4. Conclusions
The lattice thermal conductivity of graphene at different temperatures
and frequencies and in different crystallite sizes is evaluated in the
framework of a microscopic model that incorporates both acoustic and
optical modes with phonon dispersion relations. The linearized
phonon-Boltzmann transport equation is solved iteratively in the frame
of three-phonon interactions. The major conclusions are summarized as
follows:
- The electrical properties of the composite would not be changed from
those of the bulk polymer until the average distance between the
carbon nanotubes is reduced such that either electron tunneling
through the polymer or physical contacts may be formed.
- Among the challenges introduced in the fabrication of carbon
nanotube-filled polymer composites is the necessity to creatively
control and make use of surface interactions between carbon nanotubes
and polymeric chains in order to obtain an adequate dispersion
throughout the matrix without destroying the integrity of the carbon
nanotubes.
- Frequency domain material properties are therefore limited to
applications where strains are small and stress is approximately
linear with strain and the strain rate. Frequency domain material
properties become irrelevant if the material exhibits nonlinear
elastic behavior or is subjected to large strains.
- Depending on the type of polymers in the matrix, above a certain
temperature limit, degradation starts or cross-linking starts, thereby
reducing the impregnation time window.
- The deformed elastic body possess an amount of potential energy equal
to the initial amount of potential energy minus the amount of energy
irreversibly dissipated.
- The modulus and loss factor variables of a damping material are highly
dependent upon the temperature of the damping material and the
vibration frequency.
- Because of their viscoelastic nature, the stress and strain in
viscoelastic materials are not in phase, and, in fact, exhibit
hysteresis.
- The resonant frequency is related to the modulus of the
catalytically-grown multi-walled carbon nanotube-reinforced epoxy
composite.
References
- R.J. Weiss and W.C. Phillips. X-Ray determination of the electron
momentum density in diamond, graphite, and carbon black.Physical Review , Volume 176, Issue 3, 1968, Pages 900-904.
- Y. Ma, P. Skytt, N. Wassdahl, P. Glans, J. Guo, and J. Nordgren. Core
excitons and vibronic coupling in diamond and graphite. Physical
Review Letters , Volume 71, Issue 22, 1993, Pages 3725-3728.
- R.E. Smalley. Discovering the fullerenes. Reviews of Modern
Physics , Volume 69, Issue 3, 1997, Pages 723-730.
- T.P. Martin, U. Näher, H. Schaber, and U. Zimmermann. Clusters of
fullerene molecules. Physical Review Letters , Volume 70, Issue
20, 1993, Pages 3079-3082.
- M. Verissimo-Alves, R.B. Capaz, B. Koiller, E. Artacho, and H.
Chacham. Polarons in carbon nanotubes. Physical Review Letters ,
Volume 86, Issue 15, 2001, Pages 3372-3375.
- S. Iijima, P.M. Ajayan, and T. Ichihashi. Growth model for carbon
nanotubes. Physical Review Letters , Volume 69, Issue 21, 1992,
Pages 3100-3103.
- J. Narayan and N. Khosla. Self-organization of amorphous Q-carbon and
Q-BN nanoballs. Carbon , Volume 192, 2022, Pages 301-307.
- R. Sachan, J.A. Hachtel, A. Bhaumik, A. Moatti, J. Prater, J.C.
Idrobo, and J. Narayan. Emergence of shallow energy levels in B-doped
Q-carbon: A high-temperature superconductor. Acta Materialia ,
Volume 174, 2019, Pages 153-159.
- D.A. Drabold, P.A. Fedders, and P. Stumm. Theory of diamondlike
amorphous carbon. Physical Review B , Volume 49, Issue 23, 1994,
Pages 16415-16422.
- Y. Sakai, J.R. Chelikowsky, and M.L. Cohen. Magnetism in amorphous
carbon. Physical Review Materials , Volume 2, Issue 7, 2018,
Article Number: 074403.
- R. Kalish. Doping of diamond. Carbon , Volume 37, Issue 5, 1999,
Pages 781-785.
