References
Abramov, O., Kring, D.A., 2007. Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. Meteoritics & Planetary Science 42, 93–112. https://doi.org/10.1111/j.1945-5100.2007.tb00220.x
Alley, R.B., Emanuel, K.A., Zhang, F., 2019. Advances in weather prediction. Science 363, 342–344. https://doi.org/10.1126/science.aav7274
Alqurashi, A., Kumar, L., 2013. Investigating the Use of Remote Sensing and GIS Techniques to Detect Land Use and Land Cover Change: A Review. https://doi.org/10.4236/ars.2013.22022
Aning, A.A., Tucholka, P., Danuor, S.K., 2013. 2D Electrical Resistivity Tomography (ERT) Survey using the Multi-Electrode Gradient Array at the Bosumtwi Impact Crater, Ghana. Journal of Environment and Earth Science 3, 12.
Artemieva, N., Karp, T., Milkereit, B., 2004. Investigating the Lake Bosumtwi impact structure: Insight from numerical modeling. Geochemistry, Geophysics, Geosystems 5. https://doi.org/10.1029/2004GC000733
Bandyopadhyay, S., Jaiswal, R.K., Hegde, V.S., Jayaraman, V., 2009. Assessment of land suitability potentials for agriculture using a remote sensing and GIS based approach. International Journal of Remote Sensing 30, 879–895. https://doi.org/10.1080/01431160802395235
Baratoux, D., Niang, C.A.B., Reimold, W.U., Sapah, M.S., Jessell, M.W., Boamah, D., Faye, G., Bouley, S., Vanderhaeghe, O., 2019a. Bosumtwi impact structure, Ghana: Evidence for fluidised emplacement of the ejecta. Meteoritics & Planetary Science 54, 2541–2556. https://doi.org/10.1111/maps.13253
Baratoux, D., Niang, C.A.B., Reimold, W.U., Sapah, M.S., Jessell, M.W., Boamah, D., Faye, G., Bouley, S., Vanderhaeghe, O., 2019b. Bosumtwi impact structure, Ghana: Evidence for fluidised emplacement of the ejecta. Meteorit Planet Sci 54, 2541–2556. https://doi.org/10.1111/maps.13253
Boamah, D., Koeberl, C., 2007. The Lake Bosumtwi impact structure in Ghana: A brief environmental assessment and discussion of ecotourism potential. Meteoritics & Planetary Science 42, 561–567. https://doi.org/10.1111/j.1945-5100.2007.tb01061.x
Chouet, B.A., Matoza, R.S., 2013. A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. Journal of Volcanology and Geothermal Research 252, 108–175. https://doi.org/10.1016/j.jvolgeores.2012.11.013
Colangelo, G., Lapenna, V., Loperte, A., Perrone, A., Telesca, L., 2008. 2D electrical resistivity tomographies for investigating recent activation landslides in Basilicata Region (Southern Italy).
Danuor, S., Aning, A.A., Pohl, J., Karp, T., Berckhemer, H., 2013. GEOPHYSICAL CHARACTERISTICS OF THE BOSUMTWI IMPACT CRATER FROM SEISMIC, GRAVITY AND MAGNETIC MEASUREMENTS. https://doi.org/10.19044/ESJ.2013.V9N15P%P
Danuor, S.K., Menyeh, A., 2007. Results of pre-drilling potential field measurements at the Bosumtwi crater. Meteoritics & Planetary Science 42, 541–547. https://doi.org/10.1111/j.1945-5100.2007.tb01059.x
Elbra, T., Kontny, A., Pesonen, L.J., Schleifer, N., Schell, C., 2007. Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana. Meteoritics & Planetary Science 42, 829–838. https://doi.org/10.1111/j.1945-5100.2007.tb01078.x
French, B.M., 2004. The importance of being cratered: The new role of meteorite impact as a normal geological process. Meteoritics & Planetary Science 39, 169–197. https://doi.org/10.1111/j.1945-5100.2004.tb00335.x
French, B.M., Koeberl, C., 2010. The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Science Reviews 98, 123–170. https://doi.org/10.1016/j.earscirev.2009.10.009
Glikson, A.Y., Haines, P.W., 2005. Shoemaker Memorial Issue on the Australian impact record: 1997 – 2005 update. Australian Journal of Earth Sciences 52, 475–476. https://doi.org/10.1080/08120090500170385
Grandjean, G., Leparoux, D., 2004. The potential of seismic methods for detecting cavities and buried objects: experimentation at a test site. Journal of Applied Geophysics 56, 93–106. https://doi.org/10.1016/j.jappgeo.2004.04.004
Grieve, R.A.F., 1991. Terrestrial impact: The record in the rocks*. Meteoritics 26, 175–194. https://doi.org/10.1111/j.1945-5100.1991.tb01038.x
Grieve, R.A.F., Masaitis, V.L., 1994. The Economic Potential of Terrestrial Impact Craters. International Geology Review 36, 105–151. https://doi.org/10.1080/00206819409465452
Grieve, R.A.F., Pilkington, M., 1996. The signature of terrestrial impacts 22.
