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Abstract15

Variability in oceanic conditions directly impacts ice loss from marine outlet glaciers in16

Greenland, influencing the ice sheet mass balance. Oceanic conditions are available from17

Atmosphere-Ocean Global Climate Model (AOGCM) output, but these models require18

extensive computational resources and lack the fine resolution needed to simulate ocean19

dynamics on the Greenland continental shelf and close to glacier marine termini. Here,20

we develop a statistical approach to generate ocean forcing for ice sheet model simula-21

tions, which incorporates natural spatiotemporal variability and anthropogenic changes.22

Starting from raw AOGCM ocean heat content, we apply: (1) a bias-correction using23

ocean reanalysis, (2) an extrapolation accounting for on-shelf ocean dynamics, and (3)24

stochastic time series models to generate realizations of natural variability. The bias-correction25

reduces model errors by ∼25 % when compared to independent in-situ measurements.26

The bias-corrected time series are subsequently extrapolated to fjord mouth locations27

using relations constrained from available high-resolution regional ocean model results.28

The stochastic time series models reproduce the spatial correlation, characteristic timescales,29

and the amplitude of natural variability of bias-corrected AOGCMs, but at negligible30

computational expense. We demonstrate the efficiency of this method by generating >600031

time series of ocean forcing for >200 Greenland marine-terminating glacier locations un-32

til 2100. As our method is computationally efficient and adaptable to any ocean model33

output and reanalysis product, it provides flexibility in exploring sensitivity to ocean con-34

ditions in Greenland ice sheet model simulations. We provide the output and workflow35

in an open-source repository, and discuss advantages and future developments for our36

method.37

Plain Language Summary38

Model simulations of the Greenland ice sheet require knowledge of ocean conditions.39

The evolution of ocean conditions has a strong impact on ice sheet model predictions,40

as there are more than 200 glaciers in Greenland flowing directly into the ocean. How-41

ever, modeling oceanic forcing is difficult. The state-of-the-art approach is to use out-42

put from Atmosphere-Ocean Global Climate Models (AOGCMs). But these models can-43

not accurately capture the ocean dynamics on the Greenland shelf, and they can show44

strong biases compared to observations. Furthermore, AOGCMs are computationally ex-45

pensive, meaning that it is impossible to thoroughly characterize the uncertainty asso-46

ciated with the chaotic nature of climate. Here, we propose a procedure to bias-correct47

and extrapolate oceanic output from AOGCMs. Our method exploits observational datasets,48

as well as available high-resolution ocean model results. Using statistical models, we re-49

produce patterns of spatiotemporal ocean variability at low computational expense, and50

represent internal climate variability and global warming trends. The goal is to provide51

a scalable procedure to generate ocean forcing for long-term Greenland ice sheet model52

predictions.53

1 Introduction54

Since 1992, Greenland ice sheet (GrIS) mass loss has contributed ∼0.4 mm yr-1 to55

global mean sea-level rise (IMBIE, 2020). Mass losses are approximately equally parti-56

tioned between increased surface melt runoff and increased ice discharge into the ocean,57

although variability in the contribution of these two processes is strongly linked to tem-58

poral variability in climatic forcing (Mouginot et al., 2019). In particular, increased ice59

discharge has been linked to warming oceanic conditions (Holland et al., 2008; Walsh et60

al., 2012; Straneo & Heimbach, 2013; Porter et al., 2018; Wood et al., 2021). Increased61

ice loss at outlet glacier termini causes glacier thinning and speed-up, thus inducing longer-62

term dynamic responses in the ice sheet interior (Nick et al., 2009; Felikson et al., 2017).63

Changes in ocean temperatures, and their link to increased outlet glacier mass loss rates,64
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are therefore expected to exert a major control on future GrIS mass balance (Wood et65

al., 2021).66

Melting of marine-terminating glaciers is driven by relatively warm deep waters of67

Atlantic origin (Straneo & Heimbach, 2013; Sutherland et al., 2013). However, heat de-68

livery to outlet glacier termini depends on water circulation across the continental shelf69

and within fjords. Waters of Atlantic origin are transported onto the shelf mostly via70

cross-shelf troughs (Rignot et al., 2012; Sutherland et al., 2013). Oceanic heat found at71

the shelf break can be restricted from reaching glacier termini due to several factors. First,72

heat can be eroded due to vertical mixing. Second, the presence of sills can block the73

access of Atlantic waters into fjords (Straneo et al., 2012; Straneo & Cenedese, 2015; Jack-74

son et al., 2018). Finally, close to the glacier termini, several convective processes can75

influence heat availability for glacier melt, such as subglacial discharge (Slater et al., 2018),76

wind-driven flow (Jackson et al., 2014; Sutherland et al., 2014; Jackson et al., 2018), and77

sea-ice formation (Cottier et al., 2010). All of these local processes over the continen-78

tal shelf contribute to setting the characteristic variability of ocean thermal forcing.79

While ice sheet model simulations of Greenland outlet glaciers are sensitive to oceanic80

forcing, no Greenland-scale ocean model completely captures the range of processes and81

time scales governing ocean heat transfer to glacier termini (Slater et al., 2020). Even82

the highest-resolution regional ocean model simulations do not capture all the kilome-83

ter to sub-kilometer scale processes at play, and they only extend over periods shorter84

than 20 yr (e.g., Rignot et al., 2012; Gillard et al., 2016). In this context, Greenland ice85

sheet model predictions use ocean forcing input provided by Atmosphere-Ocean Gen-86

eral Circulation Models (AOGCMs), because they cover periods until 2100 and beyond.87

However, due to their coarse resolution in the ocean (typically 1◦×1◦), they cannot sim-88

ulate fjord processes, and their representation of on-shelf ocean dynamics is incomplete89

(Slater et al., 2020). Because of the current inability to fully resolve fjord dynamics within90

large-scale ocean models, Xu et al. (2012) and Rignot et al. (2016) developed a param-91

eterization of glacier melt based on an empirical relation found with water temperatures92

at the fjord mouth and subglacial discharge. This parameterization has not been cali-93

brated to measurements from outlet glaciers, but to idealized fjord-scale model simula-94

tions. Another parameterization, adapted to coarse-resolution AOGCM output, has been95

developed for use in ice sheet models by linking regionally-averaged ocean temperatures96

to individual glacier terminus positions (Cowton et al., 2018; Slater et al., 2019). The97

latest Ice Sheet Model Intercomparison for CMIP6 (ISMIP6) for Greenland has proposed98

these two types of parameterizations: prescribing either terminus position or glacier frontal99

melt as a function of far-field ocean temperature averaged over large regional oceanic sec-100

tors (Goelzer et al., 2020; Slater et al., 2020). While computationally convenient, the ter-101

minus position parameterization neglects feedback effects from ice flow dynamics and bed102

topography on outlet glacier dynamics, and its empirical parameter is highly uncertain103

