The method of images revisited: Approximate solutions in wedge-shaped aquifers of arbitrary angle
I.A. Nikoletos1*, K.L. Katsifarakis1
1Division of Hydraulics and Environmental Engineering,
Dept. of Civil Engineering, A.U.Th,
GR- 54124 Thessaloniki, Greece

* Corresponding author: e-mail: irakniko@civil.auth.gr

Abstract
This paper focuses on deriving new approximate analytical solutions in wedge-shaped aquifers. The proposed methodology is applicable to any type of aquifer namely, leaky, confined and unconfined, under both steady state and transient flow conditions. By applying the method of images and seperating the flow field into sections using physical arguements, analytical expressions are obtained for the drawdown function. In contrast to the conventional theory, the proposed solutions are applicable to arbitrary wedge angle. Comparison of the results of the derived approximate analytical solutions to numerical ones, is considered necessary to ensure its validity. MODFLOW, a well-known numerical tool is used to calculate the numerical results. The results indicate that the boundary conditions are fully observed, the drawdown is feasible to be calculated at any point of the real flow field (continuity of the drawdown function) and discrepancies compared to numerical results are considered negligible.  The main advantage of the proposed procedure is that it can be easily used in conjunction with meta-heuristic algorithms to solve groundwater resources optimization problems.    
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1. Introduction
Aquifers bounded by two boundaries, constant head such as streams and lakes or no flux, such as impermeable rocks, intersecting at angle smaller than 90o are called wedge-shaped (Mahdavi, 2021). Their study has been the subject of research interest over the years. Most of the research papers were focused on analytical, approximate analytical and semi-analytical expressions for drawdown calculation and estimation of the aquifer’s parameters (Singh, 2001; Yeh et. al., 2008).
Analytical procedures have been followed in several research papers to obtain expressions for the drawdown function. The well-known Hankel transform has been used by Chan et. al. (1978), Yeh et. al. (2006) and Chuang and Yeh (2018) to obtain analytical solutions in wedge-shaped aquifers under steady state and transient flow conditions respectively.  Chen et. al. (2009) have applied the method of images to describe the aquifer’s response to a constant pumping well.  Other methods used to derive analytical solutions to wedge-shaped aquifers are the revisited Strack-Chernysov model (Kacimov et.al., 2016), fractional calculus (Kavvas et. al., 2017) and Laplace transform (Lin et. al., 2018). Recently, more complicated aquifer’s shapes, such as triangle-shaped, annular wedge-shaped, trapezoidal-shaped, have been studied analytically (Asadi-Aghbolaghi & Seyyedian, 2010; Kacimov et. al., 2017; Leray et. al., 2019; Mahdavi, 2019; Mahdavi and Yazdani, 2021; Mahdavi, 2022; Nagheli et. al., 2020; Zlotnik et. al., 2015). 
When no analytical solutions are available, semi-analytical and approximate analytical methods have been adopted to investigate wedge-shaped aquifers. Dimensionless type curves of flux-time and drawdown-time are given for homogeneous aquifers by Sedghi et. al. (2010) and Sedghi et. al. (2012) as well as for heterogeneous ones from Samani and Sedghi (2015), using integrals transform methods.  Wang et al. (2018) presented a Laplace transform boundary element method to simulate the groundwater flow. Estimation of hydraulic parameters and prediction of the discharge of qanat in alluvial aquifers is achieved via the semi-analytical approach introduced by Sedghi and Zhan (2022). On the other hand, approximate analytical solutions are simplified expressions aiming to describe complex problems with good accuracy. Approximate solutions to Forcheimer equation (Moutsopoulos & Tsihrintzis, 2005; Okuyade et. al., 2022)) and groundwater response to tidal fluctuations (Monachesi & Guarracino, 2011) are only a few examples showing their usefulness. Expressions obtained from approximate procedures suit perfectly to be used in combination with meta-heuristic methods (Christelis et. al., 2019; Karpouzos & Katsifarakis 2021; Mallios et. al., 2022; Rodriguez-Pretelin & Nowak 2019).  Further discussion about approximate analytical solutions will follow in section 3. 
In this framework, approximate analytical solutions for wedge-shaped aquifers are sought.  Observance of boundary conditions, either constant head or no flux, as well as continuity of the drawdown function were set as prerequisites. The concept of the proposed methodology is the division of the real flow field into two sections, where different fictitious wells are taken into account. The method of images has been applied to introduce the fictitious, pumping or injection wells.
2. Outline of the method of images
The basic concept of the method of images is that a boundary can be “removed” by adding a number of fictitious (or image) wells, symmetrical of the real ones with respect to it, resulting into an equivalent infinite flow field (Haitjema, 2006; Mahdavi, 2020; Nikoletos, 2020). The sign of the flow rate of each image well depends on the boundary condition and guarantees its observance (Katsifarakis et  al., 2018; Samani & Zarei-Doudeji, 2012). From mathematical point of view, it is a specific application of the Green’s function and is applicable to problems described by the Poisson equation (Mohamed & Paleologos, 2018). Its use is extensive in many scientific fields such as groundwater hydraulics (Kuo et. al., 1994), electrostatics (Nguyen & Mehrabian, 2021), magnetics (Curtis et. al., 2015) and optics. The method of images has been widely used in groundwater flow simulation problems to calculate hydraulic head level drawdown (Atangana, 2014; Nikoletos & Katsifarakis, 2022; Penny et. al., 2020), to describe interaction between ground and surface water (Anderson, 2003) and to optimize the management of aquifers (Katsifarakis, 2008) and especially coastal aquifers facing saltwater intrusion problems (Etsias et. al., 2021; Mantoglou, 2003). It is worth mentioning that the method of images gives exact solutions in wedge-shaped aquifers bounded by two boundaries intersecting at angles of : 90o, 60o, 45o, 30o etc. (each angle verifying eq. 1)
                                                                                                                                           (1)
Where θ, is the boundary intersection angle and N, the number of fictitious wells.



