 30-year period and then ran a linear regression over time for each administrative region. Following this, we selected first-tier, new first-tier, and second-tier cities and counties and ranked them in descending order of AH and slope.
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[bookmark: _Ref114654850]Figure 2. The standard for spatiotemporal classifications of heatwave hazards; the red and green sections represent the spatial distribution and temporal change classifications of heatwave hazards, respectively, and the blue section represents the spatiotemporal classifications of heatwave hazards
2.3 Analysis of the relative change of indicators
A time period spanning 30 years was chosen for this study. To better compare the changes in different indicators, the average values for the first five years (FY, 1990–1994) and the last five years (LY, 2015–2019) were considered. In addition, the level of change in each indicator was different for each geographical division; for average TI (ATI), the change also differed each month. Therefore, ATI was analyzed in terms of the different geographical divisions and months, and each heatwave indicator was analyzed according to the different geographical partitions; then, the average values for FY and LY were calculated. Moreover, the concept of relative change (RC) was introduced to avoid the one-sidedness of the absolute change amount when comparing different months or divisions. RC was calculated as follows:
		
Here, i, g, and m represent the different indicators (ATI, HWF, HWMHI, HWMD), different geographical divisions (N, NW, NE, SW, S, E), and different months (May, June, July, August, September), respectively; 和represent the average value of LY and FY for an indicator; and  represents the average indicator value for the period 1990–2019. RCi,g(,m)>0.8 meant that the indicator increased sharply for the geographical zone considered in a specific month (if RC was calculated).
3 Study area and Data
3.1 Study area
Spanning almost 50 degrees in latitude, China has a wide variety of climate types. Summer temperatures are consistently high across the country, and temperatures gradually decrease when the latitude increases. Generally speaking, summer in China spans the months June–August; however, in some cities and regions, temperature remains high in May and September, affecting a large number of people (T. Ding et al., 2010; He, Zhao, et al., 2022; A. Wang et al., 2022).
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[bookmark: _Ref102945816]Figure 1. Domains of six geographical divisions—North (N), which consists of Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia; Northwest (NW), which consists of Xinjiang, Qinghai, Gansu, Ningxia, and Shaanxi; Northeast (NE), which consists of Heilongjiang, Jilin, and Liaoning; Southwest (SW), which consists of Tibet, Yunnan, Sichuan, Chongqing, and Guizhou; Southcentral (SC), which consists of Henan, Hubei, Hunan, Guangdong, and Guangxi; and East (E), which consists of Shandong, Anhui, Jiangsu, Shanghai, Zhejiang, Jiangxi, and Fujian—and meteorological stations (Four sets of random validation stations were selected to make their distribution more uniform. Containing of 10% of all stations, a total of 69, each set randomly selects one day of the month to apply, so a total of four days per month using only interpolation points for interpolation.)
2.2 Data sources
Maximum temperature (MT,°C) and average relative humidity (RH, %) data from 699 meteorological stations in China (Figure 1) for the years 1990–2019 were used to calculate the TI and HI; these formed the surface climate daily value dataset (V3.0) of the China Meteorological Data Network (http://data.cma.cn/). The data were quality controlled. We focused on the extended summer period covering the months May–September to account for the impacts of early and late summer heatwaves (Y. Chen et al., 2021). Four sets of random validation stations were selected to make their distribution more uniform. Containing of 10% of all stations, a total of 69, each set randomly selects one day of the month to apply, so a total of four days per month using only interpolation points for interpolation. Some random validation stations overlap, so we obtained a validation set of 241 points and a training set of 450 points.
Data on elevation and geographical and administrative divisions were obtained from the Resource and Environmental Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/). The geographical divisions used in this study were as follows: North (N) consisted of Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia; Northwest (NW) consisted of Xinjiang, Qinghai, Gansu, Ningxia, and Shaanxi; Northeast (NE) consisted of Heilongjiang, Jilin, and Liaoning; Southwest (SW) consisted of Tibet, Yunnan, Sichuan, Chongqing, and Guizhou; Southcentral (SC) consisted of Henan, Hubei, Hunan, Guangdong, and Guangxi; and East (E) consisted of Shandong, Anhui, Jiangsu, Shanghai, Zhejiang, Jiangxi, and Fujian (Figure 1). The data on administrative divisions involved 34 provincial administrative units, 371 municipal units, and 2902 county units.
