References
  1. M. Trushin and J. Schliemann. Minimum electrical and thermal conductivity of graphene: A quasiclassical approach. Physical Review Letters , Volume 99, Issue 21, 2007, Article Number: 216602.
  2. Y.V. Skrypnyk and V.M. Loktev. Electrical conductivity in graphene with point defects. Physical Review B , Volume 82, Issue 8, 2010, Article Number: 085436.
  3. M.N. Esfahani, M. Jabbari, Y. Xu, and C. Soutis. Effect of nanoscale defects on the thermal conductivity of graphene. Materials Today Communications , Volume 26, 2021, Article Number: 101856.
  4. A. Alofi and G.P. Srivastava. Thermal conductivity of graphene and graphite. Physical Review B , Volume 87, Issue 11, 2013, Article Number: 115421.
  5. M. Taghioskoui. Trends in graphene research. Materials Today , Volume 12, Issue 10, 2009, Pages 34-37.
  6. F. Guinea, B. Horovitz, and P.L. Doussal. Gauge fields, ripples and wrinkles in graphene layers. Solid State Communications , Volume 149, Issues 27-28, 2009, Pages 1140-1143.
  7. A.S. Thampy, M.S. Darak, and S.K. Dhamodharan. Analysis of graphene based optically transparent patch antenna for terahertz communications. Physica E: Low-dimensional Systems and Nanostructures , Volume 66, 2015, Pages 67-73.
  8. D.H. Shin, Y.-J. Kim, S.-K. Lee, S. Bae, and S. Ahn. Atomically thin alkane passivation layer for flexible and transparent graphene electronics. Applied Surface Science , Volume 612, 2023, Article Number: 155695.
  9. F. Arca, J.P. Mendez, M. Ortiz, and M.P. Ariza. Strain-tuning of transport gaps and semiconductor-to-conductor phase transition in twinned graphene. Acta Materialia , Volume 234, 2022, Article Number: 117987.
  10. E. Wu, C. Schneider, R. Walz, and J. Park. Adsorption of hydrogen isotopes on graphene. Nuclear Engineering and Technology , Volume 54, Issue 11, 2022, Pages 4022-4029.
  11. F. Sultanov, A. Mentbayeva, S. Kalybekkyzy, A. Zhaisanova, S.-T. Myung, and Z. Bakenov. Advances of graphene-based aerogels and their modifications in lithium-sulfur batteries. Carbon , Volume 201, 2023, Pages 679-702.
  12. M.B. Arvas, M. Gencten, and Y. Sahin. Investigation of supercapacitor properties of chlorine-containing functional groups doped graphene electrodes. Journal of Electroanalytical Chemistry , Volume 918, 2022, Article Number: 116438.
  13. S. Ghosal, N.S. Mondal, S. Chowdhury, and D. Jana. Two novel phases of germa-graphene: Prediction, electronic and transport applications.Applied Surface Science , Volume 614, 2023, Article Number: 156107.
  14. H. Assad, I. Fatma, and A. Kumar. An overview of the application of graphene-based materials in anticorrosive coatings. Materials Letters , Volume 330, 2023, Article Number: 133287.
  15. N. Koosha, J. Karimi-Sabet, M.A. Moosavian, and Y. Amini. Improvement of synthesized graphene structure through various solvent liquids at low temperatures by chemical vapor deposition method. Materials Science and Engineering: B , Volume 274, 2021, Article Number: 115458.
  16. J. Kulczyk-Malecka, I.V.J.D. Santos, M. Betbeder, S.J. Rowley-Neale, Z. Gao, and P.J. Kelly. Low-temperature synthesis of vertically aligned graphene through microwave-assisted chemical vapour deposition. Thin Solid Films , Volume 733, 2021, Article Number: 138801.
  17. M. Batzill. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects.Surface Science Reports , Volume 67, Issues 3-4, 2012, Pages 83-115.
  18. A. Hussain, S.M. Mehdi, N. Abbas, M. Hussain, and R.A. Naqvi. Synthesis of graphene from solid carbon sources: A focused review.Materials Chemistry and Physics , Volume 248, 2020, Article Number: 122924.
  19. M.J. Im, S.-K. Hyeong, J.-H. Lee, T.-W. Kim, S.-K. Lee, G.Y. Jung, and S. Bae. High uniformity and stability of graphene transparent conducting electrodes by dual-side doping. Applied Surface Science , Volume 605, 2022, Article Number: 154569.
  20. J.S. Roh, J.K. Jang, N. Kwon, S. Bok, Y.J. Kim, C. Jeon, H.W. Yoon, H.W. Kim, B. Lim, and H.B. Park. Macroscopic properties of single-crystalline and polycrystalline graphene on soft substrate for transparent electrode applications. Carbon , Volume 178, 2021, Pages 181-189.