(Slater et al., 2019, 2020). Furthermore, the parameterization relies on far-field ocean104

temperature, thus neglecting variability associated with shelf processes in heat transport105

towards the fjords. The direct ice melt rate parameterization, on the other hand, allows106

ice sheet models to resolve interactions between melt and calving rates, but remains to107

be validated against large-scale Greenland outlet glaciers observations. It also relies on108

the assumption that AOGCMs can provide accurate ocean temperature fields at the en-109

try of fjord mouths, which corresponds to areas where fine-scale dynamical and topo-110

graphical details cannot be resolved in coarse resolution models.111

Finally, current ice sheet model predictions neglect internal variability in ocean con-112

ditions, as they generally use a single deterministic AOGCM output to represent future113

oceanic conditions. ISMIP6 accounted for inter-AOGCM uncertainty and greenhouse gas114

emission-scenario dependence by using six different AOGCMs, one of which included both115

a high- and low-emission scenario (Goelzer et al., 2020; Slater et al., 2020). However, dif-116

ferent runs from the same AOGCM starting with only round-off level errors in initial con-117
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ditions can exhibit large differences in patterns of climate variability over a range of timescales118

(Kay et al., 2015; Maher et al., 2019). This internal variability is caused by the chaotic119

nature of the climate system (Hasselmann, 1976). Due to the computational expense of120

AOGCM simulations, the number of different simulations from a given AOGCM is lim-121

ited, making it challenging to directly force ice sheet models with a model ensemble of122

climatic forcings representative of internal climate variability. To date, the most com-123

prehensive evaluation of internal ocean variability impact on GrIS simulations has been124

performed by Tsai et al. (2017), as they used the coarse-resolution ocean output of 50125

realizations from a same AOGCM. An alternative approach to quantify the impact of126

internal variability is to calibrate statistical models to a small set of AOGCM runs (e.g.,127

Castruccio & Stein, 2013; Hu & Castruccio, 2021), which can then be used to generate128

stochastic climatic forcing within ice sheet models (Verjans et al., 2022).129

Using AOGCMs to provide long-term ocean forcing for ice sheet models thus faces130

the limitations of horizontal resolution and characterization of internal variability. Fur-131

thermore, bias-correction techniques are needed due to AOGCM disagreement with in-132

situ observational data (Slater et al., 2019), but currently-used techniques are simplis-133

tic compared to methods applied in other climate model applications (e.g., Cui et al.,134

2012). There is a stark contrast between the level of refinement of atmospheric forcing135

compared to ocean forcing used in Greenland ice sheet simulations. For atmospheric forc-136

ing, there exists a large number of high-resolution models to downscale AOGCM out-137

put, which are specifically calibrated to ice sheet processes (Fettweis et al., 2020). Dy-138

namical downscaling allows to resolve small scale processes over Greenland, while be-139

ing forced by AOGCM large scale fields at the domain boundaries. Some models even140

associate this dynamical downscaling with a statistical downscaling process (Noël et al.,141

2016). In contrast, no high-resolution ocean model or downscaling method have been used142

to generate ocean forcing for Greenland ice sheet model simulations in any prior stud-143

ies, although such methods have been applied to ocean models for other applications (e.g.,144

Camus et al., 2014; Oliver & Holbrook, 2014; Fagundes et al., 2020).145

In this study, we outline a statistical method to compute ocean thermal forcing for146

outlet glaciers in Greenland ice sheet model simulations. We describe the methodolog-147

ical details, present results from application of the method, and discuss advantages and148

possible future developments. We provide the code and many different outputs in an open149

source repository (see Open Research).150

2 Methods151

The overarching objective of this study is to generate the most representative re-
alizations of ocean thermal forcing (TF ) at the fjord mouth of Greenland outlet glaciers.
We describe a general method to achieve this, starting from the ocean temperature and
salinity outputs of any AOGCM. The variable of interest is TF, which is defined as the
ocean temperature above the freezing point. To calculate TF, we use the salinity- and
depth-dependent empirical equation for the freezing point from Cowton et al. (2015):

TF(x, t) = Toc(x, t)− (λ1Soc(x, t) + λ2 + λ3z) , (1)

where Toc is the ocean temperature [◦C], Soc is the ocean salinity [psu], z is depth [m,152

positive upwards], and λ1, λ2, λ3 are parameters set to −5.73× 10−2 ◦C psu-1, 8.32×153

10−2 ◦C, and −7.61 × 10−4 ◦C m-1, respectively. The dependence on space and time154

is highlighted by x and t, respectively.155

We average TF between the surface and 500 m depth: TF 0-500. At gridpoints where156

the bathymetry is shallower than 500 m, TF 0-500 only accounts for TF values ranging157

between 0 m and the seafloor depth. However, we discard gridpoints where the bathymetry158

is less than 100 m deep to generate our datasets of TF 0-500, as the coarse resolution AOGCMs159
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do not capture the fine details of bathymetry in these areas. As such, our computation160

of TF 0-500 at any gridpoint i, j with bathymetry Bi,j is defined as:161

TF0−500 =
1

|max (Bi,j ,−500)|

∫ 0

max(Bi,j ,−500)

TF(z)dz if Bi,j ≤ −100. (2)

Our approach differs from the approach of Slater et al. (2019, 2020), as they av-162

eraged TF only between 200 and 500 m depth (TF 200-500). The 0-500 m depth range163

is chosen here to remain consistent with the derivation of the melt parameterization of164

Xu et al. (2012). Furthermore, on a large part of the Greenland continental shelf, the165

0-200 m depth range is an important fraction of the water column (Morlighem et al., 2017,166

see also Fig.1a). As such, TF 0-200 is potentially an important contributor to variabil-167

ity in thermal forcing for Greenland outlet glaciers, although these waters are often colder168

and fresher than deeper Atlantic waters. However, the method outlined in this study can169

easily be reproduced choosing any depth range over which TF is averaged, which can170

serve different applications. In particular, it is possible to process TF separately over171

different depth ranges to study shallower Arctic waters and deeper Atlantic waters sep-172

arately. In the following, we drop the subscript 0-500 to simplify the notation, but any173

TF symbol stands for TF 0-500 as defined in Eq. (2).174

Figure 1. Maps of Greenland with (a) bathymetry and (b) mean (1992-2009) TF from ECCO

(Nguyen et al., 2012). The ECCO bathymetry uses a merged product of the blend S2004 (Marks

& Smith, 2006) and International Bathymetric Chart of the Arctic Ocean (Jakobsson et al.,

2008). In (a), we show the delineation of the 7 oceanic sectors that constitute the ocean domain

for this study and the 226 marine-terminating outlet glacier front locations. The sectors are

taken from Slater et al. (2019), but the SE and SW sectors are extended 100 km southwards.