- H. Shioyama. The interactions of two chemical species in the
interlayer spacing of graphite. Synthetic Metals , Volume 114,
Issue 1, 2000, Pages 1-15.
- P. Novák, W. Scheifele, M. Winter, and O. Haas. Graphite electrodes
with tailored porosity for rechargeable ion-transfer batteries.Journal of Power Sources , Volume 68, Issue 2, 1997, Pages
267-270.
- T. Sakurai, X.-D. Wang, Q.K. Xue, Y. Hasegawa, T. Hashizume, and H.
Shinohara. Scanning tunneling microscopy study of fullerenes.Progress in Surface Science , Volume 51, Issue 4, 1996, Pages
263-408.
- A. Bhaumik, R. Sachan, and J. Narayan. A novel high-temperature
carbon-based superconductor: B-doped Q-carbon. Journal of
Applied Physics , Volume 122, Issue 4, 2017, Article Number: 045301.
- A. Bhaumik and J. Narayan. Electrochromic effect in Q-carbon.Applied Physics Letters , Volume 112, Issue 22, 2018, Article
Number: 223104.
- H. Oka, H. Kadoura, N.T. Takahashi, and T. Ikawa. Effect of amorphous
carbon coating on the formation of solid electrolyte interphase and
electrochemical properties of a graphite electrode. Journal of
Power Sources , Volume 543, 2022, Article Number: 231850.
- D.-H. Kim, J.C. Park, J.-D. Joe, Y. Jung, Y. Song, J.-S. Lee, and
Y.-U. Heo. Effect of amorphous carbon film on the phosphate formation
in a multi-phase steel. Materials Today Communications , Volume
32, 2022, Article Number: 104156.
- Z. Klika, J. Serenčíšová, A. Kožušníková, I. Kolomazník, S.
Študentová, and J. Vontorová. Multivariate statistical assessment of
coal properties. Fuel Processing Technology , Volume 128, 2014,
Pages 119-127.
- M.R. Kadagala, S. Nikkam, and S.K. Tripathy. A review on flotation of
coal using mixed reagent systems. Minerals Engineering , Volume
173, 2021, Article Number: 107217.
- T. Rodrigues and A.B. Junior. Charcoal: A discussion on carbonization
kilns. Journal of Analytical and Applied Pyrolysis , Volume 143,
2019, Article Number: 104670.
- A.K. Singh, R. Singh, and O.P. Sinha. Characterization of charcoals
produced from Acacia, Albizia and Leucaena for application in
ironmaking. Fuel , Volume 320, 2022, Article Number: 123991.
- S. Gwon, H. Kim, and M. Shin. Self-heating characteristics of
electrically conductive cement composites with carbon black and carbon
fiber. Cement and Concrete Composites , Volume 137, 2023,
Article Number: 104942.
- T.W. Zerda, W. Xu, A. Zerda, Y. Zhao, and R.B.V. Dreele. High pressure
Raman and neutron scattering study on structure of carbon black
particles. Carbon , Volume 38, Issue 3, 2000, Pages 355-361.
- M. Lindstam, M. Boman, and J.-O. Carlsson. Area selective laser
chemical vapor deposition of diamond and graphite. Applied
Surface Science , Volumes 109-110, 1997, Pages 462-466.
- H. Hirai, K. Kondo, and T. Ohwada. Diamond synthesis by shock
compression from a thin graphite plate with suppressed
regraphitization. Carbon , Volume 33, Issue 2, 1995, Pages
203-208.
- S. Rey, J. Hommet, G. Schmerber, and F.L. Normand. Diamond growth on
polycrystalline nickel silicides. Journal of Crystal Growth ,
Volume 216, Issues 1-4, 2000, Pages 225-234.
- E.-S. Baik, Y.-J. Baik, S.W. Lee, and D. Jeon. Fabrication of diamond
nano-whiskers. Thin Solid Films , Volumes 377-378, 2000, Pages
295-298.
- P. Yu, B.S. Haran, J.A. Ritter, R.E. White, and B.N. Popov.