In this study, the municipalities directly under the central government were compared with cities at the prefecture level, with the latter classified as cities. To investigate the heatwave hazards in cities at different levels of economic development, we used the city ranking data from the Rising LAB (The Rising LAB, 2021). Based on commercial resource concentration, city hubs, city people’s activity, lifestyle diversity, and future plasticity, the Rising LAB constructed an index model of cities’ business attractiveness and divided 337 cities into six categories: four first-tier cities, 15 new first-tier cities, 30 second-tier cities, 70 third-tier cities, 90 fourth-tier cities, and 128 fifth-tier cities.
2.3 Data preparation
2.3.1 Meteorological data spatial interpolation
At present, the methods for obtaining meteorological data of a region by spatial interpolation of discrete meteorological stations mainly include inverse distance weighting (IDW) (Tanır Kayıkçı & Zengin Kazancı, 2016), Kriging (Yin et al., 2020), parameter-elevation regressions on independent slopes model (PRISM), the trend surface analysis (TSA), and thin plate smoothing spline (TPS) (Qian et al., 2010). Among them, Kriging and IDW are the most widely used in practical applications; however, their interpolation accuracies are not high enough for unevenly distributed meteorological data and complex terrains (Shu et al., 2011). TPS based on the principle of minimum curvature uses the characteristics of smoothly distributed meteorological elements in space to fit the surface, which is more reflective of the natural spatial distribution of things (Hutchinson & Gessler, 1994). The Australian National University Spline (ANUSPLIN) is a special meteorological data space interpolation program based on TPS that can effectively simulate terrain. It has been proven to be a reliable software for meteorological data interpolation (Feng et al., 2021; Price et al., 2000), and its interpolation accuracy in complex terrain areas is better than that of other methods (Jia & Cui, 2018; Yi et al., 2020). It can complete the spatial interpolation of more than two surfaces at the same time, so it is especially suitable for the interpolation of time series meteorological data (Hutchinson & Xu, 2013; M. Zhao et al., 2021).
Thus, in this study, we used the ANUSPLIN to interpolate MT and RH with the help of a one-dimensional independent covariate (the elevation data)
2.3.2 Interpolation accuracy validation
The accurate interpolation of MT and RH forms the premise for calculating heatwave properties. Therefore, the cross-validation method was used to verify the MT and RH datasets, and the process was as follows:
· The mean absolute error (MAE), normalized mean absolute error (NMAE), root mean square error (RMSE), and normalized root mean square error (NRMSE) values were calculated for the units of different timescales (day, month, year) using the validation set results as the true values and the interpolated results as the predicted values.
· The predicted values were fitted as independent variables and the true values as dependent variables, and the slope, R2, and P values were calculated for the different timescale units.
· A total of 18 cross-validation results for the two variables—that is, MT and RH—were selected according to the descending order of R2 at the different timescales for presentation; the numbers selected were for Day 4, Month 3, and Year 2.
The results in Table 1 showed that the minimum MAE values for the MT and RH interpolations were 0.80℃ and 3.45%, respectively. The minimum RMSEs were 1.03℃ and 4.76%, respectively. The minimum R2 value was 0.5318, but 98.08% of the results were not lower than 0.7, indicating that the prediction values were highly correlated with the true values (P < 0.001). The verification results showed that the interpolation results based on ANUSPLIN were accurate and reliable. Therefore, the MT and RH datasets could be used to calculate TI and HI. 
Table 1 also presents the 18 cross-validation results obtained for the two variables, where 0.98 < slope <1.0, R2 > 0.9, and the results passed the significance test (P < 0.01), as well as the NMAE and NRMSE calculated using the max–min normalization method.
[bookmark: _Ref114654635]Table 1. Interpolation verification results
	Date
	Variable
	slope
	R2
	P
	MAE
	NMAE
	RMSE
	NRMSE

	May 22, 1994
	RH
	0.9883 
	0.9585 
	1.2 × e-47
	3.6425 
	0 
	4.8385 
	0 

	May 5, 2002
	RH
	0.9906 
	0.9393 
	8.9 × e-43
	4.4610 
	0.6736 
	5.6748 
	0.4558 

	May 22,2010
	RH
	0.9853 
	0.9390 
	1 × e-42
	4.4661 
	0.6777 
	5.8611 
	0.5574 

	May 22,2016
	RH
	0.9855 
	0.9427 
	5.25 × e-43
	3.9316 
	0.2379 
	5.3401 
	0.2734 