The outlet glacier fronts are from Wood et al. (2021). In (b), we show major locations mentioned

in this study. Glaciers are Kg: Kangerlussuaq, Hm: Helheim, SK: Sermeq Kujalleq, Up: Uper-

navik, Pt: Petermann, 79N: 79 North. The points fa and fb show locations of gridpoints used in

Fig (5a) and (5b), respectively.
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Our methodology to generate TF time series based on AOGCM TF output con-175

sists of three separate steps, which are outlined in Figure 2, and multiple data and model176

products, which are summarized in Table 1. The first step is to use an ocean reanaly-177

sis product, which is constrained by observations, to correct the AOGCM bias and to178

constrain its temporal variability in TF (first key step in Fig. 2). This statistical cor-179

rection is performed via Quantile Delta Mapping, which is a method detailed in Section180

2.1. The second step is to extrapolate the corrected AOGCM TF from the open ocean181

to inshore, i.e., at the mouths of fjords on the Greenland shelf (second key step in Fig.182

2). This extrapolation process uses constraints derived from output of a high-resolution183

regional ocean model and accounts for different offshore-inshore relationships at differ-184

ent timescales of variability, as explained in Section 2.2. The final step is to calibrate sta-185

tistical time series models to the variability of the corrected and extrapolated TF ob-186

tained after the first two steps (third key step in Fig. 2). This calibration procedure, de-187

tailed in Section 2.3, effectively reproduces the stochastic variability in ocean heat con-188

tent, while preserving deterministic signals such as means, trends, and seasonality pat-189

terns. Ultimately, our method constructs statistical models capable of generating large190

numbers of realizations of TF for Greenland glaciers. This study uses specific data and191

model products, described in Table 1, but allows great flexibility in the particular choice192

of these products.193

Type of Used in Used for Sections Temporal Horizontal Reference
product this study coverage resolution
AOGCM MIROC-ES2L Raw TF 2.1, 2.2, 1850-2100 1◦ Hajima et al. (2020)

2.3
AOGCM IPSL-CM6A Raw TF 2.1, 2.2, 1850-2100 1◦ Boucher et al. (2020)

2.3
Reanalysis EN4 objective Quantile Delta 2.1 1900-2022 1◦ Good et al. (2013)

analyses Mapping (QDM)
High-resolution ECCO-Arctic Offshore to inshore 2.2 1992-2009 4 km Nguyen et al. (2012)
ocean model extrapolation

In-situ CTD Evaluation of 3.1 2000-2015 / Good et al. (2013)
data QDM

Table 1. Model and data products required in our method, and the examples of specific prod-

ucts used for this study (TF : thermal forcing).

2.1 Statistical correction of thermal forcing194

The first step in our method is to bias-correct the AOGCM TF to the mean, sea-195

sonality, and interannual variability of a reference dataset. To illustrate our method, the196

reference dataset used is the Hadley Centre EN4.2.1 monthly objective analyses (Good197

et al., 2013), hereafter referred to as EN4. EN4 is a gridded product at 1◦ resolution cov-198

ering 1900-2022. The EN4 method uses a local interpolation of Conductivity-Temperature-199

Depth (CTD) profile measurements combined to a background persistence from damped200

anomalies of the previous month; we refer to Good et al. (2013) for the methodological201

details. While it may be questionable to use a reanalysis product as the ground-truth202

dataset for a statistical correction, we note several advantages of the EN4 monthly ob-203

jective analyses. First, EN4 is an interpolated product of oceanographic profile data. In204

contrast to other reanalysis products that use a dynamical model with data assimilation,205

EN4 is more strongly constrained by observations, ensuring better agreement with in-206

situ data. On the other hand, it implies that EN4 interpolates between observations with-207

out dynamical constraints, and is more prone to errors in case of observational uncer-208

tainties and if some periods and/or regions have sparse observational coverage. Second,209

the long temporal coverage provides more robust statistics than from most other reanal-210

ysis products. The long response timescales of ocean dynamics imply that at least sev-211

eral decades are needed to capture oceanic mean conditions and variability. Still, we note212
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Figure 2. Flowchart of the methodology. The final output is a large ensemble of realizations

of Greenland oceanic conditions at all the marine terminating glaciers.
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that the bias-correction could equally well be performed with other gridded ocean re-213

analysis products in place of the EN4 objective analyses.214

We use both the temperature and salinity products from EN4 to compute a monthly215

gridded TF field, following Eq. (1). We discard EN4 gridpoints if the TF time series has216

negative values. EN4 also provides an observational weight variable, which varies between217

0 and 1 depending on how strongly EN4 is constrained by observations (see Good et al.,218

2013). We average the observational weights over large areas: the 7 oceanic sectors around219

Greenland used by Slater et al. (2019): North (NO), North-East (NE), Central-East (CE),220

South-East (SE), South-West (SW), Central-West (CW), and North-West (NW) (see Fig.1a).221

We extend the SE and SW sectors 100 km southwards because the original sector de-222

lineations only cover two to three gridpoints of EN4 in the meridional direction. In Fig-223

ure 3, the sector-averaged observational weights clearly show a shift around 1950, with224

oceanic properties being significantly better constrained from this date. For this reason,225

we elect 1950 as the starting date for the calibration period, and we discard the 1900-226

1950 data. Nevertheless, EN4 observational weights are consistently lower in winter months,227

due to sparser in-situ data collection. We correct TF time series of individual AOGCM228

gridpoints over their period overlapping the 1950-2022 period. In the Coupled Model In-229

tercomparison Project 6 (CMIP6) framework, historical model experiments cover the pe-230

riod 1850-2015, and model results post-2015 depend on the emission scenario assumed.231

Thus, our period for calibrating AOGCM TF is 1950-2015. Any given AOGCM grid-232

point is corrected with the nearest neighbor EN4 TF time series. The statistical correc-233

tion requires time series of data, and can therefore not be performed with in-situ data234

only, which are sparse in time and space.235

Figure 3. Observational weight variable of the EN4 objective analyses (Good et al., 2013) av-

eraged yearly and by oceanic sector. Higher values of observational weight denote periods better

constrained with in-situ measurements. Sector-averaged pre- and post-1950 mean values of the

observational weight are displayed, with ± 1 standard deviation.