Palladium-microencapsulated graphite as the negative electrode in
Li-ion cells. Journal of Power Sources , Volume 91, Issue 2,
2000, Pages 107-117.
- P.J. Ouseph. Scanning tunneling microscopy observation of dislocations
with superlattice structure in graphite. Applied Surface
Science , Volume 165, Issue 1, 2000, Pages 38-43.
- B. Simon, S. Flandrois, K. Guerin, A. Fevrier-Bouvier, I. Teulat, and
P. Biensan. On the choice of graphite for lithium ion batteries.Journal of Power Sources , Volumes 81-82, 1999, Pages 312-316.
- R.A. Erck and P.S. Maiya. Fracture behavior of graphite coated with
titanium compounds by chemical vapor deposition. Materials
Science and Engineering: A , Volume 251, Issues 1-2, 1998, Pages
251-254.
- T.R. Anthonya, J.C. Bradleyb, P.J. Horoyskic, and M.L.W. Thewaltc.
Graphite rod precursors for isotopically pure fullerenes and diamond.Carbon , Volume 34, Issue 11, 1996, Pages 1323-1328.
- B.K. Agarwala, B.P. Singh, and S.K. Singhal. A study of
graphite-diamond conversion using nickel, invar and monel as
catalyst-solvents. Journal of Crystal Growth , Volume 74, Issue
1, 1986, Pages 77-88.
- N.M. Hwang and D.-Y. Kim. Low-pressure synthesis of diamond without
hydrogen: Approach by charged cluster model. Journal of Crystal
Growth , Volume 218, Issue 1, 2000, Pages 40-44.
- S. Matsumoto. Development of diamond synthesis techniques at low
pressures. Thin Solid Films , Volume 368, Issue 2, 2000, Pages
231-236.
- O.G. Epanchintsev, A.S. Zubchenko, A.E. Korneyev, and V.A. Simonov.
Highly-efficient shock-wave diamond synthesis from fullerenes.Journal of Physics and Chemistry of Solids , Volume 58, Issue
11, 1997, Pages 1785-1788.
- B.V. Derjaguin and D.V. Fedoseev. Physico-chemical synthesis of
diamond in metastable range. Progress in Surface Science ,
Volume 45, Issues 1-4, 1994, Pages 71-80.
- A.V. Desai and M.A. Haque. Mechanics of the interface for carbon
nanotube-polymer composites. Thin-Walled Structures , Volume 43,
Issue 11, 2005, Pages 1787-1803.
- Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis. Carbon
nanotube-polymer composites: Chemistry, processing, mechanical and
electrical properties. Progress in Polymer Science , Volume 35,
Issue 3, 2010, Pages 357-401.
- C.A.C. Chazot and A.J. Hart. Understanding and control of interactions
between carbon nanotubes and polymers for manufacturing of
high-performance composite materials. Composites Science and
Technology , Volume 183, 2019, Article Number: 107795.
- Y. Jung, Y.S. Cho, J.W. Lee, J.Y. Oh, and C.R. Park. How can we make
carbon nanotube yarn stronger? Composites Science and
Technology , Volume 166, 2018, Pages 95-108.
- I. Alig, P. Pötschke, D. Lellinger, T. Skipa, S. Pegel, G.R.
Kasaliwal, and T. Villmow. Establishment, morphology and properties of
carbon nanotube networks in polymer melts. Polymer , Volume 53,
Issue 1, 2012, Pages 4-28.
- S.V. Ahir, Y.Y. Huang, and E.M. Terentjev. Polymers with aligned
carbon nanotubes: Active composite materials. Polymer , Volume
49, Issue 18, 2008, Pages 3841-3854.
- I. Szleifer and R. Yerushalmi-Rozen. Polymers and carbon
nanotubes-dimensionality, interactions and nanotechnology.Polymer , Volume 46, Issue 19, 2005, Pages 7803-7818.
