

Soil Microbiome During Corn Production as Influenced by Soil Order and Nitrogen Fertilization

Core Ideas
· Each soil order had a distinct bacterial and fungal community and strongly influenced microbial composition.
· Nitrogen fertilizer greatly impacted grain yield, with minimal effects on bacterial and no effect on fungal taxa.
· Microbial community data is not yet capable of being used to recommend practices for improved corn production.
· Microbial composition strongly varied with corn growth stage.
· Some soil microbial similarities are related to plant genetics, environment, and similar management practices.

ABSTRACT
[bookmark: _Hlk123128383]Maintaining a healthy soil microbiome is important for key soil functions and plant growth. However, little is known about temporal changes in soil microbial communities across different soils and nitrogen fertilization in production soils. The aim of this investigation was to determine soil bacterial and fungal baseline communities and seasonal changes in cornfields, under contrasting soil orders with and without nitrogen fertilization. Three Missouri soil orders (Entisol, Alfisol, and Mollisol) and two nitrogen fertilizer rates (0 and 225 kg nitrogen ha-1) were used for this research. Soil samples (0-5 and 5-15 cm) were taken six times during the season, starting prior to planting up to the R2 corn growth stage. Samples were used to determine bacterial and fungal abundancies and biomass. Soil characteristics (e.g., CEC, pH, organic matter) and nitrogen fertilization showed significant but minor influence on bacterial abundance and biomass, while soil order and corn growth stage had major influence. Each soil order had a distinct and significantly different bacterial and fungal community. Soil depth significantly influenced all Beta diversity metrics, and bacterial and fungal biomass were greater in the 0-5 cm depth. No microbial interactions influenced corn growth more than nitrogen. Though strong relationships between microbes and soil and plant health have been shown, linkages of microbiome information to agronomic decisions are rare. Before developing soil microbial information based decision aids for farmers, longer temporal sampling in more growing environments are needed to identify links between management practices and microbial information. 

ABBREVIATIONS: ASV, amplicon sequence variant; CEC, cation exchange capacity; E, environmental; G, genetic; M, management; OM, organic matter; PLFA, phospholipid fatty acid analysis


1. INTRODUCTION
Many of the soil functions relied on for plant production, nutrient cycling, chemical filtering, carbon sequestration, and water dynamics are driven by the community makeup of soil microbes. In turn, these community dynamics are governed by genetic (G; e.g., plant species), environment (E; e.g., soil characteristics, temperature, and moisture), and management (M; e.g., tillage, fertilizer additions) factors and their interactions. Changing even one of these factors will affect the growth and diversity of microbial communities (Lehman et al., 2015). Extensive research has been conducted to understand how these factors affect soil microbes (Chang et al., 2017; Chaparro et al., 2014; Zhao et al., 2014), but little is known about how inherent soil characteristics and nitrogen fertilization practices influence soil microbial communities through the growing season. 
From a G point of view, plant varieties and species exert a strong selection pressure on the soil microbiome (Vassilev et al., 2006). Plants select for differing soil microbiome communities because microbes, specifically bacteria and fungi, influence plant health through nutrient availability, disease suppression, plant hormone modifications, and enhanced tolerance to abiotic stress (Klein et al., 2013; Márquez et al., 2007; Sergeeva et al., 2007; Vassilev et al., 2006); in return, microbes receive nutrients and energy through organic matter and root exudates—sugars, amino acids, and enzymes. Plant variety has a stronger effect on microbial communities when the plants differ at the species or higher taxonomic levels (Schlatter et al., 2015). Sometimes plant cultivars or hybrids significantly impact microbial communities by selecting for different populations (Bakker et al., 2015; Chang et al., 2017; Chaparro et al., 2014), other times, however, corn (Zea mays L.) hybrids have demonstrated little to no significant effect while soil characteristics and environmental heterogeneity were primary drivers of the soil microbiome (Chen et al., 2019; Peiffer et al., 2013).
The E factor is an expression of the soil medium. This factor consists of all soil physical and chemical characteristics, soil-to-atmosphere gas exchange, and climate—all of which vary temporally and spatially. To comprehensively account for all these factors, soil scientists have grouped soils based on soil order classifications (Soil survey staff, 1999), which are primarily established on soil-forming factors (i.e., age, parent material, topography, climate, and biological activity) (Jenny, 1946). Soil characteristics found in each soil order directly impact nutrient and water availability, which affects the soil microbial community, plant production, and the interaction between microbes and plants (Alotaibi et al., 2018; Chen et al., 2019; Tremblay et al., 2012). As an example, soil texture was found to influence the starting composition of a microbial community in the bulk soil (surface soil horizon) as well as the changes that occurred in the rhizosphere (soil zone within 0-2mm from the root) (Bakker et al., 2015). While soil texture is only one property used to describe soil orders, additional soil properties have yet to be investigated for their effect on soil microbial communities. 
Management may be the most controllable of the GxExM factors due to the ease of establishing replicated experiments with contrasting management practices. One such practice of particular importance is the application of nitrogen fertilizer—the most influential management practice for increasing corn grain yield (Ciampitti and Vyn, 2012). Microbes also rely on nitrogen for growth, although the effect of nitrogen fertilization on microbial community size and activity has been inconsistent (i.e., biomass, respiration, mineralization rates) (Allison et al., 2008; Bean et al., 2020; Treseder, 2008; Waldrop et al., 2004). Across varying nitrogen rates, Ramirez et al. (2010) used high-throughput sequencing and observed changes in phylogenetic composition but no consistent effects on bacterial diversity. Similarly, mixed results have been found for nitrogen fertilization effects on fungal biomass or diversity (Treseder, 2004; 2008). 
Many studies have looked at the microbiome in the rhizosphere under tightly controlled conditions in pots and greenhouses to determine changes in the microbial community (Bakker et al., 2015; Zhu et al., 2016), yet few studies have explored the bulk soil in a crop production setting from the field (Buyer et al., 2010; García-Orenes et al., 2016). This bulk soil is also used for other assessments, including nutrient sampling for fertility decisions and soil water for irrigation management. Even fewer studies have examined the influence of GxExM interactions on agricultural microbial communities. It is hypothesized that over many years, a corn-soybean (Glycine max L.) biculture, a common practice of crops frequently grown together in the US Midwest, will affect the microbial community as soils are managed to maximize growth and yield via herbicides, tillage, and fertilizer amendments. As such, these crops and management conditions regulate the quantity and quality of root exudates entering the soil (Wardle, 2013). While indigenous microbial communities will vary based on differing physicochemical properties, over years and decades these communities will likely move toward a steady-state supported by this two-species cropping system. How they develop, or if a new microbiome community baseline is reached, is unknown. Furthermore, how the microbiome for this system changes temporally within a growing season of a production setting is unknown. For this research, we were interested in the dynamics of ExM interactions on soil microbiome for corn grown in a corn-soybean rotation. A survey using high-throughput sequencing could establish a community structure baseline and information that may inform management decisions. Therefore, the objective of this research was to determine soil bacterial and fungal baseline communities in cornfields under contrasting soil orders, seasonal changes, and with and without nitrogen fertilization. 

