References
  1. M. Aartovaara. Model based temperature control of an exothermic semi-batch reactor. Computer Aided Chemical Engineering , Volume 9, 2001, Pages 597-602.
  2. G. Özkan, S. Özen, S. Erdogan, H. Hapoglu, and M. Alpbaz. Nonlinear model based control of optimal temperature profiles in polystyrene polymerization reactor. Computer Aided Chemical Engineering , Volume 8, 2000, Pages 187-192.
  3. J.-L. Dirion, B. Ettedgui, M. Cabassud, M.V.L. Lann, and G. Casamatta. Elaboration of a neural network system for semi-batch reactor temperature control: An experimental study. Chemical Engineering and Processing: Process Intensification , Volume 35, Issue 3, 1996, Pages 225-234.
  4. A.R. Karagöz, H. Hapoğlu, and M. Alpbaz. Generalized minimum variance control of optimal temperature profiles in a polystyrene polymerization reactor. Chemical Engineering and Processing: Process Intensification , Volume 39, Issue 3, 2000, Pages 253-262.
  5. W.L. Luyben. Temperature control of autorefrigerated reactors.Journal of Process Control , Volume 9, Issue 4, 1999, Pages 301-312.
  6. F. Xaumier, E. Ettedgui, M.-V.L. Lann, M. Cabassud, and G. Casamatta. A model-based supervisory control routine for temperature control of batch reactors: Experimental results. Computer Aided Chemical Engineering , Volume 9, 2001, Pages 817-822.
  7. R.L. Keiski, T. Salmi, P. Niemistö, J. Ainassaari, and V.J. Pohjola. Stationary and transient kinetics of the high temperature water-gas shift reaction. Applied Catalysis A: General , Volume 137, Issue 2, 1996, Pages 349-370.
  8. N.E. Amadeo and M.A. Laborde. Hydrogen production from the low-temperature water-gas shift reaction: Kinetics and simulation of the industrial reactor. International Journal of Hydrogen Energy , Volume 20, Issue 12, 1995, Pages 949-956.
  9. Z. Louleh, M. Cabassud, and M.-V.L. Lann. A new strategy for temperature control of batch reactors: Experimental application.Chemical Engineering Journal , Volume 75, Issue 1, 1999, Pages 11-20.
  10. S. Yüce, A. Hasaltun, S. Erdoğan, and M. Alpbaz. Temperature control of a batch polymerization reactor. Chemical Engineering Research and Design , Volume 77, Issue 5, 1999, Pages 413-420.
  11. E.V. Rebrov, M.H.J.M.D. Croon, and J.C. Schouten. Design of a microstructured reactor with integrated heat-exchanger for optimum performance of a highly exothermic reaction. Catalysis Today , Volume 69, Issues 1-4, 2001, Pages 183-192.
  12. C.S. Bildea, A.C. Dimian, and P.D. Iedema. Multiplicity and stability approach to the design of heat-integrated multibed plug flow reactor.Computers & Chemical Engineering , Volume 25, Issue 1, 2001, Pages 41-48.
  13. A. Criscuoli, A. Basile, and E. Drioli. An analysis of the performance of membrane reactors for the water-gas shift reaction using gas feed mixtures. Catalysis Today , Volume 56, Issues 1-3, 2000, Pages 53-64.
  14. A. Criscuoli, A. Basile, E. Drioli, and O. Loiacono. An economic feasibility study for water gas shift membrane reactor. Journal of Membrane Science , Volume 181, Issue 1, 2001, Pages 21-27.
  15. C. Ling and T.F. Edgar. Real-time control of a water-gas shift reactor by a model-based fuzzy gain scheduling technique. Journal of Process Control , Volume 7, Issue 4, 1997, Pages 239-253.
  16. I.-W. Kim, T.F. Edgar, and N.H. Bell. Parameter estimation for a laboratory water-gas-shift reactor using a nonlinear error-in-variables method. Computers & Chemical Engineering , Volume 15, Issue 5, 1991, Pages 361-367.