3. Approximate analytical solutions 
3.1 Previous Studies
Due to the complexity of many flow fields, exact solutions cannot be found. In such cases, approximate analytical solutions could be a good alternative, if the introduced error is acceptable and the computational volume low. On the other hand, solutions produced by numerical methods are inherently approximate, too. Convergence of both approximate analytical and numerical methods point out the validity of the proposed solutions.
In the following paragraphs, the usefulness of approximate analytical solutions to groundwater resources management problems is presented. Drawdown distribution in semi-infinite aquifers is easily calculated via approximate solutions (Nikoletos & Katsifarakis, 2022; Sun et. al., 2011; Zlotnik et. al., 2017; Yang et. al., 2014). Accurate calculation of stream depletion rate due to pumping wells located at adjacent aquifers is another scientific issue where approximate solutions have been a valuable asset (Huang & Yeh, 2015; Huang et. al., 2018; Lapides et. al., 2022; Smerdon et. al., 2012 ; Teloglou & Bansal, 2012; Zipper et al., 2019). Their combination with heuristic methods to groundwater optimization problems reveal the ability to keep the computational load much smaller in comparison with numerical ones (Christelis & Mantoglou, 2019). 
3.2 Basic concept of the proposed solutions 
The aim of the proposed solutions is to calculate with good accuracy the drawdown distribution in a wedge-shaped flow field, while observing the boundary conditions. Following the approach developed by Nikoletos and Katsifarakis (2022), we divided the real flow field into two sections. In each section a number of fictitious wells are used in a way that observance of the boundary conditions is achieved. The proposed division of the flow field in two sections, does not disrupt continuity of the drawdown, but the flow velocity field is discontinuous, along the straight line that separates the field. 
The accuracy of the results as well as the applicability range of the proposed approximate solutions are discussed in the following sections. 
3.3 Comparison with previous studies 
Kuo et. al. (1994) proposed a new approach for predicting drawdown in aquifer with irregularly shaped boundaries using the image well method. More recently, a novel methodology for estimation of stream filtration from a meandering stream, is introduced by Huang and Yeh (2015) by applying image well theory. In both papers the decision variables were the flow rates of the image wells which are determined by solving a system of equations. In this paper the decision variables are the number of fictitious wells taking into account the physical interpretation of the method. The proposed methodology is more suitable to problems where the intersecting boundaries are straight lines while the aforementioned methods are preferred where the boundaries are curved.  It is worth mentioning that combination of the method proposed by Nikoletos and Katsifarakis with the method introduced by Kuo et. al. (1994) or Huang and Yeh (2015) could lead to more accurate results for the calculation of the drawdown. This will be an issue of future study.
3.4 Structure of the drawdown function 
The proposed methodology can be applied to any type of aquifer under steady state and transient flow conditions. The drawdown functions at any point (x,y), due to pumping from a single well, in confined, unconfined and leaky aquifersare given by the following relationships respectively (Theim, 1906):
                                                                                     (2.a)
                                                                                     (2.b)
                                                                                       (2.c)
Where, Qw is the flow rate of the well, (xw, yw) are the well’s coordinates, K is the hydraulic conductivity, T is the aquifer’s transmissivity, R is the radius of influence, L is the leaky coefficient, Ko is the modified Bessel function of second kind and zero order and H and H1 are the distances between water table and initial water table and a reference level.
To demonstrate the procedure, we consider steady flow in confined aquifers.
3.4.1 Intersecting angle – Case of 90o< θ < 60o
In the following paragraphs, we present solutions for wedge-shaped aquifers where the boundaries are both of constant head or impermeable. We demonstrate the proposed methodology for constant head boundaries. The process is the same in case of impermeable boundaries, except the kind of the fictitious wells. 
The exact solution for the drawdown due to a pumping well in flow fields bounded by two boundaries intersecting at angle 90o and 60o makes use of 3 and 5 fictitious wells, respectively. Based on that, we postulate that the proposed solutions should make use of 3 to 5 fictitious wells. As shown in Fig. 3, Wi-1 and Wi-2 are the images of the real well with respect to the closest and the furthest boundary respectively; we call them first-order images. Wi-3 and Wi-4 are the images of Wi-1 and Wi-2 with respect to the other boundary; we call them second-order images. Wi-5 and Wi-6, resulting in a similar way, are the third-order images, and so on. The odd order images of a pumped well are injection wells, while the even order ones represent pumping wells. 
From the physical point of view, the influence of the image wells should decrease, as their order increases. For instance, the first order images should affect more the conditions in the real flow field, namely they should be located closer to it than the second order ones, the second order images should be closer to the real flow field than the third order ones and so on. The largest order image wells should operate alternately in parts of the flow field, in order to satisfy the boundary conditions. According to the geometrical proof found in Appendix A, if the angle θ is larger than 72o, the third order images are closer to the real flow field than the second order ones. Consequently, we conclude that for angles larger than 72o, 3 fictitious wells should be used, while for angles smaller than 72o, 5 fictitious wells should be used, provided that the conditions described by inequalities (8) and (9)  of Appendix A are also satisfied. Otherwise the largest order images should not be used.
From the physical point of view, we expect that the drawdown at any point of the real flow field decreases as the angle between the boundaries decreases. According to Fig. 1, by isolating Wr and Wi-1 results into conditions equal to one constant head boundary. The second constant head boundary should further reduce the drawdown. Therefore the system of Wi-2, Wi-3, Wi-4 and Wi-5 or Wi-6 (for the respective system of Wr and Wi-2) should represent the influence of the second boundary. This reduction depends on the distance of the above mentioned system from the real flow field. As the angle θ increases, the system of the image wells diverges from the real flow field, so its influence decreases, too. 
Fig. 1. Seperation of the wells into two groups. Note: BC stands for boundary condition.
Therefore, the following two-branch functions could describe the drawdown distribution to the real flow field in each case.
For 90o > θ > 72ο
[bookmark: _Hlk67772823]                                                    (3)       
Fig. 2. Wedge-shaped aquifer 90o > θ > 72o