2. MATERIALS AND METHODS
2.1 Site Descriptions, Management, and Soil Sampling
Plot research was conducted in 2016 on three sites in Missouri (two grower fields and at the University of Missouri research farm). Each site was on three different soil orders—representing a continuum of soil development found in Missouri [Mollisol (Fine-silty, mixed, superactive, mesic Aquic Argiudolls), Alfisol (Fine, smectitic, mesic Vertic Epiaqualfs), and Entisol (Fine-silty, mixed, superactive, mesic Fluvaquentic Hapludents)]. Sites were characterized using deep soil cores down to ~120 cm (Table 1). All three fields had a cropping history of corn and soybeans for the past five years (Table 2) and have been used for production agriculture for 20 or more years. All sites were disked and cultivated prior to planting. Corn (hybrid P1197AM, Corteva Agriscience, IA) was planted at a target population of 84,000 to 85,600 seeds ha-1 at a depth of 2.5 to 3 cm on April 5th, 16th, and 12th for the Mollisol, Alfisol, and Entisol, respectively. At the time of planting, eight nitrogen rates (ammonium nitrate; 0 – 360 kg nitrogen ha-1 in 45 kg nitrogen ha-1 increments) were broadcasted on plots (3-m wide by 15-m long) in a randomized block design with four replicates of each treatment. For this research, only the 0 and 225 kg nitrogen ha-1 treatments were used.
Table 1. Soil order characteristics and properties of the first two surface diagnostic pedogenic horizons.
	Soil Order*
	Diagnostic Horizon
	Depth Start
	Depth End
	Clay
	Silt
	Sand
	CEC
	Total Organic Carbon
	Organic Matter
	N
	pH
	Bulk Density

	
	
	cm
	
	%
	
	
	
	%
	%
	%
	
	g cm-3

	Mollisol
	Ap
	0
	17
	22
	73
	5
	17.1
	1.4
	2.7
	0.15
	6.6
	1.47

	Mollisol
	A
	17
	33
	27
	69
	4
	19.6
	0.8
	2.0
	0.09
	6.4
	1.53

	Entisol
	Ap
	0
	22
	38
	52
	10
	30.3
	1.3
	2.4
	0.13
	7.6
	1.42

	Entisol
	A
	22
	42
	43
	50
	7
	32.5
	0.9
	2.0
	0.10
	7.7
	1.51

	Alfisol
	Ap
	0
	22
	18
	76
	6
	15.3
	0.9
	2.0
	0.11
	6.8
	1.33

	Alfisol
	Btg1
	22
	41
	42
	55
	3
	27.6
	0.6
	2.0
	0.08
	5.6
	1.38


*The soil series for different locations are: Mollisol = Higginsville; Entisol = Peers; and Alfisol = Mexico.

Table 2. Cropping history five years prior to this investigation.
	Order
	2011
	2012
	2013
	2014
	2015

	Mollisol
	Soybean
	Corn
	Soybean
	Corn
	Soybean

	Entisol
	Soybean
	Corn
	Soybean
	Soybean
	Soybean

	Alfisol
	Soybean
	Corn
	Soybean
	Soybean
	Soybean



Soil samples were collected prior to planting and an additional five times during the growing season (approximately every two weeks) between corn emergence and the R2 corn growth stage. These six stages were labeled as “Pre-Plant”, “Pre-Ear” (VE-V3), “Ear initiation” (V5-V6), “Between” (V9-V12), “Tasseling” (VT), and “Post-Tasseling" (R2). Eight soil cores were collected at depths of 0-5 and 5-15 cm from each plot between corn plants and corn rows. A composite of each depth was made by mixing all eight cores together. Soil samples were immediately brought to the University of Missouri and stored in a -80°C freezer. At the completion of the last sampling event, all samples were shipped on ice to Brigham Young University and were stored in a -20°C freezer until processing.

2.2 Weather Data and Soil Analysis
Weather data were collected using a HOBO (model U30) weather station (Onset, Bourne, MA) and data logger at the edge of each field. Data were quality-checked against interpolated temperature data from Multi-Radar/Multi-Sensor rainfall data. Outliers and/or missing values were identified and replaced with the interpolated temperature or Multi-Radar/Multi-Sensor rainfall estimates. Weather data were collected in 15-minute increments but were aggregated into a daily summary of minimum and maximum temperature and total precipitation, as explained in Kitchen et al. (2017). Data were used to derive additional parameters based on temperature (i.e., growing degree days and corn heat units) and precipitation (i.e., total precipitation, rainfall, and abundant and well-distributed rainfall) following equations found in Tremblay et al. (2012). 
 	Soil characterization analyses were performed by the University of Missouri Soil Health Assessment Center (SHAC) following standard methods, including soil texture (sand, silt, and clay content) via the pipette method, cation exchange capacity with ammonium acetate, total organic carbon with a Leco TruMac combustion analyzer (Leco Corp., St. Joseph, MI), pH using the saturated paste method, and bulk density and gravimetric soil moisture via the core method (Burt, 2011). Organic matter (OM) content was determined using a thermogravimetric analyzer (Leco Corp., St. Joseph, MI) with drying temperatures similar to those outlined by Burt (2011) for loss on ignition methods. 