  21. A. Triana, J.J. Olaya, and C. Prieto. Effect of the electrolyte composition on the corrosion resistance of single-layer CVD-graphene.Surfaces and Interfaces , Volume 31, 2022, Article Number: 102025.
  22. S. Kumar, J. Shakya, T. Mahanta, D. Kanjilal, and T. Mohanty. Substrate-assisted Fermi level shifting of CVD graphene by swift heavy ions. Surfaces and Interfaces , Volume 28, 2022, Article Number: 101625.
  23. S.R. Joshi, J. Lee, and G.-H. Kim. Low-cost synthesis of high quality graphene oxide with large electrical and thermal conductivities.Materials Letters , Volume 292, 2021, Article Number: 129649.
  24. A.A. Tarhini and A.R. Tehrani-Bagha. Graphene-based polymer composite films with enhanced mechanical properties and ultra-high in-plane thermal conductivity. Composites Science and Technology , Volume 184, 2019, Article Number: 107797.
  25. A. Alhusseny, A. Al-Fatlawi, Q. Al-Aabidy, A. Nasser, and N. Al-Zurfi. Dissipating the heat generated in high-performance electronics using graphitic foam heat-sinks cooled with a dielectric liquid.International Communications in Heat and Mass Transfer , Volume 127, 2021, Article Number: 105478.
  26. K. Rostem, E. Cimpoiasu, K.R. Helson, A.P. Klassen, and E.J. Wollack. Specific heat of epoxies and mixtures containing silica, carbon lamp black, and graphite. Cryogenics , Volume 118, 2021, Article Number: 103329.
  27. P. Jamzad, J. Kenna, and M. Bahrami. Development of novel plate heat exchanger using natural graphite sheet. International Journal of Heat and Mass Transfer , Volume 131, 2019, Pages 1205-1210.
  28. D.S. Jang, D. Kim, S.H. Hong, and Y. Kim. Comparative thermal performance evaluation between ultrathin flat plate pulsating heat pipe and graphite sheet for mobile electronic devices at various operating conditions. Applied Thermal Engineering , Volume 149, 2019, Pages 1427-1434.
  29. B. Bhaduri. Synthesis of Cu catalyzed chemical vapor deposition grown Cu-CNFs on less porous graphite powder. Materials Letters , Volume 305, 2021, Article Number: 130828.
  30. J.H. Han, K.W. Cho, K.-H. Lee, and H. Kim. Porous graphite matrix for chemical heat pumps. Carbon , Volume 36, Issue 12, 1998, Pages 1801-1810.
  31. M. Bonnissel, L. Luo, and D. Tondeur. Compacted exfoliated natural graphite as heat conduction medium. Carbon , Volume 39, Issue 14, 2001, Pages 2151-2161.
  32. S. Hoshii, A. Kojima, and M. Goto. Rapid baking of graphite powders by the spark plasma sintering method. Carbon , Volume 38, Issue 13, 2000, Pages 1896-1899.
  33. J.H. Han and K.-H. Lee. Gas permeability of expanded graphite-metallic salt composite. Applied Thermal Engineering , Volume 21, Issue 4, 2001, Pages 453-463.
  34. R. Janot and D. Guérard. Ball-milling: the behavior of graphite as a function of the dispersal media. Carbon , Volume 40, Issue 15, 2002, Pages 2887-2896.
  35. E.L. Kitanin, M.S. Ramm, V.V. Ris, and A.A. Schmidt. Heat transfer through source powder in sublimation growth of SiC crystal.Materials Science and Engineering: B , Volume 55, Issue 3, 1998, Pages 174-183.
  36. A. Yeoh, C. Persad, and Z. Eliezer. Dimensional responses of copper-graphite powder composites to sintering. Scripta Materialia , Volume 37, Issue 3, 1997, Pages 271-277.
  37. M. Wissler. Graphite and carbon powders for electrochemical applications. Journal of Power Sources , Volume 156, Issue 2, 2006, Pages 142-150.
  38. C. Natarajan, H. Fujimoto, A. Mabuchi, K. Tokumitsu, and T. Kasuh. Effect of mechanical milling of graphite powder on lithium intercalation properties. Journal of Power Sources , Volume 92, Issues 1-2, 2001, Pages 187-192.
  39. H.A. Wilhelm, B. Croset, and G. Medjahdi. Proportion and dispersion of rhombohedral sequences in the hexagonal structure of graphite powders.Carbon , Volume 45, Issue 12, 2007, Pages 2356-2364.
  40. R. Bissessur, P.K.Y. Liu, and S.F. Scully. Intercalation of polypyrrole into graphite oxide. Synthetic Metals , Volume 156, Issues 16-17, 2006, Pages 1023-1027.
  41. T. Rayment, R. Schlogl, and J.M. Thomas. Low-temperature x-ray powder diffraction studies of antimony pentachloride-intercalated graphite.Physical Review B , Volume 30, Issue 2, 1984, Pages 1034-1037.