	May 1997
	RH
	0.9940 
	0.9078 
	4.58 × e-142
	4.8122 
	0.9625 
	6.3506 
	0.8241 

	May 1999
	RH
	1.0043 
	0.9064 
	3.53 × e-141
	4.6614 
	0.8384 
	6.4561 
	0.8816 

	May 2016
	RH
	0.9981 
	0.9156 
	8.96 × e-148
	4.6932 
	0.8646 
	6.5814 
	0.9499 

	1997
	RH
	0.9933 
	0.8652 
	0
	4.8577 
	1 
	6.6733 
	1 

	1990
	RH
	0.9945 
	0.8645 
	0
	4.6707 
	0.8461 
	6.4122 
	0.8577 

	August 17, 1990
	MT
	1.0033 
	0.9717 
	4.19 × e-53
	0.8313 
	0 
	1.0669 
	0 

	May 10, 1995
	MT
	1.0051 
	0.9654 
	2.98 × e-50
	0.9118 
	0.2746 
	1.3134 
	0.4205 

	July 31, 2012
	MT
	1.0081 
	0.9664 
	2.17 × e-51
	0.9017 
	0.2399 
	1.1743 
	0.1831 

	September 27, 2014
	MT
	0.9985 
	0.9659 
	3.55 × e-51
	1.0061 
	0.5960 
	1.3341 
	0.4559 

	September 1992
	MT
	0.9996 
	0.9532 
	6.97 × e-182
	1.0220 
	0.6503 
	1.4879 
	0.7182 

	September 2003
	MT
	1.0012 
	0.9544 
	4.55 × e-184
	1.0433 
	0.7229 
	1.5320 
	0.7934 

	September 2019
	MT
	1.0023 
	0.9486 
	1.24 × e-177
	0.9876 
	0.5330 
	1.4638 
	0.6772 

	1990
	MT
	0.9988 
	0.9409 
	0
	1.1018 
	0.9227 
	1.6530 
	1 

	2003
	MT
	0.9994 
	0.9433 
	0
	1.1245 
	1 
	1.6410 
	0.9796 


4 Results
4.1 Dynamic changes in TI in different months
Figure 3 shows the ATI values for the five months considered over the 30-year period. In terms of TI, the high-value areas (HAs) in China were mostly located in the northwest, east, and south, and the low-value areas (LAs) were located in the SW and NE. With the northward movement of the direct sunlight region and the influence of topography, the HAs expanded in East Xinjiang, Southeast Tibet, and Hainan in May (Figure 3a). After various regions reached high levels with different coverages in June, July, and August (Figure 3b, c, d), the HAs began to move southward in September (Figure 3e). By this time, apart from the HAs in East Xinjiang, Southeast Tibet, Guangdong, South Guangxi, and Hainan, the TI values of other areas greatly decreased. The TI of southern China was low because of the rainy season in May and June, so HAs appeared in the north (Figure 3a, b). In July and August, South China began heating up on a large scale. Affected by high relative humidity and low wind speed, the southeastern provinces of China, Sichuan, and Chongqing reached maximum TI levels and coverage in August (Figure 3c, d).
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[bookmark: _Ref103262285]Figure 3. Spatial distribution of annual average TI (ATI) for the years 1990–2019: (a) May, (b) June, (c) July, (d) August, (e) September

With the time series as the independent variable and the ATI of each month over 30 years as the dependent variable, a linear regression was carried out, and the change slope was calculated. A significance test was performed. Figure 4 shows the ATI slope for the different months and the monthly slope (P < 0.05). A slope higher than 0 indicates that TI had a linear increasing trend, while a slope lower than 0 indicates that TI had a linearly decreasing trend. The proportions (slope > 0) were 99.99%, 99.43%, 100%, 99.03%, 98.00%, and 99.92% in the grids passing the significance test, indicating that the trend of increasing TI was widespread and significant. In May, HAs were located in Beijing, Tianjin, Shandong, Yunnan, Sichuan, etc. (Figure 4a). In June, July, and August, HAs appeared in the central and western provinces of China, East Tibet, West Yunnan, and Inner Mongolia (Figure 4b, c, d), with a continuous distribution. HAs appeared in the southeastern provinces of China in August and September as well as in Liaoning, East Inner Mongolia, and Central and West Tibet in September (Figure 4d, e), with relatively discrete distributions. The ATI dramatically increased in the regions where the slope was greater than 0.1. The monthly slope was reduced by the effect of inter-year changes, but the increasing areas passing the significance test were still consistent with the above results.
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[bookmark: _Ref103262468]Figure 4. Slope of the mean TI: (a) May, (b) June, (c) July, (d) August, (e) September, (f) monthly