For 72o > θ > 60ο
                        (4)                                         

Fig. 3. Wedge-shaped aquifer 72o > θ > 51.4o

3.4.2 Intersecting angle – Case of 60o > θ > 45o
If the intersecting angle of the boundaries is 60o, the exact analytical solution makes use of 5 fictitious wells. If the angle is 45o, 7 fictitious wells are placed to the equivalent infinite flow field.  We postulate, then, that the proposed approximate solutions should make use of 5 to 7 fictitious wells. The main difference compared to the case 90o-60o is that the largest order images are pumping wells. Taking into account the physical interpretation of the aquifer’s response, the 4th order images should be located farther than the 3rd order ones from the real flow field. 
According to the geometrical proof  found in Appendix A, if the angle is larger than 51.42o, the 4th order images are closer to the real flow field than the 3rd order ones. The largest order image wells should be used alternately in parts of the flow field, in order to ensure the observance of boundary conditions. Consequently, we conclude that for angles larger than 51.42o we should use 5 fictitious wells, while for angles smaller than 51.42o, 7 fictitious wells should be used, provided that the conditions described by inequalities (8) and (9) of Appendix A are also satisfied. Otherwise the largest order images should not be used.
Verification of the drawdown reduction as the angle θ decreases is needed. We examine seperately Wr and Wi-1 and rest of the wells. According to Section 3.4.1 the system of wells Wi-2, Wi-3, Wi-4, Wi-5 or Wi-6 (for the respective system of Wr and Wi-2) offers water quantity to the real flow field. Consequently, it ‘s proved that Wi-5 and Wi-6 are closer to the real flow field than Wi-7 and Wi-8, respectively. According to the geometrical proof of Appendix A, the aforementioned conditions holds.
Hence, the following two-branch functions describe the drawdown distribution to the real flow field in each case.
For 60o > θ > 51.42ο
                       (5)                                         
 It is worth mentioning that in this case and the case of 90o > θ > 72o the number of fictitious wells coincides.