  42. S. Chandrasekaran, T. Basak, and R. Srinivasan. Microwave heating characteristics of graphite based powder mixtures. International Communications in Heat and Mass Transfer , Volume 48, 2013, Pages 22-27.
  43. F. Bagheri, M. Fakoor-Pakdaman, and M. Bahrami. Utilization of orthotropic graphite plates in plate heat exchangers, analytical modeling. International Journal of Heat and Mass Transfer , Volume 77, 2014, Pages 301-310.
  44. K. Sultan, C.T. DeGroot, A.G. Straatman, N.C. Gallego, and H. Hangan. Thermal characterization of porous graphitic foam - Convection in impinging flow. International Journal of Heat and Mass Transfer , Volume 52, Issues 19-20, 2009, Pages 4296-4301.
  45. N. Burger, A. Laachachi, B. Mortazavi, M. Ferriol, M. Lutz, V. Toniazzo, and D. Ruch. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites.International Journal of Heat and Mass Transfer , Volume 89, 2015, Pages 505-513.
  46. Y. Wen-Jei, H. Takizawa, and D.L. Vrable. Augmented boiling on copper-graphite composite surface. International Journal of Heat and Mass Transfer , Volume 34, Issue 11, 1991, Pages 2751-2758.
  47. B. Simon, S. Flandrois, K. Guerin, A. Fevrier-Bouvier, I. Teulat, and P. Biensan. On the choice of graphite for lithium ion batteries.Journal of Power Sources , Volumes 81-82, 1999, Pages 312-316.
  48. A.M. Andersson, K. Edström, N. Rao, and Å. Wendsjö. Temperature dependence of the passivation layer on graphite. Journal of Power Sources , Volumes 81-82, 1999, Pages 286-290.
  49. S.G. Kim, S.J. Heo, S. Kim, J. Kim, S.O. Kim, D. Lee, S. Lee, J. Kim, N.-H. You, M. Kim, H.C. Kim, H.G. Chae, and B.-C. Ku. Ultrahigh strength and modulus of polyimide-carbon nanotube based carbon and graphitic fibers with superior electrical and thermal conductivities for advanced composite applications. Composites Part B: Engineering , Volume 247, 2022, Article Number: 110342.
  50. D.W. Kim, K.W. Lee, J.-W. Jang, and C.E. Lee. Dimensional crossover of quantum Hall conductivity in graphite through proton-irradiation.Carbon , Volume 187, 2022, Pages 126-132.
  51. H. Aghamohammadi, R. Eslami-Farsani, M. Torabian, and N. Amousa. Recent advances in one-pot functionalization of graphene using electrochemical exfoliation of graphite: A review study.Synthetic Metals , Volume 269, 2020, Article Number: 116549.
  52. J.A. Morton, A. Kaur, M. Khavari, A.V. Tyurnina, A. Priyadarshi, D.G. Eskin, J. Mi, K. Porfyrakis, P. Prentice, and I. Tzanakis. An eco-friendly solution for liquid phase exfoliation of graphite under optimised ultrasonication conditions. Carbon , Volume 204, 2023, Pages 434-446.
  53. V.P. Vasiliev, A.S. Kotkin, V.K. Kochergin, R.A. Manzhos, and A.G. Krivenko. Oxygen reduction reaction at few-layer graphene structures obtained via plasma-assisted electrochemical exfoliation of graphite.Journal of Electroanalytical Chemistry , Volume 851, 2019, Article Number: 113440.
  54. J.K. Lynch-Branzoi, A. Ashraf, A. Tewatia, M. Taghon, J. Wooding, J. Hendrix, B.H. Kear, and T.J. Nosker. Shear exfoliation of graphite into graphene nanoflakes directly within polyetheretherketone and a spectroscopic study of this high modulus, lightweight nanocomposite.Composites Part B: Engineering , Volume 188, 2020, Article Number: 107842.
  55. P. Krawczyk, B. Gurzęda, and A. Bachar. Thermal exfoliation of electrochemically obtained graphitic materials. Applied Surface Science , Volume 481, 2019, Pages 466-472.
  56. B.D.L. Campéon, M. Akada, M.S. Ahmad, Y. Nishikawa, K. Gotoh, and Y. Nishina. Non-destructive, uniform, and scalable electrochemical functionalization and exfoliation of graphite. Carbon , Volume 158, 2020, Pages 356-363.
  57. L.A. Pozhar and K.E. Gubbins. Quasihydrodynamics of nanofluid mixtures. Physical Review E , Volume 56, Issue 5, 1997, Pages 5367-5396.
  58. D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, and S.K. Das. Model for heat conduction in nanofluids. Physical Review Letters , Volume 93, Issue 14, 2004, Article Number: 144301.