Gupta, S., Rajiah, P., Middlebrooks, E.H., Baruah, D., Carter, B.W., Burton, K.R., Chatterjee, A.R., Miller, M.M., 2018. Systematic Review of the Literature: Best Practices. Academic Radiology 25, 1481–1490. https://doi.org/10.1016/j.acra.2018.04.025
Gusenbauer, M., Haddaway, N.R., 2020. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research Synthesis Methods 11, 181–217. https://doi.org/10.1002/jrsm.1378
Habimana, E., Aning, A.A., Sarpong, V.A., Danour, S.K., Nero, C., 2020. Mapping the subsurface structure of the suevite deposit in the north of the Bosumtwi impact crater using electrical resistivity and seismic refraction tomographies. Annals of Geophysics 63, SE218–SE218. https://doi.org/10.4401/ag-7752
Harris, E., 2004. Building scientific capacity in developing countries. EMBO Rep 5, 7–11. https://doi.org/10.1038/sj.embor.7400058
Heap, M.J., Gilg, H.A., Byrne, P.K., Wadsworth, F.B., Reuschlé, T., 2020. Petrophysical properties, mechanical behaviour, and failure modes of impact melt-bearing breccia (suevite) from the Ries impact crater (Germany). Icarus 349, 113873. https://doi.org/10.1016/j.icarus.2020.113873
Hergarten, S., Kenkmann, T., 2015. The number of impact craters on Earth: Any room for further discoveries? Earth and Planetary Science Letters 425, 187–192. https://doi.org/10.1016/j.epsl.2015.06.009
Huete, A.R., 2012. Vegetation Indices, Remote Sensing and Forest Monitoring. Geography Compass 6, 513–532. https://doi.org/10.1111/j.1749-8198.2012.00507.x
Hunze, S., Wonik, T., 2007. Lithological and structural characteristics of the Lake Bosumtwi impact crater, Ghana: Interpretation of acoustic televiewer images. Meteoritics & Planetary Science 42, 779–792. https://doi.org/10.1111/j.1945-5100.2007.tb01074.x
Jones, W.B., 1985. The origin of the Bosumtwi Crater, Ghana—an historical review. Proceedings of the Geologists’ Association 96, 275–284. https://doi.org/10.1016/S0016-7878(85)80009-2
JONES, WB, BACON, M., HASTINGS, DA, 1981. The Lake Bosumtwi impact crater, Ghana. GSA Bulletin 92, 342–349. https://doi.org/10.1130/0016-7606(1981)92<342:TLBICG>2.0.CO;2
Karp, T., Milkereit, B., Janle, P., Danuor, S.K., Pohl, J., Berckhemer, H., Scholz, C.A., 2002. Seismic investigation of the Lake Bosumtwi impact crater: preliminary results. Planetary and Space Science, Exobiology: the search for extraterrestrial life and prebiotic ch emistry 50, 735–743. https://doi.org/10.1016/S0032-0633(02)00049-1
Koeberl, C., 2004. Remote sensing studies of impact craters: how to be sure? Comptes Rendus Geoscience 336, 959–961. https://doi.org/10.1016/j.crte.2004.05.001
Koeberl, C., Anderson, R.R., 1996. The Manson Impact Structure, Iowa: Anatomy of an Impact Crater. Geological Society of America.