- K.R. Brown, T.M. Harrell, L. Skrzypczak, A. Scherschel, H.F. Wu, and
X. Li. Carbon fibers derived from commodity polymers: A review.Carbon , Volume 196, 2022, Pages 422-439.
- B. Blue, R. Tsuchikawa, A. Ahmadi, Z. Zhang, D. Heligman, S.D. Lough,
J. Hone, E.R. Mucciolo, and M. Ishigami. Observation of Wigner cusps
in a metallic carbon nanotube. Solid State Communications ,
Volume 353, 2022, Article Number: 114834.
- A. Elbiyaali and F. Allali. Computational and theoretical study of
B-doped achiral single-walled carbon nanotubes: A nonresonant
polarized Raman analysis. Solid State Communications , Volume
357, 2022, Article Number: 114968.
- A.F. Avila, M.O.D. Reis, S.G. Leão, and H. Nascimento. Carbon nanotube
reinforced epoxy based adhesive: Correlations between chemical
functional and failure modes. International Journal of Adhesion
and Adhesives , Volume 119, 2022, Article Number: 103273.
- E. Papadopoulou, G.W. Kim, P. Koumoutsakos, and G. Kim. Molecular
dynamics analysis of water flow through a multiply connected carbon
nanotube channel. Current Applied Physics , Volume 45, 2023,
Pages 64-71.
- M.B. Nardelli, J.-L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao, and
J. Bernholc. Mechanical properties, defects and electronic behavior of
carbon nanotubes. Carbon , Volume 38, Issues 11-12, 2000, Pages
1703-1711.
- B.W. Alphenaar, K. Tsukagoshi, and H. Ago. Spin electronics using
carbon nanotubes. Physica E: Low-dimensional Systems and
Nanostructures , Volume 6, Issues 1-4, 2000, Pages 848-851.
- J.-F. Colomer, P. Piedigrosso, A. Fonseca, and J.B. Nagy. Different
purification methods of carbon nanotubes produced by catalytic
synthesis. Synthetic Metals , Volume 103, Issues 1-3, 1999,
Pages 2482-2483.
- L. Alvarez, T. Guillard, G. Olalde, B. Rivoire, J.F. Robert, P.
Bernier, G. Flamant, and D. Laplaze. Large scale solar production of
fullerenes and carbon nanotubes. Synthetic Metals , Volume 103,
Issues 1-3, 1999, Pages 2476-2477.
- A. Bougrine, A. Naji, J. Ghanbaja, and D. Billaud. Purification and
structural characterization of single-walled carbon nanotubes.Synthetic Metals , Volume 103, Issues 1-3, 1999, Pages
2480-2481.
- U. Hubler, P. Jess, H.P. Lang, H.-J. Güntherodt, J.-P. Salvetat, and
L. Forró. Scanning probe microscopy of carbon nanotubes.Carbon , Volume 36, Issues 5-6, 1998, Pages 697-700.
- L.C. Qin and S. Iijima. Fibrilliform growth of carbon nanotubes.Materials Letters , Volume 30, Issue 4, 1997, Pages 311-314.
- A.M. Benito, Y. Maniette, E. Muñoz, and M.T. Martínez. Carbon
nanotubes production by catalytic pyrolysis of benzene. Carbon ,
Volume 36, Issues 5-6, 1998, Pages 681-683.
- T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee. Recent
advances in graphene based polymer composites. Progress in
Polymer Science , Volume 35, Issue 11, 2010, Pages 1350-1375.
- X.K.D. Hillewaere and F.E.D. Prez. Fifteen chemistries for autonomous
external self-healing polymers and composites. Progress in
Polymer Science , Volumes 49-50, 2015, Pages 121-153.
- R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick. A
review on the mechanical and electrical properties of graphite and
modified graphite reinforced polymer composites. Progress in
Polymer Science , Volume 36, Issue 5, 2011, Pages 638-670.
- N. Roy, R. Sengupta, and A.K. Bhowmick. Modifications of carbon for
polymer composites and nanocomposites. Progress in Polymer
Science , Volume 37, Issue 6, 2012, Pages 781-819.
- M. Mucha. Polymer as an important component of blends and composites
with liquid crystals. Progress in Polymer Science , Volume 28,
Issue 5, 2003, Pages 837-873.