  17. G.T. Wright and T.F. Edgar. Nonlinear model predictive control of a fixed-bed water-gas shift reactor: An experimental study.Computers & Chemical Engineering , Volume 18, Issue 2, 1994, Pages 83-102.
  18. R.L. Keiski, T. Salmi, and V.J. Pohjola. Development and verification of a simulation model for a non-isothermal water-gas shift reactor.The Chemical Engineering Journal , Volume 48, Issue 1, 1992, Pages 17-29.
  19. A. Jaree, H. Budman, R.R. Hudgins, P.L. Silveston, V. Yakhnin, and M. Menzinger. Temperature excursions in packed bed reactors with an axial variation of catalyst activity. Catalysis Today , Volume 69, Issues 1-4, 2001, Pages 137-146.
  20. V. Diakov and A. Varma. Reactant distribution by inert membrane enhances packed-bed reactor stability. Chemical Engineering Science , Volume 57, Issue 7, 2002, Pages 1099-1105.
  21. J. Vican, B.F. Gajdeczko, F.L. Dryer, D.L. Milius, I.A. Aksay, and R.A. Yetter. Development of a microreactor as a thermal source for microelectromechanical systems power generation. Proceedings of the Combustion Institute , Volume 29, Issue 1, 2002, Pages 909-916.
  22. E.V. Rebrov, M.H.J.M.D. Croon, and J.C. Schouten. Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor. Chemical Engineering Journal , Volume 90, Issues 1-2, 2002, Pages 61-76.
  23. O. Wörz, K.P. Jäckel, T. Richter, and A. Wolf. Microreactors, a new efficient tool for optimum reactor design. Chemical Engineering Science , Volume 56, Issue 3, 2001, Pages 1029-1033.
  24. J.R. Burns and C. Ramshaw. Development of a microreactor for chemical production. Chemical Engineering Research and Design , Volume 77, Issue 3, 1999, Pages 206-211.
  25. B.C. Bockrath, D.H. Finseth, and M.R. Hough. A pulse-flow microreactor study of coal-catalyst interactions. Fuel , Volume 71, Issue 7, 1992, Pages 767-773.
  26. J.G. Creer, P. Jackson, G. Pandy, G.G. Percival, and D. Seddon. The design and construction of a multichannel microreactor for catalyst evaluation. Applied Catalysis , Volume 22, Issue 1, 1986, Pages 85-95.
  27. D.E. Rogers and L.M. Parker. DTA apparatus as a catalytic microreactor with on-line analysis of the products. Applied Catalysis , Volume 51, Issue 1, 1989, Pages 181-194.
  28. S. Nand and M.K. Sarkar. Kinetics of thermal cracking of light hydrocarbon mixture by pulsed microreactor. The Chemical Engineering Journal , Volume 17, Issue 3, 1979, Pages 183-190.
  29. M. Zanfir and A. Gavriilidis. An investigation of catalytic plate reactors by means of parametric sensitivity analysis. Chemical Engineering Science , Volume 57, Issue 9, 2002, Pages 1653-1659.
  30. M. Zanfir and A. Gavriilidis. Modelling of a catalytic plate reactor for dehydrogenation-combustion coupling. Chemical Engineering Science , Volume 56, Issue 8, 2001, Pages 2671-2683.
  31. M. Zanfir and A. Gavriilidis. Influence of flow arrangement in catalytic plate reactors for methane steam reforming. Chemical Engineering Research and Design , Volume 82, Issue 2, 2004, Pages 252-258.
  32. M. Zanfir and A. Gavriilidis. Catalytic combustion assisted methane steam reforming in a catalytic plate reactor. Chemical Engineering Science , Volume 58, Issue 17, 2003, Pages 3947-3960.
  33. M. Zanfir and A. Gavriilidis. Parametric sensitivity in catalytic plate reactors with first-order endothermic-exothermic reactions.Chemical Engineering Journal , Volume 86, Issue 3, 2002, Pages 277-286.