Koeberl, C., MacLeod, K.G., 2002. Catastrophic events and mass extinctions: impacts and beyond. https://doi.org/10.1130/SPE356
Koeberl, C., Milkereit, B., Overpeck, J.T., Scholz, C.A., Amoako, P.Y.O., Boamah, D., Danuor, S.K., Karp, T., Kueck, J., Hecky, R.E., King, J.W., Peack, J.A., 2007. An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project - An overview. Meteoritics and Planetary Science 42, 483–511. https://doi.org/10.1111/j.1945-5100.2007.tb01057.x
Koeberl, C., Peck, J., King, J., Milkereit, B., Overpeck, O., Scholz, C., 2005. The ICDP Lake Bosumtwi Drilling Project: A First Report. Scientific Drilling 1, 23–27. https://doi.org/10.2204/iodp.sd.1.04.2005
Kontny, A., Elbra, T., Just, J., Pesonen, L.J., Schleicher, A.M., Zolk, J., 2007. Petrography and shock-related remagnetisation of pyrrhotite in drill cores from the Bosumtwi Impact Crater Drilling Project, Ghana. Meteoritics & Planetary Science 42, 811–827. https://doi.org/10.1111/j.1945-5100.2007.tb01077.x
Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., Sdao, F., 2005. 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. GEOPHYSICS 70, B11–B18. https://doi.org/10.1190/1.1926571
Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Ioannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339. https://doi.org/10.1136/bmj.b2700
Maclaren, M., 1931. Lake Bosumtwi, Ashanti.
Malehmir, A., Durrheim, R., Bellefleur, G., Urosevic, M., Juhlin, C., White, D.J., Milkereit, B., Campbell, G., 2012. Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future. Geophysics 77, WC173–WC190. https://doi.org/10.1190/geo2012-0028.1
Marvin, U.B., 1999. Impacts from space: the implications for uniformitarian geology. Geological Society, London, Special Publications 150, 89–117. https://doi.org/10.1144/GSL.SP.1999.150.01.06
Meillieux, D., Schmitt, D., Milkereit, B., Danour, S., 2007. Integrated petrophysical and borehole seismic studies of Lake Bosumtwi impact crater, Ghana, in: SEG Technical Program Expanded Abstracts 2007, SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists, pp. 447–451. https://doi.org/10.1190/1.2792460
Michel, P., Morbidelli, A., 2012. Population of Impactors and the Impact Cratering Rate in the Inner Solar System, in: Impact Cratering. John Wiley & Sons, Ltd, pp. 21–31. https://doi.org/10.1002/9781118447307.ch2
Mondol, N.H., Bjørlykke, K., Jahren, J., Høeg, K., 2007. Experimental mechanical compaction of clay mineral aggregates—Changes in physical properties of mudstones during burial. Marine and Petroleum Geology 24, 289–311. https://doi.org/10.1016/j.marpetgeo.2007.03.006
Morris, W.A., Ugalde, H., Clark, C., 2007. Physical property measurements: ICDP boreholes LB-07A and LB-08A, Lake Bosumtwi impact structure, Ghana. Meteoritics & Planetary Science 42, 801–809. https://doi.org/10.1111/j.1945-5100.2007.tb01076.x
North, M.A., Hastie, W.W., Hoyer, L., 2020. Out of Africa: The underrepresentation of African authors in high-impact geoscience literature. Earth-Science Reviews 208, 103262. https://doi.org/10.1016/j.earscirev.2020.103262
Palme, H., Janssens, M.-J., Takahashi, H., Anders, E., Jan, H., 1978. Meteoritic material at five large impact craters. Geochimica et Cosmochimica Acta 42, 313–323. https://doi.org/10.1016/0016-7037(78)90184-9
Peck, J.A., Green, R.R., Shanahan, T., King, J.W., Overpeck, J.T., Scholz, C.A., 2004. A magnetic mineral record of Late Quaternary tropical climate variability from Lake Bosumtwi, Ghana. Palaeogeography, Palaeoclimatology, Palaeoecology 215, 37–57. https://doi.org/10.1016/j.palaeo.2004.08.003
Pilkington, M., Grieve, R. a. F., 1992. The geophysical signature of terrestrial impact craters. Reviews of Geophysics 30, 161–181. https://doi.org/10.1029/92RG00192
Pilkington, M., Hildebrand, A.R., 2003. Transient and disruption cavity dimensions of complex terrestrial impact structures derived from magnetic data. Geophysical Research Letters 30. https://doi.org/10.1029/2003GL018294
Plado, J., Pesonen, L.J., Koeberl, C., Elo, S., 2000. The Bosumtwi meteorite impact structure, Ghana: A magnetic model. Meteoritics & Planetary Science 35, 723–732. https://doi.org/10.1111/j.1945-5100.2000.tb01456.x
Reimold, W.U., Koeberl, C., 2014. Impact structures in Africa: A review. Journal of African Earth Sciences 93, 57–175. https://doi.org/10.1016/j.jafrearsci.2014.01.008
Sanford, W.E., 2005. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact. Geofluids. https://doi.org/10.1111/j.1468-8123.2005.00110.x
Sawyerr, A., 2004. African Universities and the Challenge of Research Capacity Development. Journal of Higher Education in Africa / Revue de l’enseignement supérieur en Afrique 2, 213–242.