Figure 5 shows the annual changes in the national ATI and the RC of the ATI for different regions and different months. From 1990 to 2019, ATI was found to increase, but with fluctuations. The minimum ATI value hovered around 110.5 in 1992–1994, and the maximum value appeared in 2007 at about 113.5. The total ATI increase was about 1.99 over 30 years (Figure 5a). The RC of ATI was the largest (3.39%) in July, and from a regional perspective, the RC of ATI in descending order was N > Nation > NW > NE > SW > SC > E. The RC of ATI in the SW and NE—which are regions sensitive to climate change—was higher than the national average in June and September (Figure 5b).
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[bookmark: _Ref104838208]Figure 5. Annual change in the national ATI in 1990–2019 (a) and RC of ATI between 1990–1994 and 2015–2019 (b)
4.2 Assessment of hazard indicators
Figure 6 shows the annual averages and slopes of three hazard indicators, namely HWF, HWMHI, and HWMD for the years 1990–2019 (P < 0.05). HAs for these indicators were mostly found in the NW, E, and SC, followed by the N, and LAs were found in the NE and SW. Extremely high values were found in the southeastern region of SW (Figure 6a, c, e), and a small number of extremely high values of HWF were found in Southeast Tibet and East Xinjiang. Except for the extremely low values, the HWF for a large area of the country reached an average of 3–4 times per year and was widely distributed in the eastern provinces of China, Chongqing, and Sichuan (Figure 6a). The maximum HWMHI in Southeast Tibet was 24–26, the highest value in the country; followed by Chongqing and East Xinjiang at 17–23; and South Hebei, East Henan, Central Zhejiang, South Hunan, Northwest Shandong, and South Shaanxi at 13–20 (Figure 6c). The distribution pattern of the HWMD was the same as that of the HWF; the highest HWMD (11–16 days) was found in East Xinjiang and Southeast Tibet, with an average of 4–8 days, and higher HWMD was about 8–10 days (Figure 6e). In terms of temporal trend, the percentages of slope > 0 in areas passing the significance tests for HWF, HWMHI, and HWMD were 99.84%, 99.98%, and 99.96%, respectively, indicating that heatwave frequency, intensity, and duration increased in most of the regions where significant changes occurred, such as Southwest Xinjiang, West Inner Mongolia, Chongqing, Henan, Shandong, Jiangsu, Zhejiang, and Hunan (Figure 6b, d, f).
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[bookmark: _Ref111724686]Figure 6. Spatial distribution of the averages and slopes of HWF (a, b), HWMHI (c, d), and HWMD (e, f) for the years 1990–2019

Figure 7 shows the RC levels of HWF, HWMHI, and HWMD. It can be seen that the RC of HWF descended to N > SC > NE > 0.8 > Nation > E > NW > SW, the RC of HWMHI descended to N > NE > NW > 0.8 > Nation > E > SW > SC, and the RC of HWMD descended to NW > N > SC > 0.8 > NE > E > SW > Nation. All results were greater than 0, which means that the values of all indicators increased in all regions, and each indicator sharply increased in some regions. 2–3 sharply increasing indicators were found in the N, NE, NW, and SC regions; therefore, a sharper increase occurred in northern China than in southern China. The largest RC was that of the HWMD, and it occurred in the NW. The smallest RC, too, was that of the HWMD, and it occurred in the overall nation.
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[bookmark: _Ref111554316]Figure 7. RC values of HWF, HWMHI, and HWMD
4.3 Spatiotemporal distribution of heatwave hazard
Figure 8a shows the AH spatial distribution in China for the years 1990–2019. The proportions of low, medium low, medium, medium high, and high AH were 61.07%, 16.77%, 13.07%, 7.06%, and 2.03%, respectively. Areas with AH levels medium and above were mainly distributed in the eastern and southern provinces of China, Southeast Tibet, East and South Xinjiang, and Chongqing. Low AH areas were mainly in the Qinghai–Tibet Plateau and the northeastern provinces of China due to their high altitudes and latitudes. Although the rates of increase in these regions were high, they could not reach the heatwave standard in the short term. Figure 8b shows the regression results of the AH values to assess the annual changes in hazard levels. Except for a few regions, the hazard levels of regions that passed the significance test all increased in varying degrees, including the eastern provinces of China, South Xinjiang, and Western Inner Mongolia.
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[bookmark: _Ref103264394]Figure 8. Heatwave hazard assessment (a) and slope of heatwave AH values (b)