  34. M.R. Rahimpour, M.R. Dehnavi, F. Allahgholipour, D. Iranshahi, and S.M. Jokar. Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: A review. Applied Energy , Volume 99, 2012, Pages 496-512.
  35. R. Smith. State of the art in process integration. Applied Thermal Engineering , Volume 20, Issues 15-16, 2000, Pages 1337-1345.
  36. V. Lavric, V. Pleşu, and J.D. Ruyck. Chemical reactors energy integration through virtual heat exchangers-benefits and drawbacks.Applied Thermal Engineering , Volume 25, Issue 7, 2005, Pages 1033-1044.
  37. Z.R. Ismagilov, V.V. Pushkarev, O.Y. Podyacheva, N.A. Koryabkina, and H. Veringa. A catalytic heat-exchanging tubular reactor for combining of high temperature exothermic and endothermic reactions.Chemical Engineering Journal , Volume 82, Issues 1-3, 2001, Pages 355-360.
  38. K. Venkataraman, J.M. Redenius, and L.D. Schmidt. Millisecond catalytic wall reactors: dehydrogenation of ethane. Chemical Engineering Science , Volume 57, Issue 13, 2002, Pages 2335-2343.
  39. V.A. Kirillov, S.I. Fadeev, N.A. Kuzin, and A.B. Shigarov. Modeling of a heat-coupled catalytic reactor with co-current oxidation and conversion flows. Chemical Engineering Journal , Volume 134, Issues 1-3, 2007, Pages 131-137.
  40. Y.-S. Seo, D.-J. Seo, Y.-T. Seo, and W.-L. Yoon. Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor. Journal of Power Sources , Volume 161, Issue 2, 2006, Pages 1208-1216.
  41. K.S. Patel and A.K. Sunol. Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. International Journal of Hydrogen Energy , Volume 32, Issue 13, 2007, Pages 2344-2358.
  42. P. Altimari and C.S. Bildea. Integrated design and control of plantwide systems coupling exothermic and endothermic reactions.Computers & Chemical Engineering , Volume 33, Issue 4, 2009, Pages 911-923.
  43. G. Eigenberger, G. Kolios, and U. Nieken. Thermal pattern formation and process intensification in chemical reaction engineering.Chemical Engineering Science , Volume 62, Issues 18-20, 2007, Pages 4825-4841.
  44. A.S. Côté, W.N. Delgass, and D. Ramkrishna. Spatially patterned catalytic reactors. Feasibility issues. Chemical Engineering Science , Volume 56, Issue 3, 2001, Pages 1011-1019.
  45. G. Kolb, J. Schürer, D. Tiemann, M. Wichert, R. Zapf, V. Hessel, and H. Löwe. Fuel processing in integrated micro-structured heat-exchanger reactors. Journal of Power Sources , Volume 171, Issue 1, 2007, Pages 198-204.
  46. D.W. Agar. Multifunctional reactors: Old preconceptions and new dimensions. Chemical Engineering Science , Volume 54, Issue 10, 1999, Pages 1299-1305.
  47. E. Pollak and R.D. Levine. The different roles of reagent vibrational excitation for endothermic and exothermic reactions. Chemical Physics Letters , Volume 39, Issue 2, 1976, Pages 199-204.
  48. N. Vatistas and P.F. Marconi. The IEM mixing model in exothermic reactions. Chemical Engineering Science , Volume 47, Issue 7, 1992, Pages 1727-1731.
  49. J. Cunha and J.L.T. Azevedo. Modelling the integration of a compact plate steam reformer in a fuel cell system. Journal of Power Sources , Volume 86, Issues 1-2, 2000, Pages 515-522.
  50. S.H. Clarke, A.L. Dicks, K. Pointon, T.A. Smith, and A. Swann. Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells. Catalysis Today , Volume 38, Issue 4, 1997, Pages 411-423.