2.3 Microbial Biomass by Phospholipid Fatty Acid Analysis
Phospholipid fatty acid analysis (PLFA) for microbial community biomass and structure was conducted at the University of Missouri Soil Health Assessment Center following the high-throughput extraction method of Buyer and Sasser (2012) as described in Veum et al. (2021). Relative to soil microbial DNA, degradation of PLFA biomarkers proceeds relatively rapidly following cell death (Pinkart et al., 2002; White et al., 1996; Zelles et al., 1995) and provides information on the living microbial biomass and community structure at the time of sampling (Pinkart et al., 2002). The sum of PLFA biomarkers (total PLFA) is an estimate of total microbial biomass, although these values do not reflect absolute biomass (Frostegård et al., 2011). Further, changes in ratios of PLFA microbial biomarkers indicate a shift in the microbial community due to short-term disturbances, such as management practices (Zelles et al., 1995). In short, PLFA biomarkers were extracted from approximately 2-g lyophilized soil. Nonadecanoate (C19:0 fatty acid) was used as the internal standard. The ester-linked fatty acids were methylated and measured using an Agilent gas chromatograph with a flame ionization detector (Hewlett Packard, Palo Alto, CA). PLFA peaks were identified and assigned to microbial groups using the Sherlock software from MIDI (Microbial ID, Inc.; Newark, DE). Estimates of microbial biomass by PLFA were calculated as concentration (nmol g-1 soil) following Frostegård and Baath (1996). A total of 93 PLFA biomarkers were detected and identified. 

2.4 Microbial Community Structure
Soil microbial DNA was extracted using the MoBio PowerSoil® DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) following standard kit protocols with slight modifications as recommended by Lindahl et al. (2013). Samples were homogenized with a Vortex-Genie 2 Mixer (Scientific Industries, Bohemia, NY, USA) for 10 to 15 minutes. Templates were quantified with an ND1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and then concentrated to 30 ng µl-1.
Two amplicon libraries were generated to assess the different populations of bacteria and fungi. Bacterial molecular identification used the V4 hypervariable region of the 16S rRNA gene; it was targeted using primers 16Sf (5’-GTGCCAGCMGCCGCGGTAA-3’) and 16Sr (5’-GGACTACHVGGGTWTCTAAT-3’) (Kozich et al., 2013). Both primers, 16Sf and 16Sr, contained a series of repeating 8-bp barcodes which, in combination, facilitated a dual-indexed Illumina sequencing approach (Kozich et al., 2013). A forward or reverse Illumina primer, linker region and primer pad were also included on both 16Sf and 16Sr. AccuPrime™ Pfx SuperMix (Invitrogen, USA) was used for the generation of 16S amplicons. Thermocycler conditions were: initial denaturation was set at 94°C for 3 min, followed by 35 cycles of denaturation at 94°C for 45 seconds, annealing at 55°C for 60 seconds, and elongation at 72°C for 90 seconds. A final elongation step was set at 72°C for 10 minutes and all samples were held at 4°C. 
Fungal molecular identification used the nuclear internal transcribed spacer 1 (ITS1) region and was amplified in a two-step PCR approach. Initial PCR amplification utilized an oligo containing the forward primer ITS1F_KYO1 (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-NNNXXX-CTHGGTCATTTAGAGGAASTAA-3’) with all barcodes having at least 3 nucleotides (NNN), additional nucleotides of 4, 5, and 6-mer barcodes were represented with an X, and the forward Illumina sequencing primer fused to the 5’ end. The reverse oligo consisted of the reverse primer ITS2_KYO2 (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-NNNXXX-TTYRCTRCGTTCTTCATC-3’), with all barcodes having at least 3 nucleotides (NNN), additional nucleotides of 4, 5, and 6-mer barcodes were represented with an X, and the reverse Illumina sequencing primer (Toju et al., 2016). PCR amplification was performed with Accuprime Pfx SuperMix with the following parameters: initial denaturation at 94°C for 2 min, 35 cycles at 98°C for 10 sec, 50°C for 30 sec, 68°C for 50 sec, with a final extension of 68°C for 5 min followed by a final holding temperature of 4°C. A final PCR was utilized to ligate Illumina adapters and barcodes. This was performed using a forward fusion Illumina primer containing the P5 Illumina adapter, an 8-mer barcode represented by the “Xs”, and the 5’ end of the sequencing adapter (5’-AATGATACGGCGACCACCGAGATCTACAC-XXXXXXXX-TCGTCGGCAGCGTC-3’), and a reverse fusion Illumina primer composed of the P7 Illumina adapter, an 8-mer barcode represented by the “Xs”, and the 5’ end of the sequencing adapter (5’-CAAGCAGAAGACGGCATACGAGAT-XXXXXXXX-GTCTCGTGGGCTCGG). The PCR parameters were as follows: initial denaturation at 94°C for 2 min, 8 cycles at 98°C for 10 sec, 50°C for 30 sec, 68°C for 50 sec, and a final extension of 68°C for 5 min followed by a holding temperature of 4°C.
Bacterial and fungal samples were submitted to the Brigham Young University DNA sequencing center for sequencing. Paired-end sequencing (2x250) was carried out on the Illumina HiSeq 2500 platform (2x250) (Illumina Biotechnology, San Diego, CA, USA).

[bookmark: _Toc529880479][bookmark: _Toc531700608]2.5 Data Analysis 
Demultiplexed paired-end sequence reads were imported to QIIME 2 (v.2021.11) (Bolyen et al., 2019). Within QIIME 2, sequences underwent quality filtering, merging, and chimera removal to create a feature table using DADA2 (Callahan et al., 2016). Taxonomy was assigned to bacteria using Greengenes (Bokulich et al., 2018; McDonald et al., 2012). To perform Unifrac beta-diversity analyses, a mafft alignment was used to create a phylogeny of the ASVs (Katoh et al., 2002; Lozupone and Knight, 2005; Lozupone et al., 2007; Price et al., 2010). Taxonomy was assigned to fungi using the UNITE ITS database (Kõljalg et al., 2005). Bacterial samples were rarefied to 11,750 reads per sample and fungal reads were rarefied to 7,770 reads per sample. Statistically significant differences in microbial community composition and abundance of individual species were determined using PERMANOVA (Oksanen et al., 2017) and ANCOM (Mandal et al., 2015), respectively, in R. For the PERMANOVA, we performed a PCA analysis on covariates collected along with the samples and identified that the covariates were grouped into two major planes. Then, we used covariates in the PERMANOVA as described in the results. Plots were created using {ggplot2} (Wickham, 2016). We also used several packages that are not cited elsewhere (Hothorn et al., 2008; Wickham and Henry, 2020; Wickham, 2007; Wickham et al., 2019; Wickham et al., 2015; Wilke, 2019).  Absolute abundance of the bacterial reads was calculated by multiplying each read count in each sample by the quotient of Actinomycetes in the PLFA data divided by the Actinobacteria in the sequence data in the same sample. That number was then divided by the 16S rRNA copy number in each sample, which was estimated using a pre-calculated file available as part of the PiCrust distribution (Langille et al., 2013).