The visualization results of the spatiotemporal distribution of heatwave hazards in China are shown in Figure 9. The first category of area accounted for 8.71% and included Southeast Tibet, South Xinjiang, Chongqing, South Hebei, West Henan, Central Zhejiang, Central and South Jiangxi, and East Hunan; the second category accounted for 0.38%, and the distribution area was concentrated in Northwest Xinjiang, which means that the hazard levels of almost all high hazard areas were increasing; the third category accounted for 41.33%, with a wide distribution area in East, South, and North China, which means that most of the low hazard areas saw an increasing hazard trend that will continue to increase in the future. The spatiotemporal hazard levels of other areas, such as the Qinghai–Tibet Plateau, Yunnan–Guizhou Plateau, and parts of Northeast China, were low due to their high altitudes and latitudes.
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[bookmark: _Ref102877689]Figure 9. Heatwave classifications in China
4.4 Ranking the heatwave hazard levels of Chinese cities
We evaluated the AH values at the city and county levels and their slopes. The top 100 results at the city and county levels are shown in Table S1 and Table S2, respectively, and 10 cities and 10 counties with the fastest increase in hazard values are presented in bold; Table S1 shows the AH values of the first-tier, new first-tier, and second-tier cities. Luohe (Henan) was found to have the highest AH, while Suzhou (Jiangsu) had the highest slope (Table S1). Shanghai and the Gulou, Shunhe Huizi, Yuwangtai, Longting, Xiangfu districts in Henan Kaifeng, Wancheng District in Henan Nanyang, and Xiangcheng District in Jiangsu Suzhou were in the top ten fastest increase cities and counties but not in the top 100 AH rankings, which means the AH values of these regions were not high, but their growth rates were at the forefront. The administrative districts that passed the significance test are marked with “*” in the tables (P < 0.05), and the proportion of units that significantly increased, as seen in Table S1 and Table S2, were 57% and 68%, respectively, at the city and county levels.
Beijing, Chongqing, Tianjin, and Shanghai had relatively low rankings overall (Table 2), but some urban districts in Chongqing had higher rankings at the county level (Table S2); the possible reason for this phenomenon is that the presence of suburbs reduced the statistical significance of mentioned cities. The top 10 first-tier, new first-tier, and second-tier cities were Jinhua, Zhengzhou, Nanchang, Wuhan, Shaoxing, Changsha, Shijiazhuang, Nanjing, Wuxi, and Changzhou; and the top 10 provincial capitals were Zhengzhou, Nanchang, Wuhan, Changsha, Shijiazhuang, Nanjing, Hangzhou, Haikou, Chongqing, and Hefei, and these were termed the “Ten Furnaces” in this study.
[bookmark: _Ref102924282]Table 2. AH ranking of first-tier, new first-tier and second-tier cities
	index
	City
	index
	City
	index
	City
	index
	City

	1
	Jinhua, Zhejiang
	14
	Chongqing
	27
	Zhongshan, Guangdong
	40
	City of Yantai

	2
	*Zhengzhou, Henan
	15
	Hefei, Anhui
	28
	*Nanning, Guangxi
	41
	Guiyang, Guizhou

	3
	Nanchang, Jiangxi
	16
	*Xuzhou, Jiangsu
	29
	*Nantong, Jiangsu
	42
	*Xiamen, Fujian

	4
	*Wuhan, Hubei
	17
	*Suzhou, Jiangsu
	30
	Taizhou, Zhejiang
	43
	Taiyuan, Shanxi

	5
	Shaoxing, Zhejiang
	18
	*Foshan, Guangdong
	31
	Beijing
	44
	Harbin, Heilongjiang

	6
	*Changsha, Hunan
	19
	Jinan, Shandong
	32
	*Huizhou, Guangdong
	45
	Dalian, Liaoning