- Y. Fadil, S.C. Thickett, V. Agarwal, and P.B. Zetterlund. Synthesis of
graphene-based polymeric nanocomposites using emulsion techniques.Progress in Polymer Science , Volume 125, 2022, Article Number:
101476.
- A.J. Thomas, E. Barocio, I. Bilionis, and R.B. Pipes. Bayesian
inference of fiber orientation and polymer properties in short
fiber-reinforced polymer composites. Composites Science and
Technology , Volume 228, 2022, Article Number: 109630.
- C. Retailleau, J.A. Eddine, F. Ndagijimana, F. Haddad, B. Bayard, B.
Sauviac, P. Alcouffe, M. Fumagalli, V. Bounor-Legaré, and A. Serghei.
Universal behavior for electromagnetic interference shielding
effectiveness of polymer based composite materials. Composites
Science and Technology , Volume 221, 2022, Article Number: 109351.
- J. Raghavan and M. Meshii. Creep of polymer composites.Composites Science and Technology , Volume 57, Issue 12, 1998,
Pages 1673-1688.
- S.P. Zaoutsos, G.C. Papanicolaou, and A.H. Cardon. On the non-linear
viscoelastic behaviour of polymer-matrix composites. Composites
Science and Technology , Volume 58, Issue 6, 1998, Pages 883-889.
- N. Forintos and T. Czigany. Multifunctional application of carbon
fiber reinforced polymer composites: Electrical properties of the
reinforcing carbon fibers - A short review. Composites Part B:
Engineering , Volume 162, 2019, Pages 331-343.
- S.B. Lindström, H. Wemming, Z. Kapidžić, M.S. Loukil, and M.
Segersäll. Integrated digital image correlation for mechanical
characterization of carbon fiber-reinforced polymer plates.Composite Structures , Volume 305, 2023, Article Number: 116501.
- F. Feni, M. Jahan, F. Dawan, S. Ibekwe, G. Li, and P. Mensah.
Enhancing the mechanical performance of carbon fiber reinforced
polymer using carbonized coconut shell particles. Materials
Today Communications , Volume 33, 2022, Article Number: 104727.
- J. Qiu, M.K. Idris, G. Grau, and G.W. Melenka. Electroluminescent
strain sensing on carbon fiber reinforced polymer. Composites
Part B: Engineering , Volume 238, 2022, Article Number: 109893.
- S.O. Kim, S.Y. Kim, and M. Kim. Improving the electrical performance
of a carbon fiber reinforced polymer bipolar plate using a resin
squeeze-out preprocess. Composites Communications , Volume 32,
2022, Article Number: 101156.
- M. Sannamani, J. Gao, W.W. Chen, and T.N. Tallman. Damage detection in
non-planar carbon fiber-reinforced polymer laminates via electrical
impedance tomography with surface-mounted electrodes and directional
sensitivity matrices. Composites Science and Technology , Volume
224, 2022, Article Number: 109429.
- A. Wei, R. Al-Ameri, Y.C. Koay, and M.Y.J. Tan. Triple-functional
carbon fibre reinforced polymer for strengthening and protecting
reinforced concrete structures. Composites Communications ,
Volume 24, 2021, Article Number: 100648.
- M.A. Machado, K.-N. Antin, L.S. Rosado, P. Vilaça, and T.G. Santos.
Contactless high-speed eddy current inspection of unidirectional
carbon fiber reinforced polymer. Composites Part B:
Engineering , Volume 168, 2019, Pages 226-235.
- M.F. Batista, I. Basso, F.D.A. Toti, A.R. Rodrigues, and J.R. Tarpani.
Cryogenic drilling of carbon fibre reinforced thermoplastic and
thermoset polymers. Composite Structures , Volume 251, 2020,
Article Number: 112625.
- R.D. Adams and M.M. Singh. The dynamic properties of fibre-reinforced
polymers exposed to hot, wet conditions. Composites Science and
Technology , Volume 56, Issue 8, 1996, Pages 977-997.