  59. G. Donzelli, R. Cerbino, and A. Vailati. Bistable heat transfer in a nanofluid. Physical Review Letters , Volume 102, Issue 10, 2009, Article Number: 104503.
  60. M. Bernardin, F. Comitani, and A. Vailati. Tunable heat transfer with smart nanofluids. Physical Review E , Volume 85, Issue 6, 2012, Article Number: 066321.
  61. L.A. Pozhar. Structure and dynamics of nanofluids: Theory and simulations to calculate viscosity. Physical Review E , Volume 61, Issue 2, 2000, Pages 1432-1446.
  62. J.K. Percus, L.A. Pozhar, and K.E. Gubbins. Local thermodynamics of inhomogeneous fluids at equilibrium. Physical Review E , Volume 51, Issue 1, 1995, Pages 261-265.
  63. L.A. Pozhar, K.E. Gubbins, and J.K. Percus. Generalized compressibility equation for inhomogeneous fluids at equilibrium.Physical Review E , Volume 48, Issue 3, 1993, Pages 1819-1822.
  64. M. Glässl, M. Hilt, and W. Zimmermann. Convection in nanofluids with a particle-concentration-dependent thermal conductivity. Physical Review E , Volume 83, Issue 4, 2011, Article Number: 046315.
  65. J. Eapen, J. Li, and S. Yip. Beyond the Maxwell limit: Thermal conduction in nanofluids with percolating fluid structures.Physical Review E , Volume 76, Issue 6, 2007, Article Number: 062501.
  66. S. Kondaraju, E.K. Jin, and J.S. Lee. Investigation of heat transfer in turbulent nanofluids using direct numerical simulations.Physical Review E , Volume 81, Issue 1, 2010, Article Number: 016304.
  67. M. Rajnak, Z. Spitalsky, B. Dolnik, J. Kurimsky, L. Tomco, R. Cimbala, P. Kopcansky, and M. Timko. Toward apparent negative permittivity measurement in a magnetic nanofluid with electrically induced clusters. Physical Review Applied , Volume 11, Issue 2, 2019, Article Number: 024032.
  68. P. Ben-Abdallah. Dynamic structure and cluster formation in confined nanofluids under the action of an external force field. Physical Review E , Volume 74, Issue 4, 2006, Article Number: 041407.
  69. L. Braginsky and V. Shklover. Thermal conductivity of low-particle-concentration suspensions: Correlation function approach.Physical Review B , Volume 78, Issue 22, 2008, Article Number: 224205.
  70. A. Gupta, P. Magaud, C. Lafforgue, and M. Abbas. Conditional stability of particle alignment in finite-Reynolds-number channel flow.Physical Review Fluids , Volume 3, Issue 11, 2018, Article Number: 114302.
  71. S.A. Egorov. Interactions between nanoparticles in supercritical fluids: From repulsion to attraction. Physical Review E , Volume 72, Issue 1, 2005, Article Number: 010401(R).
  72. T. Shende, D. Mangal, J.C. Conrad, V. Niasar, and M. Babaei. Nanoparticle transport within non-Newtonian fluid flow in porous media. Physical Review E , Volume 106, Issue 1, 2022, Article Number: 015103.
  73. D.R. Evans, S.A. Basun, G. Cook, I.P. Pinkevych, and V.Y. Reshetnyak.Physical Review B , Volume 84, Issue 17, 2011, Article Number: 174111.
  74. S. Merabia, P. Keblinski, L. Joly, L.J. Lewis, and J.-L. Barrat. Critical heat flux around strongly heated nanoparticles.Physical Review E , Volume 79, Issue 2, 2009, Article Number: 021404.
  75. M. Rafique, M.S. Rafique, S.H. Butt, A. Afzal, and U. Kalsoom. Laser nature dependence on enhancement of optical and thermal properties of copper oxide nanofluids. Applied Surface Science , Volume 483, 2019, Pages 187-193.
  76. S. Rostami, A.A. Nadooshan, A. Raisi, and M. Bayareh. Modeling the thermal conductivity ratio of an antifreeze-based hybrid nanofluid containing graphene oxide and copper oxide for using in thermal systems. Journal of Materials Research and Technology , Volume 11, 2021, Pages 2294-2304.
  77. I. Zaaroura, M. Toubal, H. Reda, J. Carlier, S. Harmand, R. Boukherroub, A. Fasquelle, and B. Nongaillard. Evaporation of nanofluid sessile drops: Infrared and acoustic methods to track the dynamic deposition of copper oxide nanoparticles. International Journal of Heat and Mass Transfer , Volume 127, Part B, 2018, Pages 1168-1177.
  78. L. Fu and L. Resca. Exact theory of the electrostatic interaction in electrorheological fluids and the effects of particle structure.Solid State Communications , Volume 99, Issue 2, 1996, Pages 83-87.