	7
	Shijiazhuang, Hebei
	20
	Tianjin
	33
	Chengdu, Sichuan
	46
	Lanzhou, Gansu

	8
	*Nanjing, Jiangsu
	21
	*Yangzhou, Jiangsu
	34
	Fuzhou, Fujian
	47
	Changchun, Jilin

	9
	*Wuxi, Jiangsu
	22
	Dongguan, Guangdong
	35
	Wenzhou, Zhejiang
	48
	*Kunming, Yunnan

	10
	*Changzhou, Jiangsu
	23
	*Shanghai
	36
	Shenzhen, Guangdong
	49
	*Quanzhou, Fujian

	11
	*Jiaxing, Zhejiang
	24
	*Guangzhou, Guangdong
	37
	Shenyang, Liaoning
	
	

	12
	Hangzhou, Zhejiang
	25
	Ningbo, Zhejiang
	38
	Zhuhai, Guangdong
	
	

	13
	Haikou, Hainan
	26
	Xi'an, Shaanxi
	39
	Qingdao, Shandong
	
	


Note: * means that the city passed the significance test
5 Discussions
5.1 Heatwave hazards in Chinese mainland
In 2013, severely high temperatures occurred in South China, resulting in extreme drought and food production reduction (Wikipedia, 2021). In the summer of 2018, heatwaves in Northeast Asia and East Asia caused more than 64.7 million mu of arable land to dry up, and more than 4.6 million people faced a shortage of drinking water (China Meteorological Administration, 2018). Figure 10 shows the heatwave indicators in 2013 and 2018. It can be seen that the present study successfully detected these heatwave events. In 2013, 4–6 heatwaves were detected in the Yangtze River Basin (1–4 in other years) (Figure 10a), HWMHI reached 18–30 (Figure 10c), the longest heatwave lasted 10–20 days, and a heatwave lasting 23 days occurred in Central and North Hunan (Figure 10e). The heatwaves in Northeast China in 2018 mainly occurred in two regions: the junction of Central South Heilongjiang and Northeast Jilin and the junction of Liaoning and Southeast Jilin. There were 2–4 heatwaves during this period (Figure 10b); HWMHI was as high as 20–25 and slightly higher than that in North China (Figure 10d), and the longest heatwave lasted 5–10 days, which was an abrupt year compared to the other years.
[bookmark: _Ref114654944][image: ]
Figure 10. HWF, HWMHI, and HWMD in 2013 (a, c, e) and 2018 (b, d, f)