3. RESULTS
3.1 Bacterial Abundancies 
After quality filtering, we obtained 9,462,379 reads for 109 samples, and the reads were classified into 35,249 ASVs. The most abundant bacterial groups in both soil depths (0-5 and 5-15 cm) were from the Acidobacteria and Proteobacteria (Figures 1 and 2). To better understand the factors that contributed to variation in the soil bacterial communities, we first performed a PCA which resulted in the data being clustered in two primary dimensions (Figure S1). From each dimension, one variable was selected that explained a substantial fraction of the variation (i.e., CEC and OM) in a PERMANOVA for each sampling depth, along with the other three variable of interest (e.g., soil order, corn growth stage, and nitrogen fertilization). Using the PERMANOVA, the soil bacterial microbiota composition was compared using three beta-diversity metrics 1. Bray-Curtis (measures ASV—amplicon sequence variant—dissimilarity among samples), 2. weighted Unifrac (measures presence and abundances of detected ASVs), and 3. unweighted Unifrac (measures presence but not abundance of ASVs). Significant differences were observed in all three beta-diversity metrics for depth, soil order, corn growth stage, CEC, and OM (Table 3). Nitrogen application was significantly different using the weighted Unifrac (P< 0.014) and unweighted Unifrac (P< 0.011) metrics but was not significantly different using the Bray-Curtis metric (P=0.054). Interactions among soil depth, soil order, growth stage, and nitrogen fertilization were analyzed to determine significance and to identify sources of variability. Significant interactions between soil depth and growth stage, and soil order and growth stage were significant in all three beta-diversity metrics (P< 0.001). Others had significant interactions, but not at all three beta-diversity metrics (Table 3).
Table 3. PERMANOVA results of soil bacterial community composition affected by sample depth (0-5 or 5-15 cm), soil order (Mollisol, Entisol, Alfisol), corn growth stage, and nitrogen (N) application (0 or 225 kg N ha-1) along with two additional soil characteristic covariates: cation exchange capacity (CEC) and organic matter (OM). Pre-plant samples, which have no N treatment, were excluded from the analysis.
	
	 
	Bray-Curtis
	Weighted
	Unweighted

	Term
	df
	SS
	F
	R2
	p
	SS
	F
	R2
	p
	SS
	F
	R2
	p

	Depth (D)
	1
	1.6
	7.9
	0.03
	0.001
	0.3
	22.1
	0.06
	0.001
	1.0
	6.5
	0.03
	0.001

	Soil Order (S)
	2
	5.1
	12.3
	0.09
	0.001
	0.5
	14.8
	0.08
	0.001
	2.3
	7.5
	0.06
	0.001

	Growth Stage (GS)
	8
	6.9
	4.2
	0.12
	0.001
	1.3
	10.3
	0.23
	0.001
	4.4
	3.7
	0.12
	0.001

	Nitrogen (N)
	1
	0.4
	1.8
	0.01
	0.054
	0.0
	2.7
	0.01
	0.014
	0.3
	1.8
	0.01
	0.011

	CEC
	1
	2.6
	12.8
	0.05
	0.001
	0.2
	10.7
	0.03
	0.001
	1.1
	7.3
	0.03
	0.001

	OM
	1
	0.5
	2.4
	0.01
	0.018
	0.0
	1.8
	0.00
	0.09
	0.3
	1.8
	0.01
	0.019

	D*S
	2
	0.6
	1.4
	0.01
	0.09
	0.1
	1.9
	0.01
	0.026
	0.4
	1.2
	0.01
	0.11

	D*GS
	8
	2.7
	1.7
	0.05
	0.001
	0.3
	2.1
	0.05
	0.001
	1.9
	1.5
	0.05
	0.001

	S*GS
	4
	2.5
	3.1
	0.04
	0.001
	0.2
	3.1
	0.03
	0.001
	1.3
	2.2
	0.03
	0.001

	D*N
	1
	0.2
	1.1
	0.00
	0.34
	0.0
	1.5
	0.00
	0.18
	0.2
	1.1
	0.00
	0.34

	S*N
	2
	0.4
	0.9
	0.01
	0.62
	0.0
	0.8
	0.00
	0.69
	0.3
	0.9
	0.01
	0.66

	GS*N
	8
	1.5
	0.9
	0.03
	0.79
	0.2
	1.3
	0.03
	0.11
	1.2
	1.0
	0.03
	0.32

	D*S*GS
	4
	0.8
	1.0
	0.01
	0.46
	0.1
	1.2
	0.01
	0.27
	0.6
	1.0
	0.02
	0.38

	D*S*N
	2
	0.3
	0.7
	0.00
	0.95
	0.0
	0.8
	0.00
	0.70
	0.2
	0.8
	0.01
	0.90

	D*GS*N
	8
	2.0
	1.2
	0.04
	0.07
	0.2
	1.4
	0.03
	0.04
	1.4
	1.2
	0.04
	0.05

	S*GS*N
	4
	0.7
	0.8
	0.01
	0.83
	0.1
	0.9
	0.01
	0.63
	0.5
	0.9
	0.01
	0.73

	D*S*GS*N
	4
	0.6
	0.7
	0.01
	0.98
	0.0
	0.8
	0.01
	0.79
	0.5
	0.8
	0.01
	0.93

	Residual
	137
	28.2
	 
	0.49
	 
	2.2
	 
	0.38
	 
	20.6
	 
	0.53
	 

	Total
	198
	57.5
	 
	1.00
	 
	5.6
	 
	1.00
	 
	38.4
	 
	1.00
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Figure 1. Variation in soil bacterial taxa at 0 to 5 cm depth associated with soil order and corn growth stage. Individual bars represent samples collected from each of the four blocks at the research sites. Taxon with a mean fractional abundance of at least 2.5% are shown, while less abundant are grouped in “other”. Samples collected from plots that received either A) 0 kg nitrogen ha-1, or B) 225 kg nitrogen ha-1 at-planting.      
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Figure 2. Variation in soil bacterial taxa at 5 to 15 cm depth associated with soil order and corn growth stage. Individual bars represent samples collected from different blocks at the research sites. Taxon with a mean fractional abundance of at least 2.5% are shown, while less abundant are grouped in “other”. A) samples collected from plots with 0 kg nitrogen ha-1; B) samples collected from plots with 225 kg nitrogen ha-1.  