The motivation for correcting AOGCM outputs is that they may misrepresent the236

mean and/or variability in TF. Figure 4 shows biases between EN4 and two AOGCMs237
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that participated to ISMIP6. On the Greenland shelf, the biases in mean TF and TF238

standard deviation typically range between [-4;4] K and [-1.5;-0.5] K, respectively (Fig.239

4). While the bias in the mean varies geographically and between the two AOGCMs, both240

of them generally underestimate TF variability when compared to EN4.241

Figure 4. Bias in (a,b) mean TF and (c,d) standard deviation in TF of two AOGCMs with

respect to the EN4 objective analyses (Good et al., 2013). Maps show biases of IPSL-CM6A (a,c,

Boucher et al., 2020) and MIROC-ES2L (b,d, Hajima et al., 2020)

We use quantile mapping to correct AOGCM output, which is a method extensively242

used in climate and hydrological sciences (e.g., Gudmundsson et al., 2012; Themeßl et243

al., 2012; Cannon et al., 2015). In quantile mapping, the cumulative distribution func-244

tion (CDF) of a variable from model output (any AOGCM in our case) is corrected to245

be equal to the CDF of the same variable from a reference dataset (EN4 in our case) over246

a given calibration period (1950-2015 in our case). The approach can be further extended247

to correct projected modeled output beyond the calibration period, using the quantile248
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delta mapping (QDM) technique developed by Cannon et al. (2015). QDM adjusts fu-249

ture model output by calibrating the model CDF to the reference data CDF, and by su-250

perimposing model-projected changes in the future period. We give here an overview of251

the QDM methodology, but refer to Cannon et al. (2015) for all the details. If readers252

need some visual intuition, we provide example results of QDM applied on time series253

in Figure 5.254

We denote the TF from the observational dataset EN4 over the calibration period
as TFcal

obs with CDF F cal
obs. The modeled TF from an AOGCM over the calibration pe-

riod is denoted as TFcal
mod with CDF F cal

mod. Equalizing the model CDF to the observa-
tional CDF is achieved by:

T̂F
cal

mod =
[
F cal
obs

]−1
[
F cal
mod

(
TFcal

mod

)]
, (3)

where [F ]
−1

denotes the inverse CDF. The resulting T̂F
cal

mod follows the same distribu-
tion as F cal

obs but preserves the relative changes as modeled by the AOGCM. In QDM,
we also correct projected model output TFproj

mod with CDF F proj
mod . In this procedure, the

first step is to calculate the nonexceedance probabilities, τ , during the projection period
of the modeled values at each time step t:

τprojmod(t) = F proj
mod

[
TFproj

mod(t)
]
, (4)

with τprojmod(t) being the probability that, when considering the full projection period, TFproj
mod

is less than or equal to its value at t, i.e., TFproj
mod(t). Therefore, τ

proj
mod(t) ranges between

0 and 1. Similar to Cannon et al. (2015) we calculate the projection period CDF F proj
mod

over 30-year sliding windows. This approach presents the advantages of not represent-
ing the entire projection as a single CDF, and avoiding any abrupt distributional changes
within the projection period. The τprojmod values from Eq. (4) are passed as argument to

the inverse CDF of the calibration period,
[
F cal
mod

]−1
, to estimate the calibration period

value of TF associated to them. Taking the difference between the projected model val-
ues and their corresponding estimated calibration period values gives the estimated ab-
solute changes in quantiles between the calibration period and the 30-year window in the
projection period:

∆mod(t) = TFproj
mod(t)−

[
F cal
mod

]−1
[
τprojmod(t)

]
. (5)

The nonexceedance probability is also passed to
[
F cal
obs

]−1
in order to calculate its cor-

responding bias-corrected TF value under the observational distribution of the calibra-
tion period:

T̂F
cal:proj

obs:mod(t) =
[
F cal
obs

]−1
[
τprojmod(t)

]
. (6)

In this manner, T̂F
cal:proj

obs:mod(t) takes the statistical characteristics of the reference data dur-
ing the calibration period. We use the physical constraint that TF cannot be below 0
K (i.e., ocean temperature at freezing point). To enforce this constraint, we find the ob-

servation CDF limit that corresponds to TF = 0 K by linearly extrapolating
[
F cal
obs

]−1

until the limit at which it yields 0 K. If τprojmod(t) is below that limit, T̂F
cal:proj

obs:mod is set to

0 K. Finally, the modeled absolute change in quantiles is added back to T̂F
cal:proj

obs:mod(t) to
yield the projected bias-corrected value:

T̂F
proj

mod(t) = T̂F
cal:proj

obs:mod(t) + ∆mod(t). (7)

Eq. (7) reintroduces the TF change signal projected by the AOGCM, ∆mod(t). As such,255

the QDM procedure ensures that both statistical characteristics of the reference dataset,256

via Eq. (6), and projected changes in quantiles, via Eq. (5), are preserved. If a negative257

∆mod pushes T̂F
proj

mod below 0 K, we set T̂F
proj

mod = 0 K for physical consistency.258
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In summary, the QDM technique maps the AOGCM CDF to the CDF of EN4 over259

the calibration period. This has the effect of reducing the biases shown in Fig. 4 to zero.260

However, QDM preserves the relative changes in time of TF as modeled by the AOGCMs.261

Finally, it allows to extend the calibration to the projection period by super-imposing262

the relative changes in the TF distribution that are projected by the AOGCM to the263

corrected TF time series.264

2.2 Extrapolation to fjord mouths265

The horizontal resolution of AOGCMs is insufficient to capture the dynamical pro-266

cesses governing ocean heat transfer from the open ocean on to the continental shelf (Slater267

et al., 2020; Wood et al., 2021), as these models use a typical ocean mesh of 1◦ (∼75 km268

around Greenland). In this context, we make use of a high-resolution Arctic forward model269

run from the Estimating the Circulation and Climate of the Ocean (ECCO) consortium270

(Nguyen et al., 2012; Rignot et al., 2012). This ECCO run spans the period 1992-2009,271

and it has a horizontal resolution of 4 km. We use ECCO to statistically constrain the272

extrapolation from open ocean TF to on-the-shelf TF, close to the fjord mouths of the273

Greenland outlet glaciers. Note here that other high-resolution ocean model products274

can be used for the extrapolation (e.g., Gillard et al., 2016). Hereafter, we refer to open275

ocean gridpoints as offshore, and to fjord mouth gridpoints as inshore. We consider in-276

shore gridpoints as ECCO gridpoints closest to glacier fjord mouths, while offshore grid-277

points can be any other gridpoint within the 7 oceanic sectors considered (see Fig. 1a).278

We note that some ECCO gridpoints need to be rejected due to unphysical variability279

in TF, caused in general by an initialization shock (Balmaseda et al., 2009). We conser-280

vatively discard 2% of the gridpoints, mostly located in Eastern fjords and in the far281