[bookmark: _Ref114655009]The present study showed an obvious upward trend in the Northeast and the Qinghai–Tibet Plateau during TI, which aligns with the results of previous studies (Bibi et al., 2018; Fan et al., 2011; Q. Wang et al., 2020; J. Zhang et al., 2019). We further verified the reliability of the results by comparing them with those of past research. Figure 11 shows a map of the heatwave hazards in the Belt and Road area based on relative and absolute thresholds from Yin’s study(Yin et al., 2020), indicating that East China and North and Southeast Asia are high-hazard areas. Comparing this with the present research (Figure 9) revealed good consistency in the results of the eastern, northeastern, and northwestern regions of China; high-hazard areas, such as Southeast Tibet, East Xinjiang, Chongqing, and other regions, were accurately identified. However, the results obtained for South China, such as the Hainan and Guangxi regions, were quite different, mainly because the definition in past research only included the annual relative temperature threshold and not the long-term changes. Thus, Yin’s results overestimate the hazard. In addition, Yin’s study involved more tropical and arctic regions, thus reducing the differences seen within China. To make the results comparable between years, it is also necessary to normalize the annual indicators using a unified threshold, and it is unreasonable to simply normalize them to 0–1, which is another issue in his study. In contrast, the results of the heatwave hazard assessment in this study are more consistent with those of existing studies; they are also more accurate and better reflect the hazard levels in China.
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Figure 11. Heatwave hazard assessment (Yin et al.)
Several studies have shown that urban heat islands and heat waves synergistically increase the overall risk levels of cities (He, Wang, et al., 2022; Zong et al., 2021). In 2017, the China Meteorological Administration released the rankings of hot summer cities in China, which included Chongqing, Fuzhou, Hangzhou, Nanchang, Changsha, Wuhan, Xi’an, Nanjing, Hefei, and Nanning; therefore, these are known as the “Ten Furnaces” (National Climate Center, 2017). A similar conclusion was drawn in the present study about the new “Ten Furnaces,” as mentioned above. While the previously reported results differ slightly from ours, they are similar overall. Specifically, seven of the originally reported cities, including Nanchang and Wuhan, remained in the “Ten Furnaces” identified in the present study, while Nanning, Xi’an, and Fuzhou were replaced by Zhengzhou, Shijiazhuang, and Haikou. This was due to the differences in the research scale (point scale and grid scale) and the calculated standards (HI and heatwave hazard). Zhengzhou, Wuhan, Changsha, and Nanjing were found to have a significant increase in hazard levels. Previous research has pointed out that the North China Plain is threatened by deadly heatwaves (Kang & Eltahir, 2018), which provides another explanation for the cities in North China becoming “Furnace Cities.” Notably, Jinhua (Zhejiang) ranked first in terms of AH, and this result is similar to that of past research (S. Wang, 2021). The possible reason for this is that Jinhua is surrounded by mountains and experiences rapid warming during the day and slow cooling at night (X. Liu & Huang, 2015). Research shows that defining city classes, which was the method used in this study, can help focus on cities that are easily overlooked in heatwave research.
5.2 Strengths and limitations of the study
Previous studies have pointed out that extreme regional heatwaves will increase significantly with global warming (Dosio et al., 2018; Guo et al., 2017; Y. Zhang et al., 2019), while temporal or spatial compounding heatwave events will further increase heat-related hazards (An & Zuo, 2021; Baldwin et al., 2019; Y. Chen et al., 2021). The traditional hazard assessment of heatwaves only considers temperature variables, which may lead to inaccuracies in dry and wet areas. Compared to studies that only consider temperatures, the present study can better reflect people’s feelings. In addition, the hazard assessment of China’s heatwaves at the grid scale, particularly with a spatial resolution of 0.01°, was more refined than those of meteorological stations and can help intuitively describe the heatwave grades in different regions. Third, while heat wave research tends to focus more on cities due to the impact of urban heat islands (He, Wang, et al., 2022; Savić et al., 2018; Zong et al., 2021), there exist a large number of farmers and migrant workers in the vast Chinese mainland who are relatively poor and need to work outdoors, with their jobs being poorly mechanized due to topography; this means that they will be exposed to hot weather for long periods of time. There is spatial continuity in the present study’s results, as they focus on county village areas, and may be used to provide assistance to the inhabitants of these areas from a heatwave perspective and in the context of China’s policy of precise poverty alleviation.
However, it should be noted that the relationship between heatwaves and human health is extremely complex, so the somatosensory temperatures used in different studies are not unique. In some cases, the adverse effects on humans may have been overestimated (such as the narrow tube effect between large high-rise buildings) or underestimated (such as strong solar radiation outdoors) (Sylla et al., 2018), but the effects of radiation and wind speed on the human body are relatively insignificant. Therefore, the indicators selected for this study did not consider the effects of wind speed and the underlying surface. The effects of somatosensory temperature were relatively insignificant (F. Wang et al., 2021). In addition, this study did not distinguish the different indicators based on their importance for calculating heatwave hazards; this is also a limitation of the study because different regions and different indicators have different effects on hazards.
5.3 Implications for future heatwave research and public policy