PERMANOVA indicated soil order contributed to bacterial community variation in soils from 0 to 5 cm depth (Figure 3). PERMANOVA analysis also showed bacterial composition varied significantly by soil order and corn growth stage (Table 3). Entisol bacterial communities were more diverse in all three beta-diversity metrics (Bray-Curtis, unweighted Unifrac, and weighted Unifrac) (Figure 3). The tasseling corn growth stage had the greatest influence on bacterial diversity, particularly for ASV presence but not abundance (unweighted Unifrac). Bacterial community diversity at the 5 to 15 cm depth was similar to the 0 to 5 cm depth when examining soil order and growth stage (Figure 3). 
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Figure 3. Principal coordinate analysis showing A,D and G,J) Bray-Curtis; B,E and J,K) weighted Unifrac; and C,F and I,J) unweighted Unifrac distances analysis for soil bacteria at 0 to 5 cm and 5 to 15 cm soil depth. A-C, D-F, G-I, and J-L show the same ordination, with the points and ellipses shaded according to soil type (A-C and G-I) or plant stage (D-F and J-L).  

Most of this variability was driven by different groups of bacteria. We found that 15 and 23 different ASVs varied based on corn growth stage and soil order, respectively. Only a single ASV varied in abundance with nitrogen fertilization: an ASV assigned to the Xanthamonadaceae (Figure 4). Together, these results confirm significant variation in the bacterial communities at the different soil orders and corn growth stages, and—to a limited extent—with nitrogen fertilization. 
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Figure 4. Difference in abundance of an ASV assigned to the Xanthamonadaceae (ASV ID 739e720a154636a30ec93f0832e9861c) between fertilization treatments 0 kg nitrogen ha-1 or 225 kg nitrogen ha-1 at-planting.

Soil depth significantly (P<0.001) influenced bacteria biomass as estimated via PLFA (Table 4). Bacterial biomass was greater in the 0 to 5 cm than in the 5 to 15 cm depth (Figure 5). Soil order and corn growth stage also significantly (P<0.001) influenced bacterial biomass (Table 4). However, nitrogen application was not significant (P=0.08). Bacterial biomass was lower in the Mollisol soil when compared to the Alfisol and Entisol soils during this study (Figure 5). The Alfisol soil had the highest biomass in both soil depths during most of the corn growing season, while the Entisol had the most biomass early in the season before planting (Figure 5).
Table 4. PERMANOVA of Bray-Curtis distances for PLFA bacterial biomass analysis.
	Term
	df
	SS
	F
	R2
	p

	Depth (D)
	1
	1.8
	8.1
	0.03
	0.001

	Soil Order (S)
	2
	4.5
	10.3
	0.06
	0.001

	Growth Stage (GS)
	9
	10.2
	5.2
	0.15
	0.001

	Nitrogen (N)
	1
	0.3
	1.5
	0.00
	0.08

	CEC
	1
	2.8
	13.1
	0.04
	0.001

	OM
	1
	0.5
	2.2
	0.01
	0.015

	D*S
	2
	0.5
	1.3
	0.01
	0.14

	D*GS
	9
	3.4
	1.7
	0.05
	0.001

	S*GS
	6
	5.8
	4.4
	0.08
	0.001

	D*N
	1
	0.2
	0.8
	0.00
	0.66

	S*N
	2
	0.3
	0.7
	0.00
	0.90

	GS*N
	9
	1.4
	0.7
	0.02
	1.00

	D*S*GS
	6
	1.6
	1.2
	0.02
	0.07

	D*S*N
	2
	0.2
	0.6
	0.00
	1.00

	D*GS*N
	9
	1.7
	0.9
	0.02
	0.91

	S*GS*N
	6
	0.8
	0.6
	0.01
	1.00

	D*S*GS*N
	6
	0.9
	0.7
	0.01
	1.00

	Residual
	148
	32.2
	 
	0.47
	 

	Total
	221
	69.0
	 
	1.00
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Figure 5. Estimated bacterial biomass across sample replicates and growth stages for each soil order. Biomass was estimated by normalizing the 16S rRNA sequencing data using the PLFA data. A) samples collected from plots 0 to 5 cm depth; B) samples collected from plots 5 to 15 cm depth.  

3.2 Fungal Abundancies
After quality filtering, we obtained 8,146,616 reads for 119 samples, and the reads were classified to 11,749 ASVs. The most abundant fungal orders were from Xylariales, Sordariales, and Eurotiales (Figures 6 and 7). We used the same covariates in the fungal analysis as for bacteria and found that soil order and corn growth stage and their interaction, which were all significant for all three Beta diversity metrics (Table 5, Figure 6). Soil depth was significant for all three Beta diversity metrics but did not explain the variation. In general, corn growth stage, followed by soil order, explained the largest amount of variation of the fungal community compositions. Changes in corn growth stage were associated with changes in abundance of Dematiopleospora rosicola. Soil order was associated with variation in 22 ASVs, including 12 ASVs assigned to the genus Discosia. Together, these results confirm that the mycobiota varied between sampling soil orders, but not with nitrogen supplementation, and that unlike for the soil bacterial microbiota, variation among corn growth stages was a stronger determinant of the mycobiota than soil order.
Table 5. PERMANOVA results of soil fungal community composition affected by sample depth (0-5 or 5-15 cm), soil order (Mollisol, Entisol, Alfisol), corn growth stage, and nitrogen application (0 or 225 kg N ha-1) along with two additional soil characteristic covariates: cation exchange capacity (CEC) and organic matter (OM). Pre-plant samples, which have no N treatment, were excluded from the analysis.
	