North. The statistical extrapolation method is based on, and adapted from the work of282

Oliver and Holbrook (2014), as detailed in this section. A visualization of an example283

result of the extrapolation methodology is given in Figure 8.284

2.2.1 Statistical relations between offshore and inshore285

We seek a representation of inshore TF based on available offshore TF in the QDM-286

corrected AOGCM output. We derive offshore-inshore relationships using the high-resolution287

ECCO output. Inshore locations are specific to each glacier of the dataset of Wood et288

al. (2021) (Fig. 1a), and defined here as the 4 closest ECCO gridpoints that have a bathymetry289

of at least 100 m depth. Other choices could be made by applying knowledge of the re-290

gional dynamics, for example by selecting gridpoints along the orientation of a fjord or291

along contours of constant depth. The offshore locations serve as predictors in the offshore-292

inshore relationships, and we provide a method to optimize the choice of predictor grid-293

points in Section 2.2.2.294

We decompose all TF (i.e., offshore, inshore, from the high-resolution ECCO, and
from a coarse resolution AOGCM) in four different components: a mean, a trend, a sea-
sonal cycle, and residual variability. This is expressed as:

TF = TF+ ṪF+ TFS + TF’, (8)

where TF, ṪF, TFS , and TF’ denote the long-term mean, the long-term trend, the sea-295

sonal component, and the residual variability, respectively. We develop statistical extrap-296

olation relationships for the three components TF, TFS , and TF’. We preserve ṪF un-297

changed from the offshore to the inshore for two reasons. First, it is questionable whether298

an offshore-inshore relation for the trend calculated over the period of the ECCO run299

(1992-2009) can be applied to AOGCM trends beyond that period. Second, while lin-300

ear functions represent the trend over the short 1992-2009 period well, we find evidence301

of quadratic trends in AOGCM simulations extending until 2100 (see Sect. 2.3). As such,302

any extrapolation relationship derived over 1992-2009 would not be transferable to the303

entire AOGCM simulation period.304
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First, the time-mean TF is a scalar, for both offshore and inshore locations. As such,
we can relate them linearly as:

TFin = αTFoff , (9)

where α is the only parameter of the regression, and it is glacier-specific. The subscripts
in and off denote inshore and offshore, respectively. We derive the α parameter from the
ECCO relation between inshore and offshore time-mean TF :

α =
TFhr,in

TFhr,off

, (10)

where the subscript hr denotes the high-resolution ECCO model.305

Second, we represent the seasonal cycle as a sum of 12 monthly effects. The monthly
effect is calculated as the mean, over multiple years, of the TF anomalies, defined as the
difference between the monthly value and the annual mean. For example, we compute
the difference between the January TF and the annual mean TF for each year of the
time series, and the January monthly effect is the mean of these anomalies. The seasonal
cycle is thus represented as:

TFS(t) =

12∑
i=1

Miδ (t, i) , (11)

where M1,...,12 are the 12 monthly effects, and δ (t, i) is 1 if the time step t of the time
series falls in month i, and 0 otherwise. Note that, by definition, the 12 Mi average to
zero. We favor using monthly effects rather than a Fourier series, as done by Oliver and
Holbrook (2014), because the latter approach does not capture well the 0 K lower bound
on TF, which can be important at high latitudes. Similarly to our approach for TF, we
relate the inshore and offshore monthly effects linearly for each month:

Mi,in = γMi,off . (12)

The linear scaling factor γ is calibrated with the high-resolution ECCO product:

γ =

∑12
i=1 |Mi,hr,in|∑12
i=1 |Mi,hr,off |

, (13)

and γ thus captures how strongly seasonality is amplified or reduced inshore compared306

to offshore. We calculate a single γ with the absolute values of all 12 monthly effects rather307

than having a specific γ for each individual month, because individual Mi values close308

to zero could make the ratio unphysically large.309

Finally, after subtracting the mean, the trend, and seasonality components from
the TF time series, only the non-seasonal residual variability TF’ remains (Eq. (8)). We
apply a statistical relationship between offshore and inshore TF’. We relate the standard
deviations of the inshore and offshore variability linearly:

σ [TF’in(t)] = βσ [TF’off(t)] , (14)

where σ [ ] denotes the standard deviation of the time series in the brackets. We estimate
the β parameter from the ratio of ECCO standard deviations in inshore and offshore resid-
ual variability:

β =
σ [TF’hr,in(t)]

σ [TF’hr,off(t)]
. (15)

If the trend ṪF is not removed, it would be included in TF’, causing β to be inflated or310

deflated if offshore and inshore trends differ. By detrending, we thus ensure that β cap-311

tures the ratio of residual inter-annual variability in TF instead of longer-term tenden-312

cies.313

Using the calibrated statistical relationships, we construct an estimate of inshore314

TF of a coarse-resolution AOGCM using its offshore TF as a predictor. In other words,315
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we can use TF cr,off to predict TF cr,in, where the subscript cr denotes a coarse-resolution316

AOGCM. We predict the three extrapolated components of TF cr,in separately:317


TFcr,in = αTFcr,off

TFS
cr,in(t) = γ

∑12
i=1 Mi,cr,offδ (t, i)

TF’cr,in(t) = βTF’cr,off(t)

. (16)

By multiplying TF’ cr,off by β, we use the fact that the residuals have mean zero by con-318

struction, and we assume that they follow a normal distribution. As such, TF’ cr,in fol-319

lows a normal distribution with mean zero and its standard deviation is βσ (TF’cr,off).320

Our Eqs. (14) and (15) differ from the approach of Oliver and Holbrook (2014), as they321

related TF’hr,off and TF’hr,in by linear regression to estimate β. By using the ratio of322

the standard deviations instead, we avoid issues of decreased variability in TF’ cr,in com-323

pared to TF’ cr,off when TF’hr,in and TF’hr,off show similar variability, but are not well-324

correlated in time. However, our approach relies on the assumption of normally-distributed325

residuals. To verify this assumption, we draw 1000 random bootstrap samples of size 50326

from all the monthly values of residual variability, and compute the Shapiro-Wilk nor-327

mality test (Shapiro & Wilk, 1965). We find that the normality assumption is validated328

for 87% of these bootstrap samples at the 5% significance level.329

Using Eqs. (8) and (16), the full estimated time series of TF cr,in is reconstructed
as:

TFcr,in = TFcr,in + ṪFcr,off + TFS
cr,in + TF’cr,in. (17)

Note that the trend is preserved from the offshore AOGCM gridpoint. Because the ex-330

trapolation is based on the short period of ECCO output (1992-2009), we simply remove331

a linear trend for the extrapolation process, as a higher-order polynomial would likely332

include part of the residual variability which we aim to extrapolate.333

For a given glacier front (i.e., a given inshore location), we need to determine an334

optimal offshore predictor gridpoint of the coarse-resolution AOGCM (see Sect. 2.2.2).335