Previous studies have shown that the additional mortality caused by the first heatwave is 5.04%, which is higher than that after (2.65%), and that the length of the heatwave season is increasing (Habeeb et al., 2015). Heatwaves affect the thermoregulatory system of organisms through heat stress, thus causing harm to organisms and the natural world (Xu & Tong, 2017). Past studies have also shown that the faster the temperature changes, the higher the heat stress and the greater the harm to human blood vessels (Calleja-Agius et al., 2021; C. Liu et al., 2015). Therefore, it is necessary to pay extra attention to heatwave characteristics such as heatwave start and end dates and different heatwave grades. These characteristics can also provide us with a heatwave’s spatial and temporal information. In fact, the grid datasets for TI and HI in China were convenient for heatwave characteristics research.
Several areas highlighted in Figure 6 need our attention, including Southeast Tibet, East Xinjiang, Chongqing, North Henan, and Central Zhejiang. The values of the heatwave indicators in Chongqing and Central Zhejiang were much higher than the national average, and the population is growing due to economic construction and tourism, raising the need to pay more attention to these regions. The government should rationally determine the schedules of outdoor workers (such as sanitation workers, construction workers, etc.) based on the heatwave characteristics of different regions, and other social organizations should actively publicize relevant heatwave prevention knowledge to reduce the possibility of residents being exposed to high temperatures and humidity levels for extended durations, thus reducing the possibility of heatwaves harming their health. The medium and high hazard areas were divided into two parts (Li X. et al., 2021; Z. Li et al., 2019), of which the eastern part has a developed economy and high population density; heatwaves will thus continue to have a deep impact on human society. This part should receive special attention when formulating policies, especially Chongqing, North Henan, Central Zhejiang, Central and South Hunan, and Central and South Jiangxi. Although the hazard level of the western part is higher, heatwaves have less impact on society due to the underdeveloped economy and relatively low population. In addition, several areas with low spatiotemporal hazard levels were identified in this study; the ecological protection and construction of these areas should not be neglected, especially considering their high sensitivities to climate change and high ecological vulnerability.
It is now possible to accurately forecast heatwave weather, and potential deaths due to heatwaves can be avoided via the joint efforts of the government, individuals, and caregivers of at-risk people (Cheng et al., 2018). Previous studies have shown that the success of a heatwave warning system can result in a large amount of people being saved as well as in high profits (Cheng et al., 2018; C. Huang et al., 2013). However, social heatwave handling systems need to be further researched in the context of carbon neutrality policies. The demand for electric power will be difficult to meet under the combined pressure of soaring electricity use and drought, which is more prevalent in the southern regions of China during heatwaves, as these areas rely more on hydropower. The present study’s results also pointed out some of these regions.
In addition, meteorological disasters, such as hot, dry winds and forest fires caused by heatwaves, will also have impacts on agriculture and forestry, leading to the loss of human society. In severe cases, these will threaten human health and even life safety. If a more comprehensive assessment of heatwaves hazards is required in the future, the indicators that directly or indirectly pose health threats to humans should be focused on.
6 Conclusion
Based on the interpolated MT and RH data, we calculated the values for TI and HWI. Based on HWI, the datasets of HWF, HWMHI, and HWMD in the Chinese mainland, covering the years 1990–2019, were obtained with a spatial resolution of 0.01°, and their spatiotemporal distribution was analyzed. Then, the spatiotemporal distribution of heatwave hazards was evaluated. The results revealed the following:
(1) TI increased in 1990–2019, albeit with fluctuations, with the highest ATIRC found in North China, followed by Northwest China, in July (3.39%). Notably, there was a clear trend of increasing TI in climate-sensitive regions, such as Northeast China and the Qinghai–Tibet Plateau, in June and September.
(2) Areas with hazard levels of medium and above were mainly distributed in East and South China, Southeast Tibet, East and South Xinjiang, and Chongqing, accounting for 22.16%; areas with significantly increasing hazard levels were East China, South Xinjiang, and Western Inner Mongolia. Through comparative analysis, areas with “high and rapidly increasing” hazard levels, such as Southeast Tibet, South Xinjiang, Chongqing, South Hebei, West Henan, Central Zhejiang, Central and South Jiangxi, and East Hunan, accounted for 8.71% of the country, and areas with “low and keep increasing” hazard levels were widely distributed in the eastern, southern, and northern regions of China, including Jiangsu, Inner Mongolia, Hainan, Shandong, and Heilongjiang, and accounted for 41.33%.
(3) The city with the highest AH was Luohe (Henan), and the city with the fastest growth was Suzhou (Jiangsu). The units of cities and counties were found to have increased significantly by 57% and 68%, respectively. Among the 49 first-tier, new first-tier, and second-tier cities, the top 10 were Jinhua, Zhengzhou, Nanchang, Wuhan, Shaoxing, Changsha, Shijiazhuang, Nanjing, Wuxi, and Changzhou. Some of these cities have low administrative or economic development levels, which have reduced people’s attention to the mentioned cities. However, it is necessary to pay attention to the internal infrastructure construction in these cities to reduce the harm of future heatwaves. Upon ranking the provincial capitals, the “Ten Furnaces” were identified as Zhengzhou, Nanchang, Wuhan, Changsha, Shijiazhuang, Nanjing, Hangzhou, Haikou, Chongqing, and Hefei (sequentially).
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