	 
	Bray-Curtis
	Weighted
	Unweighted

	Term
	df
	SS
	F
	R2
	p
	SS
	F
	R2
	p
	SS
	F
	R2
	p

	Depth (D)
	1
	1.3
	6.1
	0.02
	0.001
	1.2
	13.0
	0.04
	0.001
	0.8
	4.3
	0.01
	0.001

	Soil Order (S)
	2
	11.2
	25.9
	0.16
	0.001
	3.8
	20.9
	0.12
	0.001
	7.5
	19.0
	0.12
	0.001

	Growth Stage (GS)
	9
	10.0
	5.1
	0.14
	0.001
	6.4
	7.9
	0.21
	0.001
	8.9
	5.0
	0.15
	0.001

	Nitrogen (N)
	1
	0.2
	0.9
	0.00
	0.72
	0.1
	0.7
	0.00
	0.75
	0.2
	1.1
	0.00
	0.26

	CEC
	1
	0.5
	2.3
	0.01
	0.001
	0.2
	2.2
	0.01
	0.026
	0.3
	1.8
	0.01
	0.004

	OM
	1
	0.3
	1.4
	0.00
	0.048
	0.1
	0.9
	0.00
	0.48
	0.3
	1.8
	0.01
	0.001

	D*S
	2
	1.0
	2.3
	0.01
	0.001
	0.3
	1.9
	0.01
	0.008
	0.7
	1.8
	0.01
	0.001

	D*GS
	9
	2.9
	1.5
	0.04
	0.001
	1.3
	1.6
	0.04
	0.003
	2.2
	1.3
	0.04
	0.001

	S*GS
	5
	2.9
	2.7
	0.04
	0.001
	0.9
	2.0
	0.03
	0.001
	2.3
	2.3
	0.04
	0.001

	D*N
	1
	0.2
	0.8
	0.00
	0.83
	0.1
	0.6
	0.00
	0.86
	0.2
	0.8
	0.00
	0.92

	S*N
	2
	0.4
	0.9
	0.01
	0.80
	0.1
	0.6
	0.00
	0.94
	0.4
	0.9
	0.01
	0.76

	GS*N
	9
	1.6
	0.8
	0.02
	1.00
	0.5
	0.6
	0.02
	1.00
	1.4
	0.8
	0.02
	1.00

	D*S*GS
	5
	1.5
	1.4
	0.02
	0.003
	0.7
	1.4
	0.02
	0.030
	1.4
	1.4
	0.02
	0.001

	D*S*N
	2
	0.3
	0.7
	0.00
	0.99
	0.1
	0.6
	0.00
	0.96
	0.3
	0.7
	0.00
	1.00

	D*GS*N
	9
	1.7
	0.9
	0.02
	0.98
	0.6
	0.7
	0.02
	0.99
	1.4
	0.8
	0.02
	1.00

	S*GS*N
	5
	0.9
	0.8
	0.01
	1.00
	0.4
	0.8
	0.01
	0.87
	0.8
	0.8
	0.01
	1.00

	D*S*GS*N
	5
	0.8
	0.8
	0.01
	1.00
	0.3
	0.6
	0.01
	0.99
	0.8
	0.8
	0.01
	1.00

	Residual
	155
	33.5
	 
	0.47
	 
	14.1
	 
	0.45
	 
	30.4
	 
	0.50
	 

	Total
	224
	71.1
	 
	1.00
	 
	31.2
	 
	1.00
	 
	60.3
	 
	1.00
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Figure 6. Variation in soil fungal taxa associated with soil order and corn growth stage from samples taken from the 0 to 5 cm soil depth. Individual bars represent samples collected from different blocks at the research locations. Taxon with a mean fractional abundance of at least 2% are shown, while less abundant are grouped in “other”. Samples collected from plots that received either A) 0 kg nitrogen ha-1, or B) 225 kg nitrogen ha-1 at-planting.
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Figure 7. Variation in soil fungal taxa associated with soil order and corn growth stage from samples taken from the 5 to 15 cm soil depth. Individual bars represent samples collected from different blocks at the research locations. Taxon with a mean fractional abundance of at least 2% are shown, while less abundant are grouped in “other”. Samples collected from plots that received either A) 0 kg nitrogen ha-1, or B) 225 kg nitrogen ha-1 at-planting.

The PCA clearly separated fungal communities by soil order in the Bray Curtis and Unweighted Unifrac Beta diversity analysis (Figure 8). However, when considering ASV presence or absence (Weighted Unifrac), separation was noticeable, but the distinctions were less defined as populations overlapped. Corn growth stage, in conjunction with soil order, had a strong influence on fungal community diversity (Figure 8).
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Figure 8. Principal coordinate analysis showing A,D and G,J) Bray-Curtis; B,E and J,K) weighted Unifrac; and C,F and I,J) unweighted Unifrac distances analysis for soil fungi at 0 to 5 cm and 5 to 15 cm soil depth. A-C, D-F, G-I, and J-L show the same ordination, with the points and ellipses shaded according to soil type (A-C and G-I) or plant stage (D-F and J-L). 

Estimated biomass of fungal classes varied by soil depth and fungal biomass was higher in the 0 to 5 cm depth compared to the 5 to 15 cm (Table 6, Figure 9). The Alfisol and Entisol soils tended to have the highest fungal biomass in the 0 to 5 cm soil depth. In deeper soils, 5 to 15 cm depth, the Alfisol soil had more fungal biomass than the Entisol and Mollisol soils (Figure 9). 
Table 6. PERMANOVA of Bray-Curtis distances for PLFA fungal biomass analysis. 
	 Term
	df 
	SS 
	F 
	R2 
	p 

	Depth 
	1 
	8.8 
	355.7 
	0.49 
	0.001 

	Soil Order 
	2 
	1.0 
	21.0 
	0.06 
	0.001 

	Growth Stage 
	9 
	0.4 
	2.0 
	0.02 
	0.03 

	Nitrogen 
	1 
	0.1 
	4.4 
	0.01 
	0.03 

	CEC 
	1 
	0.0 
	1.0 
	0.00 
	0.34 

	OM3 
	1 
	0.0 
	-0.2 
	0.00 
	1.00 

	D*S 
	2 
	1.1 
	21.8 
	0.06 
	0.001 

	D*GS 
	9 
	0.5 
	2.4 
	0.03 
	0.01 

	S*GS 
	6 
	0.3 
	1.9 
	0.02 
	0.06 

	D*N 
	1 
	0.1 
	4.9 
	0.01 
	0.01 

	S*N 
	2 
	0.1 
	1.3 
	0.00 
	0.26 

	GS*N 
	8 
	0.2 
	0.8 
	0.01 
	0.66 

	D*S*GS 
	6 
	0.2 
	1.7 
	0.01 
	0.11 

	D*S*N 
	2 
	0.1 
	2.0 
	0.01 
	0.13 

	D*GS*N 
	8 
	0.2 
	0.8 
	0.01 
	0.67 

	S*GS*N 
	4 
	0.1 
	0.6 
	0.00 
	0.70 

	D*S*GS*N 
	4 
	0.1 
	0.9 
	0.00 
	0.50 

	Residual 
	189 
	4.7 
	  
	0.26 
	  

	Total 
	256 
	18.0 
	  
	1.00 
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Figure 9. Biomass as estimated by total PLFA biomarkers (nmol g-1 soil) for A) samples collected from 0 to 5 cm depth; B) samples collected from 5 to 15 cm depth.