However, the parameters α, γ, and β are constrained with relations from ECCO. Thus,336

once the AOGCM offshore gridpoint predictor is determined, we find its nearest-neighbor337

ECCO gridpoint. We relate the TF hr,off of this ECCO gridpoint to the ECCO TF hr,in338

of the glacier front to constrain the parameters. As a reminder, TF hr,in for a given glacier339

front is computed as the average of the 4 ECCO gridpoints closest to the glacier front.340

2.2.2 Determining the offshore predictor locations341

In this section, we describe a procedure, modified from Oliver and Holbrook (2014),342

to determine an optimal offshore gridpoint as a predictor for the inshore AOGCM TF343

time series of a given glacier front. We limit the possible domain for an offshore predic-344

tor to our 7 oceanic sectors around Greenland (Fig.1a). To determine the optimal pre-345

dictors, we use three quantitative criteria for each TF component.346

The first criterion is a quality function, Q. The quality function is defined as the
agreement between the QDM-corrected coarse-resolution AOGCM and the high-resolution
ECCO. The quality is defined separately for each component:

Q =

∣∣TFcr,off − TFhr,off

∣∣−1

1 +
∣∣TFcr,off − TFhr,off

∣∣−1 , (18)

QS =

[
1 + r

(
TFS

cr,off ,TF
S
hr,off

)
2

×min

(∑12
i=1 |Mi,cr,off |∑12
i=1 |Mi,hr,off |

,

∑12
i=1 |Mi,hr,off |∑12
i=1 |Mi,cr,off |

)]1/2
, (19)

Q′ =

[
1 + r (TF’cr,off ,TF’hr,off)

2
×min

(
σ (TF’cr,off)

σ (TF’hr,off)
,
σ (TF’hr,off)

σ (TF’cr,off)

)]1/2
, (20)
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where r ( ) denotes the correlation coefficient. Our expressions for the quality functions347

slightly differ from those of Oliver and Holbrook (2014). Note that Eq. (18) avoids ex-348

treme values of Q in the case of TF being close to zero, while the expressions of Eqs. (18,349

19, 20) all ensure that Q, QS , and Q′ remain bounded between 0 and 1. By using the350

quality functions as a criterion for selecting the offshore predictor gridpoint of the coarse-351

resolution AOGCM, we favor offshore gridpoints where the QDM-corrected AOGCM agrees352

well with ECCO. The two terms in Eq. (19) favor strong temporal correlation between353

the seasonality patterns of ECCO and the AOGCM and similar total seasonal amplitude,354

respectively. Similarly, the two terms in Eq. (20) favor temporal correlation between and355

similar variability amplitude of the residuals of ECCO and the AOGCM. In Eqs. (19,356

20), we give equal weights to the correlation and amplitude terms by taking their geo-357

metric mean.358

The second criterion is a strength function, S. The strength functions measure the
similarity between the offshore TF components to their corresponding components of
the inshore gridpoint of interest in the high-resolution model ECCO. We compute the
strength functions at all the ECCO gridpoints that are a nearest neighbor of an exist-
ing AOGCM gridpoint. In this manner, each nearest neighbor is attributed a strength
criterion value. In other words, the values of the strength functions of a given coarse-
resolution AOGCM gridpoint depend on the TF time series of the nearest-neighbor high-
resolution ECCO model gridpoint. The expressions for the strength functions are sim-
ilar to those of the quality functions, and are also defined separately for each component:

S =

∣∣TFhr,off − TFhr,in

∣∣−1

1 +
∣∣TFhr,off − TFhr,in

∣∣−1 , (21)

SS =

[
1 + r

(
TFS

hr,off ,TF
S
hr,in

)
2

×min

(∑12
i=1 |Mi,hr,off |∑12
i=1 |Mi,hr,in|

,

∑12
i=1 |Mi,hr,in|∑12
i=1 |Mi,hr,off |

)]1/2
, (22)

S′ =

[
1 + r (TF’hr,off ,TF’hr,in)

2
×min

(
σ (TF’hr,off)

σ (TF’hr,in)
,
σ (TF’hr,in)

σ (TF’hr,off)

)]1/2
. (23)

Strength functions thus attribute more weight to offshore gridpoints where ECCO es-359

timates that a given TF component is similar to the inshore TF component close to the360

glacier front.361

The last criterion is a simple localization function, L. It is formulated as an isotropic
two-dimensional Gaussian function centered on the inshore location (xin, yin). The lo-
calization function attributes more weight to offshore gridpoints closer to the inshore lo-
cation, and it is the same for the three TF components:

L = exp

−
(
(xoff − xin)

2
+ (yoff − yin)

2
)

2λ2
L

 , (24)

where λL is an isotropic decay lengthscale. We set λL = 600 km. This is chosen because362

the mean correlation between TF time-series within a given radius in ECCO falls be-363

low 0.7 for a radius above 600 km, when considering the 7 oceanic sectors around Green-364

land (Fig.1a). However, the decay lengthscale can be adjusted depending on the impor-365

tance attributed to keeping offshore predictors close to the inshore location. Furthermore,366

Eq. (24) can easily be converted to an anisotropic function, with different decay scales367

in the zonal and meridional directions.368

The functions Q, S, and L are combined into a single cost function J . In this pro-
cess, one can use different weights ranging between 0 and 1 for the three functions, wQ,
wS , and wL,

J =
1

(1− wQ + wQQ) (1− wS + wSS) (1− wL + wLL)
, (25)
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and there is one cost function J per TF component. Here, we make the simplest choice369

of equally-weighted functions, with (wQ, wS , wL) = (1,1,1). While Oliver and Holbrook370

(2014) used a different predictor gridpoint per TF component, we find that the spatial371

differences between the cost functions of the different TF components are minor. Thus,372

for simplicity, we compute the total cost JT as the average of the cost functions of the373

three components. The gridpoint minimizing JT is used as the offshore gridpoint pre-374

dictor. We provide examples of the searching method for the optimal offshore predic-375

tor gridpoint in Sect. 3.2. We use the optimal offshore predictor to construct a synthetic376

inshore TF time series following the method described in Sect. 2.2.1.377

2.3 Fitting of statistical models378

The QDM-corrected and inshore-extrapolated TF time series are entirely deter-379

ministic, but our goal is also to generate many TF time series that represent realizations380

of internal climate variability. Therefore, we calibrate statistical time series models to381

the deterministic time series, and use a stochastic term to represent residual variability382

in TF. Here, we consider output from two different AOGCMs, under two possible emis-383

sion scenarios, and at 226 Greenland marine glaciers. Each combination of AOGCM and384

emission scenario has a given number of ensemble members. The ensemble members dif-385

fer due to minor differences in the initial conditions, which can amplify during the AOGCM386

simulation owing to the sensitive dependence on initial conditions of the climate system387