  51. J.R. Rostrup-Nielsen and L.J. Christiansen. Internal steam reforming in fuel cells and alkali poisoning. Applied Catalysis A: General , Volume 126, Issue 2, 1995, Pages 381-390.
  52. W. Wiese, B. Emonts, and R. Peters. Methanol steam reforming in a fuel cell drive system. Journal of Power Sources , Volume 84, Issue 2, 1999, Pages 187-193.
  53. S. Freni, G. Maggio, and S. Cavallaro. Ethanol steam reforming in a molten carbonate fuel cell: A thermodynamic approach. Journal of Power Sources , Volume 62, Issue 1, 1996, Pages 67-73.
  54. S. Cavallaro and S. Freni. Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation.International Journal of Hydrogen Energy , Volume 21, Issue 6, 1996, Pages 465-469.
  55. A.L. Dicks. Advances in catalysts for internal reforming in high temperature fuel cells. Journal of Power Sources , Volume 71, Issues 1-2, 1998, Pages 111-122.
  56. R. Peters, E. Riensche, and P. Cremer. Pre-reforming of natural gas in solid oxide fuel-cell systems. Journal of Power Sources , Volume 86, Issues 1-2, 2000, Pages 432-441.
  57. W. He and K. Hemmes. Operating characteristics of a reformer for molten carbonate fuel-cell power-generation systems. Fuel Processing Technology , Volume 67, Issue 1, 2000, Pages 61-78.
  58. J. Han, I.-S. Kim, and K.-S. Choi. Purifier-integrated methanol reformer for fuel cell vehicles. Journal of Power Sources , Volume 86, Issues 1-2, 2000, Pages 223-227.
  59. Y.-M. Lin and M.-H. Rei. Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer. International Journal of Hydrogen Energy , Volume 25, Issue 3, 2000, Pages 211-219.
  60. T.V. Choudhary and D.W. Goodman. CO-free production of hydrogen via stepwise steam reforming of methane. Journal of Catalysis , Volume 192, Issue 2, 2000, Pages 316-321.
  61. Y. Miyake, N. Nakanishi, T. Nakajima, Y. Itoh, T. Saitoh, A. Saiai, and H. Yanaru. A study of heat and material balances in an internal-reforming molten carbonate fuel cell. Journal of Power Sources , Volume 56, Issue 1, 1995, Pages 11-17.
  62. L.P.L.M. Rabou. Modelling of a variable-flow methanol reformer for a polymer electrolyte fuel cell. International Journal of Hydrogen Energy , Volume 20, Issue 10, 1995, Pages 845-848.
  63. M.G. Poirier and C. Sapundzhiev. Catalytic decomposition of natural gas to hydrogen for fuel cell applications. International Journal of Hydrogen Energy , Volume 22, Issue 4, 1997, Pages 429-433.
  64. Y. Hiei, T. Ishihara, and Y. Takita. Partial oxidation of methane for internally reformed solid oxide fuel cell. Solid State Ionics , Volumes 86-88, Part 2, 1996, Pages 1267-1272.
  65. K. Vasudeva, N. Mitra, P. Umasankar, and S.C. Dhingra. Steam reforming of ethanol for hydrogen production: Thermodynamic analysis.International Journal of Hydrogen Energy , Volume 21, Issue 1, 1996, Pages 13-18.
  66. S. Uemiya, N. Sato, H. Ando, T. Matsuda, and E. Kikuchi. Steam reforming of methane in a hydrogen-permeable membrane reactor.Applied Catalysis , Volume 67, Issue 1, 1990, Pages 223-230.
  67. T. Ioannides and S. Neophytides. Efficiency of a solid polymer fuel cell operating on ethanol. Journal of Power Sources , Volume 91, Issue 2, 2000, Pages 150-156.
  68. D. Jansen and M. Mozaffarian. Advanced fuel cell energy conversion systems. Energy Conversion and Management , Volume 38, Issues 10-13, 1997, Pages 957-967.