4. DISCUSSION
Agricultural producers work with the soil community dynamics of GxExM to optimize crop production. Sampling bulk soils within plant root zones is a tool to gather environmental information for management decisions regarding nutrient additions for optimum crop production. It would be beneficial if the same bulk soil sample could provide more information about microbial communities to improve management decisions. Soil bacteria and fungi are crucial to soil functions (e.g., nutrient cycling, water quality, and soil structure), soil health, and plant health. Though strong relationships between microbes and soil health have been shown (Berendsen et al., 2012; Chaparro et al., 2014), linkages of biome information to agronomic decisions that producers make are rare. As such, this type of information remains of little value to them. Using the soil samples collected for nutrient assessments to also understand the microbial community and how it interacts with the crop may be used to explore these linkages that then can help producers formulate more sustainable decisions for economic optimum yields based on resource allocation. 
Our research was a survey of bacteria and fungi in different soil orders commonly used to grow corn in Missouri. The soil orders have various characteristics that influence plant health through nutrient and water uptake. Similar to Chang et al. (2017) and Bakker et al. (2015) we found soil orders—or soil characteristics associated with the different orders—strongly affect the abundances of bacterial and fungal microbiomes, and that the corn growth stage also influences the diversity of bacterial and fungal communities. Additionally, nitrogen fertilization had a minimal impact on bacterial communities and no effect on fungal communities. These findings show that even though baseline soil microbial communities vary across soils, the diversity of microbes tends to change in similar ways as air and soil temperatures rise, growing season progresses, and corn plants mature. 
Each soil order had a distinct and significantly different bacterial and fungal (microbial) community (Tables 3, 4, 5 and 6). The physical characteristics (Table 1) associated with each soil order varied with the Mollisol and Alfisol being more closely related than the Entisol. However, the Alfisol bacterial community had similarities with the Entisol as seen in the PCoA Bray-Curtis analysis where they overlapped—implying that these soil characteristics were not the main driver of differences among bacterial microbial communities (Figure 3). The similarities of the physical characteristics and soil cropping history (Table 2) over the past five years would suggest that the bacterial and fungal soil communities would also be similar; however, the differences within our study among bacterial and fungal communities are more likely associated with the formation of the soil, including water dynamics (e.g., length of time the soils are saturated or dry). Some of the soil microbial community similarities are due to the G (corn and soybeans), E (temperature and moisture), and M (fertilizer, pesticides, and tillage) of the community dynamics influencing the microbial populations (Vassilev et al., 2006). It is these similar microbial populations that have been driven by the GxExM, which influence crop production and resource efficiency. Plants secreting root exudates (sugars and amino acids) into the soil environment likely select a subset of microbes at different growth stages for specific functions to benefit the plants (Chaparro et al., 2014). But the overwhelming indigenous community associated with soil formation masks some of these similarities when studying bulk samples of DNA, as occurred in this study.  
The predominant soil bacterial taxa associated with the soil orders in our Missouri soils were Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Proteobacteria, and Verrucomicrobia. These taxa are broad categories of bacteria that perform many biological functions. Acidobacteria are abundant in most terrestrial ecosystems (Barns et al., 1999) because they are important in the carbon cycle due to their ability to degrade plant polysaccharides such as cellulose (Ward et al., 2009). Actinobacteria contains the bacteria class Streptomyces, which are reported to have disease suppressive qualities (Mendes et al., 2011). Some Arthrobacter species (also within Actinobacteria) have increased corn productivity by promoting chlorophyll synthesis (Sharma et al., 2016). Bacteroidetes are important in soil nutrient turnover and involved in nitrogen cycling via denitrification (Van Spanning et al., 2005; Yousuf et al., 2012). Chloroflexi are involved in organic matter decomposition as well as sulfur and phosphorus nutrient cycles and seem to have more influence on phosphorus removal and immobilization  (Mellado and Vera, 2021). Proteobacteria includes taxa Bradyrhizobia, Burkholderiales, and Gammaproteobacteria are known to nodulate roots and increase plant growth (Siciliano et al., 2001). Fierer et al. (2012) reported a higher abundance of Proteobacteria when soil nitrogen was more available. A high abundance of Proteobacteria in our soils is understandable because the soil has had consistent additions of nitrogen over many years from the application of nitrogen fertilizer or release from soybean nodulation. The biological function of Verrucomicrobia is relatively unknown, even though it is found in nearly all soils in relatively high abundance (Bergmann et al., 2011). The cryptic nature of Verrucomicrobia is due to the difficulty in culturing these bacteria and their slow growth rate when cultured. Nearly all these bacterial taxa have functional niches associated with plant and nutrient cycling. Those that do not, or their function is not yet understood, are found in soils in relatively high abundance and may be associated with soil formation.
Bacterial taxa abundances were initially expected to change during the growing season as the taxa would promote corn growth, similar to reports by Berendsen et al. (2012), Hsiao et al. (2019), and Ma et al. (2017). However, the abundances reported here did not change drastically, likely due to the expression of specific functional genes altered by root exudates in existing populations rather than selection for different taxonomic compositions or populations (Chaparro et al., 2014). It is unlikely that bacterial community dynamics must change drastically for a specific function; rather, the community is already present and just needs to be stimulated into action. Furthermore, the soil samples described here were bulk samples taken between corn rows throughout the growing season and not from root rhizospheres. Microbial populations can vary between bulk and rhizosphere soil because plant roots in the rhizosphere influence the microbial community by supplying them with sugars and amino acids that support growth and development (Bakker et al., 2015).
The fungal community diversity differed considerably among the soil orders (Figure 8). Differences in the presence or absence of ASVs (Unweighted Unifrac) (Figures 6 and 7) identified different fungal ASVs, and likely the differences are again related to soil order formation or water dynamics. It is not understood why the soil orders vary in fungal biomass or diversity, but some element of formation has a strong influence. Fungal diversity was influenced by corn growth stage, and this may be due to the root exudates stimulating fungi that are beneficial or pathogenic. Corn root distribution is higher in the top 10 cm of the soil up to the 12-leaf stage of growth (Dwyer et al., 1996) and likely helped to increase fungal abundance in the top five centimeters of our soil. Roots were not physically examined for the signs of pathogens, but disease did not appear to cause issues or reduce corn yield in our study. 
The most abundant fungal orders were Xylariales, Sordariales, and Eurotiales, all of which contain many species of fungi with a broad range of soil biological functions. Many functions are likely saprophytic, while a few could be synergistic or pathogenic with corn. Most are beneficial through decomposition of organic matter and returning nutrients to the soil for plant use (Sinsabaugh and Follstad Shah, 2011). Xylariales are known as wood decay organisms and for their biologically active secondary metabolites, but they have also been reported as endophytes of seed plants (Helaly et al., 2018). Endophytes typically benefit their host plant through a synergistic relationship; therefore, it is possible corn and soybeans have helped Xylariales abundance due to their beneficial relationship. Sordariales is also a large order found in soil with known saprophytes and pathogens, Ma et al. (2017) identified ASVs that were detrimental to corn growth and yield and one that was beneficial. Eurotiales contain the genera Aspergillus and Penicillium, which are known plant pathogens (Chen et al., 2012). In continuous cropping of peanuts, Chen et al. (2012) observed an increase in abundance of Eurotiales fungi and associated the increase with pathogens because of the known genera that cause disease. It is likely that many of the Eurotiales in the corn-soybean rotation described here are also associated as plant pathogens, but many other fungi in the Eurotiales order may have other soil functions. Twenty-two ASVs were associated with soil order fungal differences, and twelve of the 22 ASVs were of the genus Discosia. While limited information is available regarding Discosia, it has been reported to increase plant growth. In one study, a Discosia strain was isolated and inoculated onto corn with significant increases in root and shoot length, and dry matter (Rahi et al., 2009). It is impossible to attribute an increase in corn growth in our study due to Discosia, but it is also possible it helped the corn during the growing season. One species of fungus (Dematiopleospora rosicola) was associated with differences in corn growth stage, but its association with soil and plant functions is unknown as it has purely been identified in association with Rosaceae plants (Wanasinghe et al., 2018).
Soil bacteria and fungi have a unique and important role in soil and plant health through organic matter decomposition, soil structure formation, and nutrient (N, P, S) cycling (Doran and Zeiss, 2000; Zhao et al., 2014). The beneficial characteristics of the soil microbiome likely helped corn production through nutrient acquisition and pathogen competition. It is also likely that pathogens influenced corn growth, but symptoms were not observed. However, corn growth stimulated by management applications such as nitrogen fertilizer (increased corn grain yield 194% over no added nitrogen) within the year of study or in previous years may have masked beneficial microbial effects. 
Microbial data gathered from the collection of bulk soils, as described here, could be used for nutrient assessment or other management decisions that may benefit growers when considering resource management for plant production and resource efficiency. This study was a survey to identify microbial community relationships associated with GxExM to better understand how environmental and management factors might influence those communities. This understanding could become part of the management decision process to improve crop production. Changes in the soil bacterial and fungal communities during the growing season suggest community dynamics are influenced by in-season stimuli. In this case it was likely corn root exudates. Chaparro et al. (2014) reported similar results with the bacterial populations in the rhizosphere of Arabidopsis roots; however, they did not detect differences in microbial abundance when plants were in the vegetative stage; rather, they identified a change in gene expression products and concluded the plant influenced the expression of those genes through root exudates. Future research should also consider the genetics of the corn and microbes to improve resource efficiency and plant production, as well as inputs that promote community dynamics.