For 51.42o > θ > 45 ο
    (6)                                         
Fig. 4. Wedge-shaped aquifer 51.4o > θ > 45o

3.4.3 Intersecting angle – Cases of θ < 45o
For the rest of the cases, we follow exactly the same methodology as described in sections 3.4.1 and 3.4.2, for consecutive analytical solutions. The determination of the critical angle of each case as well as the operating wells of each section are based on eq. 11 and Fig. 6, found in Appendix A.
4. Evaluation through comparison with numerical simulation results
MODFLOW (Harbaugh, 2005; Harbaugh et. al., 2017), an established, finite-difference, groundwater flow simulation model is used for numerical evaluation of the proposed solutions. It is widely used by hydrogeologists to simulate real and theoretical flow fields for estimation of the response of the aquifers (Malekzadeh et. al., 2019). The program has been applied extensively to aquifers bounded by two or more irregular shaped boundaries (Aghlmand and Abbasi, 2019; Karimi et. al., 2019). 

Here we use MODFLOW to evaluate the quality of the proposed approximate solutions. We consider 6 cases of wedge-shaped aquifers, bounded by two constant head boundaries, intersecting at the point O (0, 2000). One boundary is described by the equation x = 0.  A well with coordinates (320, 1500) pumps at a flow rate QW = 0.02 m3/s. The hydraulic parameters of the well and the aquifer are listed below.
a)       Radius of the well r0 = 0.5 m
b)       Hydraulic Conductivity Κ = 0.0000016 m/s
c)       Thickness of aquifer a = 100 m
We consider steady-state flow conditions to facilitate the comparison with the approximate analytical solutions.
A grid of 5 x 5 m has been used to run MODFLOW and the results have been compared to those obtained from the approximate analytical solutions. Visualization of the results has been made through ModelMuse (Winston, 2009; Winston, 2020), a well-known graphical user interface for groundwater simulation models.  The results for 6 θ values are discussed in the following paragraphs.
For θ=90ο, 60ο and 45o the solutions are exact. These cases serve rather to check MODFLOW results. The analytical solutions give slightly larger values than MODFLOW. Discrepancies are smaller than 5% at all points of the real flow field except the location of the well. 
For θ=80ο, 65ο and 55o the solutions are approximate. The approximate analytical solutions render larger drawdown values than MODFLOW. Discrepancies are smaller than 6% at all points of the real flow field except the location of the well. 
Equipotential lines, obtained by the two methods, are shown in Fig. 5 
Fig. 5. Equipotential lines for different boundary intersction angles obtained by approximate solution and MODFLOW
5. Conclusions and Discussion
New functions for the calculation of the drawdown distribution of wedge-shaped aquifers via approximate analytical procedures are presented, based on the method of images. Observance of the boundary conditions is achieved through the use of two-branch functions. The largest order fictitious wells are activated alternately in parts of the flow field. The division of the flow field in two sections does not disrupt continuity of the drawdown. The only drawback is that the flow velocity field is discontinuous, along the straight line that separates the field. 
To check the validity of the approximate solutions, results for six application examples have been compared to numerical ones, obtained by MODFLOW.  For θ equal to 90o, 60o and 45o, namely when the method of images is exact, the discrepancies are generally smaller than 5%, while in the other cases, discrepancies are generally smaller than 6%. The main advantage of the proposed solutions is that the respective computational load is low, so they can be easily used in conjunction with meta-heuristic algorithms to solve groundwater resources optimization problems.    
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Appendix A: Geometrical Proof 
Let angle θ be between two consecutive angles, namely θκ and θκ-2 where the image well method is exact and the number of fictitious wells is k and k-2 respectively.
Let a and b be the angles of OWr with the field boundaries Ox1 and Ox2 respectively.
Let angle c be given by the following equation:
                                                                                    (7)
If the angle, the penultimate order image Wi-(k-2) is closer than the last-order image Wi-k to Wr and to any point of the real field. 
Proof: If b < c, then (Ox2, Wi-2) < c, namely Wi-2 lies on the same side of Oxn, with Wr. Consequently, Wi-4, the image well of Wi-2 with respect to Ox1 lies under the side of Oxn+1. Since Ox2 is the bisector of Ox1΄ and Oxn+1΄, the image well of Wi-4 with respect to Ox2, namely Wi-6, lies on the opposite site of Ox1. The same condition holds for the consecutive mirror wells with respect to the corresponding boundary until the penultimate well, namely Wi-(k-2). For the last order image well, Ox1 is the perpendicular bisector of Wi-(k-2) and Wi-k. Therefore Wi-(k-2) and Wi-k lie on the opposite site of Ox1. As shown in Fig. 6 the following relationships hold: 
                                                                                                                                                                                                  (8)
                                                                                                                                                                                                  (9)
Also, we take advantage of the following property
                                                                                                                                                          (10)                      
Adding up the inequalities (8) and (9) resulting

 	                                                                                                                                                                          (11)                         
Fig. 6. Geometrical relationships between real and fictitious wells for arbitrary wedge angle.
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