Schell, C., Schleifer, N., Elbra, T., 2007. Characterisation of the log lithology of cores LB-07A and LB-08A of the Bosumtwi impact structure by using the anisotropy of magnetic susceptibility. Meteoritics & Planetary Science 42, 839–847. https://doi.org/10.1111/j.1945-5100.2007.tb01079.x
Schmitt, D.R., Milkereit, B., Karp, T., Scholz, C., Danuor, S., Meillieux, D., Welz, M., 2007. In situ seismic measurements in borehole LB-08A in the Bosumtwi impact structure, Ghana: Preliminary interpretation. Meteoritics & Planetary Science 42, 755–768. https://doi.org/10.1111/j.1945-5100.2007.tb01072.x
Scholz, C.A., Karp, T., Brooks, K.M., Milkereit, B., Amoako, P.Y.O., Arko, J.A., 2002. Pronounced central uplift identified in the Bosumtwi impact structure, Ghana, using multi-channel seismic reflection data. Geology 30, 939–942. https://doi.org/10.1130/0091-7613(2002)030<0939:PCUIIT>2.0.CO;2
Scholz, C.A., Karp, T., Lyons, R.P., 2007. Structure and morphology of the Bosumtwi impact structure from seismic reflection data. Meteoritics & Planetary Science 42, 549–560. https://doi.org/10.1111/j.1945-5100.2007.tb01060.x
Signanini, P., Torrese, P., 2004. Application of high resolution shear-wave seismic methods to a geotechnical problem. Bull Eng Geol Environ 63, 329–336. https://doi.org/10.1007/s10064-004-0252-7
Steeples, D.W., 2001. Engineering and environmental geophysics at the millennium. Geophysics 66, 31–35. https://doi.org/10.1190/1.1444910
Stöffler, D., Langenhorst, F., 1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory*. Meteoritics 29, 155–181. https://doi.org/10.1111/j.1945-5100.1994.tb00670.x
Stuiver, M., Reimer, P.J., 1993. Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35, 215–230. https://doi.org/10.1017/S0033822200013904
Stuiver, M., Reimer, P.J., Braziunas, T.F., 1998. High-Precision Radiocarbon Age Calibration for Terrestrial and Marine Samples. Radiocarbon 40, 1127–1151. https://doi.org/10.1017/S0033822200019172
Theilen-Willige, B., 2021. Morphometric and Structural Evaluations of Satellite Data from the Bosumtwi Impact Structure and Adjacent Areas in Ashanti, Ghana. European Journal of Environment and Earth Sciences 2, 7–14. https://doi.org/10.24018/ejgeo.2021.2.3.137
Turner, B.F., Gardner, L.R., Sharp, WE, 1996. The hydrology of Lake Bosumtwi, a climate-sensitive lake in Ghana, West Africa. Journal of Hydrology 183, 243–261. https://doi.org/10.1016/0022-1694(95)02982-6
Ugalde, H., Danuor, S.K., Milkereit, B., 2007a. Integrated 3-D model from gravity and petrophysical data at the Bosumtwi impact structure, Ghana. Meteoritics & Planetary Science 42, 859–866. https://doi.org/10.1111/j.1945-5100.2007.tb01081.x
Ugalde, H., Danuor, S.K., Milkereit, B., 2007b. Integrated 3-D model from gravity and petrophysical data at the Bosumtwi impact structure, Ghana. Meteoritics & Planetary Science 42, 859–866. https://doi.org/10.1111/j.1945-5100.2007.tb01081.x
Ugalde, H., Morris, W.A., Clark, C., Miles, B., Milkereit, B., 2007c. The Lake Bosumtwi meteorite impact structure, Ghana—A magnetic image from a third observational level. Meteoritics & Planetary Science 42, 793–800. https://doi.org/10.1111/j.1945-5100.2007.tb01075.x
Waddington, H., White, H., Snilstveit, B., Hombrados, J.G., Vojtkova, M., Davies, P., Bhavsar, A., Eyers, J., Koehlmoos, T.P., Petticrew, M., Valentine, J.C., Tugwell, P., 2012. How to do a good systematic review of effects in international development: a tool kit. Journal of Development Effectiveness 4, 359–387. https://doi.org/10.1080/19439342.2012.711765
Wulf, G., Hergarten, S., Kenkmann, T., 2019. Combined remote sensing analyses and landform evolution modeling reveal the terrestrial Bosumtwi impact structure as a Mars-like rampart crater. Earth and Planetary Science Letters 506, 209–220. https://doi.org/10.1016/j.epsl.2018.11.009