5. CONCLUSIONS
The locations of the three soil orders in our study were within a 45 km radius of each other, had the same corn variety, similar weather conditions, and similar management decisions. Therefore, it seems intuitive that bacterial and fungal variants of the core microbiome are similar, considering the microbes have similar biological roles as plant decomposers, disease suppressors, and nutrient cyclers (Schlatter et al., 2015). However, considering all the similarities, the most influential factor on microbial community structure among the locations was the soil order, which resulted in the bacterial and fungal microbiomes being significantly different in diversity and biomass. It raises the question of why soil orders would influence microbial populations so greatly, given that the physical and chemical characteristics had minor significant impacts on abundance or biomass. One factor to consider is water dynamics, but not in the context of precipitation, as the models utilized here did not identify precipitation as an important driver. Instead, the interaction of the inherent soil characteristics (e.g. soil texture and horizonation) with precipitation may have a cumulative impact and affect the microbial community over time. These differences in water dynamics are typically manifest as flooding in Entisols, ponding and slow water infiltration in Alfisols, and more ideal infiltration dynamics in Mollisols. 
Microbiome differences may influence plant health and productivity through some of the same plant-associated soil functions listed above or through microbial interactions that inhibit or encourage other functions. These differences perpetuate the need to understand the relationship between the microbiome and physicochemical characteristics of soil to optimize yield and resource allocation. Future research in the metatranscriptomic analysis of bulk soil microbiomes may reveal unique transcripts associated with plant development and resource allocation, for example, addition of fertilizer and an increase in transcripts associated with nitrogen cycling (Chaparro et al., 2014). Because of the consistent corn-soybean rotation and management inputs into the soil microbial community, populations may have been established over the years and the stimulus of fertilizers, pesticides, or plant secondary products may activate genes within existing populations to perform the necessary functions. The findings presented here recognize that management inputs such as fertilizer have the largest impact on corn yield (e.g., for this study fertilized corn had an average yield increase of 6.9 Mg ha-1—or 194% increase—over the unfertilized corn), but this research showed minimal short-term impacts on bacterial biodiversity. Further work is needed to track long-term changes of bacterial and fungal diversity as a result of synthetic additives. A better understanding of the effects on biodiversity would help merge agricultural production practices with soil microbial communities to improve plant yield and resource efficiency. We recognize more information is necessary to merge management decisions with soil microbial dynamics to improve plant productivity, but we also recognize they can be used cooperatively. 
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