(Hasselmann, 1976; Kay et al., 2015; Maher et al., 2019). For each individual glacier, the388

number of TF time series available from a given AOGCM under a specific emission sce-389

nario is limited by the number of ensemble members. Because AOGCMs are computa-390

tionally expensive models, the number of members is in general of the order 1 to 10 for391

CMIP6 experiments until 2100. Statistical samples of such sizes of TF time series are392

thus too small to fully characterize the distribution of possible oceanic conditions affect-393

ing Greenland glaciers in the future. The statistical models that we develop here must394

(i) be representative of the deterministic inshore series, (ii) account for internal climate395

variability using a stochastic parameterization, and (iii) efficiently generate a large num-396

ber of TF time series at low computational expense. Each statistical model is specific397

to a combination of AOGCM, emission scenario, and glacier. We detail their implemen-398

tation in this section.399

At a given inshore location, we process all the TF time series in the same manner
(Eq. (8)). First, we decompose each series in a mean, a trend, a seasonality, and a resid-
ual component. In contrast to the procedure in the extrapolation process (Sect. 2.2.1),
time series here are considered over the entire AOGCM run (1850-2100) and not only
over their overlapping period with ECCO (1992-2009). For this reason, we estimate the
sum of mean and trend components as a piecewise polynomial function with a break-
point at date tbrk. We use a second-order polynomial, because it captures the non-linear
warming trend by the end of the century in high-emission scenarios. Mathematically, the
mean-plus-trend component that we estimate corresponds to:{

TF+ ˙TF(t) = apre0 + apre1 (t− t0) + apre2 (t− t0)
2

if t ≤ tbrk

TF+ ˙TF(t) = apost0 + apost1 (t− tbrk) + apost2 (t− tbrk)
2

if t > tbrk
, (26)

where t0 is the initial date of the time series. The breakpoint tbrk is not fixed but varies400

between different TF time series to optimize the fit of Eq. (26). The pre and post su-401

perscripts denote coefficients applying before and after the breakpoint tbrk, respectively.402

Ensemble members of a same AOGCM agree relatively well on general trends at the cen-403

tennial time scale (Maher et al., 2019). For this reason, our method does not attribute404

internal variability to the mean-plus-trend component, which we take as entirely deter-405

ministic.406

The seasonality is still evaluated as 12 monthly effects (Eq. (11)). However, we ob-
serve that seasonality in TF strongly increases by 2100 in high-emission scenarios, both
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in raw AOGCM output and in our QDM-corrected inshore-extrapolated time series. For
this reason, over the period 1850-2100, we represent each monthly effect Mi as a piece-
wise linear function with a breakpoint fixed at 2015:{

Mi(t) = bpre0 + bpre1 (t− t0) if t ≤ 2015, for i = 1, ..., 12

Mi(t) = bpost0 + bpost1 (t− 2015) if t > 2015, for i = 1, ..., 12
, (27)

and all the Mi values can be used to calculate the seasonal component (Eq. (11)). As-407

suming a single breakpoint avoids having different optimal breakpoints for different months,408

which would complicate the representation of seasonality. Here, we elect 2015 as the break-409

point because it is the transition between historical and prediction simulations of AOGCMs410

in the CMIP6 protocol. Finally, after removing the mean-plus-trend component (using411

Eq. (26)), and the seasonality component (using Eq. (27)) from a given TF series, we412

treat the remaining signal as the residual component, TF’.413

The residual component is modeled as an autoregressive-moving-average (ARMA)
process on an annual time scale. ARMA models have been principally popularized by
Box and Jenkins (1976), and are extensively used in geophysical sciences to represent
dynamical processes that exhibit memory (Storch & Zwiers, 1999; Mudelsee, 2010; Wilks,
2011). Their advantage is the ability to represent a large range of temporal autocorre-
lation features, while using only a small number of parameters. ARMA processes have
been used previously to represent ocean temperatures and their residuals (e.g., Hassel-
mann, 1976; Hausfather et al., 2017; Cheng et al., 2022). It is important to remove the
general trend, as well as the trend in monthly effects to ensure stationarity of the resid-
ual component time series, i.e., the residuals should not exhibit a trend or changing vari-
ability over time. By modeling the residual component as an ARMA process, our goal
is to capture the different time scales of variability in oceanic conditions around Green-
land, ranging from inter-annual to multi-decadal variability (Straneo & Heimbach, 2013).
This temporal complexity is partly driven by the influence of the North Atlantic Oscil-
lation and the Atlantic Multi-decadal Oscillation on variability in waters of both Polar
and Atlantic origins (Dickson et al., 2000; Rignot et al., 2012). An ARMA model of au-
toregressive (AR) order p and moving-average (MA) order q, denoted ARMA(p,q), for
a generic variable y is formulated as:

yt =

p∑
i=1

φiyt−i +

q∑
j=1

θjϵt−j + ϵt, (28)

where the φ1, ..., φp are the AR coefficients, and the θ1, ..., θq are the MA coefficients.
The ϵt term is a Gaussian noise term. In an ARMA model, the φi coefficients capture
the memory of the process, and the θi coefficients represent the persistence of random
noise effects in the system. In our specific case, ϵt allows us to prescribe covariance be-
tween different glaciers by being randomly sampled from a multivariate Gaussian of which
the covariance matrix has dimensions equal to the total number of glacier front locations
(i.e., 226). From this multivariate Gaussian, one can sample a random vector ϵt of size
equal to the number of glaciers, and which consists of the individual ϵt applied at each
glacier front:

ϵt ∼ N(0,Σ). (29)

For each of the TF’ time series (i.e., the residual variability), we calibrate all pos-
sible combinations of ARMA models of both AR orders (p) and MA orders (q) ranging
from 0 to 4. For each possible ARMA(p,q) calibrated model, we evaluate its Bayesian
Information Criterion (BIC) (Schwarz, 1978). In fitting a statistical model to data, the
BIC measures the likelihood of the model, but penalizes the number of parameters used
in the model. Its purpose is to find the adequate balance between model fit and model
complexity, thus avoiding overfitting. It is calculated as:

BIC = m ln(n)− 2 ln
(
L̂
)
, (30)
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where m is the total number of parameters, n is the number of data points, and L̂ is the414

value of the likelihood function evaluated with the calibrated model. In our case, m =415

p+q and n = 250 (i.e., number of yearly residual values in a 1850-2100 time series). For416

a given glacier, emission scenario, and AOGCM, there is one combination of (p,q) min-417

imizing the BIC per individual ensemble member. To decide which of all these poten-418

tial best-fitting ARMA models we use, we take the most favored (p,q) combination among419

the selected (p,q) combinations for the different members, and denote this preferred com-420

bination as (p∗,q∗). In case of a tie among the selected models, we take the one of lower421

order (i.e., lower p+q). As such, for a given glacier, emission scenario, and AOGCM,422

we have a single ARMA(p∗,q∗) model representative of the residuals. To calibrate the423

φi coefficients, θj coefficients, and the marginal variance of ϵt (see Eq.(28)), we fit all the424

ensemble member time series with the (p∗,q∗) combination. We take the average of the425

φi, θj , and marginal variance values across the ARMA(p∗,q∗) models of all the ensem-426

ble members. This averaging procedure is equivalent to considering the parameter val-427

ues from the different ensemble members as a sample of the true population of AOGCM428

parameter values. As per the central limit theorem, the average parameter values are429

thus asymptotically representative of a mean AOGCM simulation. This procedure is re-430

peated for each combination of glacier, AOGCM, and emission scenario. The calibrated431

ARMA(p∗,q∗) model allows us to generate a large set of time series at a given glacier,432

representative of the TF’ residuals modeled by the corresponding AOGCM under the433

forcing of the corresponding emission scenario.434

The long-term mean and trend (Eq. (26)) and monthly effects (Eq. (27)) in TF435

are taken from the across-members AOGCM ensemble mean at each glacier and for each436

emission scenario. These ensemble mean deterministic components can be added to an437

ARMA-generated stochastic TF’ residuals time series to produce a TF time series.438

We can account for inter-glacier covariability when generating the ϵt, as highlighted
by Eq. (29). In other words, the calibrated marginal variances are used to fill the diag-
onal entries of the covariance matrix, but the off-diagonal entries can be estimated from
the empirical correlation of the TF’ time series of a same member at all the glacier front
locations. Because the number of values to be estimated in the covariance matrix is very
large compared to the number of yearly samples of TF’, it is preferable to compute a sparse
correlation matrix instead of relying on the empirical correlation matrix (e.g., Hu & Cas-
truccio, 2021). We employ the commonly-used graphical lasso method to compute a sparse
correlation matrix Ĉi for the ith ensemble member (Friedman et al., 2008). We average

the Ĉi across all the ensemble members to yield an estimated correlation matrix Ĉ for

a combination AOGCM-emission scenario. From Ĉ and the diagonal matrix of the in-
dividual calibrated marginal variances at all the glacier front locations, K, we compute

the sparse covariance matrix Σ̂:

Σ̂ = K
1
2 ĈK

1
2 , (31)

and Σ̂ is used as the covariance matrix for generating random TF’ realizations across439

all the glaciers, following Eqs. (28, 29). As a reminder, Σ̂ is specific to a given AOGCM-440

emission scenario configuration, is an average across all the ensemble members, and cap-441

tures covariance between TF’ at all the glacier front locations. In the Results section,442

Figure 15 gives a visual intuition for the difference between an empirical and a sparse443

correlation matrix.444

To summarize, the stochastic time series models described in this subsection pro-445

vide a computationally efficient way to generate time series of variability in TF. The pa-446

rameters of the models are calibrated to the temporal variability characteristics of the447

deterministic QDM-corrected and inshore-extrapolated AOGCM TF time series. In ad-448

dition, the time series models can represent spatial covariance in TF. This latter aspect449

is critical when evaluating the response to oceanic forcing of the Greenland ice sheet as450

a whole, instead of on a glacier-by-glacier basis.451
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3 Results452

To illustrate our method, we use outputs from two AOGCMs that took part in CMIP6.453

The AOGCMs chosen for this study are MIROC-ES2L (Hajima et al., 2020) and IPSL-454

CM6A (Boucher et al., 2020), as these models are updated versions of two of the AOGCMs455

used in the ISMIP6 Greenland intercomparison (Goelzer et al., 2020). However, the method456

outlined in Sect. 2 is applicable to any AOGCM. We consider both AOGCMs in a low-457

and a high-emission scenario: ssp126 and ssp585, respectively. The forcing scenarios cover458

the period 2015-2100, and are preceded by the AOGCM historical runs over 1850-2015.459

Note here that we only use the 1950-2015 period as calibration period, because it over-460

laps the historical AOGCM run and the period of high observational weight values in461

EN4 (Fig. 3). Under these emission scenarios, MIROC-ES2L and IPSL-CM6A have 10462

and 5 ensemble members, respectively. Finally, we investigate TF conditions at the 226463

outlet glaciers with marine termini (Wood et al., 2021) (see Fig. 1a). In total, our anal-464

ysis involves 6780 TF time series.465

3.1 Quantile Delta Mapping results466

In this section, we illustrate and evaluate the QDM approach described in Section467

2.1. Figure 5 shows examples of the QDM application at two different locations using468

member r1 of MIROC-ES2L. In Figure 5a, the raw AOGCM TF shows a positive bias469

of ∼ 3 K, and an underestimation of temporal variability with respect to EN4. After470

QDM, these differences are corrected, while the features of relative changes and future471

trends in the raw AOGCM output are preserved. In contrast, in Figure 5b, the AOGCM472

is in good agreement with EN4, both for the mean and the amplitude of variability. As473

such, the QDM-corrected TF time series remains similar to the raw time series.474

Figure 5. TF time series for Member r1 of ssp585 experiment from MIROC-ES2L at two

different locations (a and b, at fa and fb in Fig. (1b)). QDM is applied on the raw MIROC-

ES2L TF time series using the TF time series of the EN4 nearest neighbor gridpoint. The black

line shows the EN4 nearest neighbor TF time series. Red lines show the TF time series from

MIROC-ES2L. Blue lines show TF time series of the MIROC-ES2L after QDM correction. Dot-

ted lines show the projection of the MIROC-ES2L TF time series beyond the calibration period

(1950-2015). The two locations are chosen for illustrative purposes.
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In order to validate the QDM method, we evaluate the direct match between mod-475

eled TF pre- and post-QDM correction with TF from in-situ CTD profile data. We use476

raw CTD profile data available from the EN4 dataset (Good et al., 2013). Because CTD477

profile data are used as a constraint in the EN4 objective analyses, they cannot serve478

as independent data to evaluate the improvement in model fidelity with respect to ob-479

servations after QDM correction. For this reason, we perform a second QDM calibra-480

tion with only a subset of the calibration period: 1950-2000 instead of 1950-2015. The481

CTD data from the period 2000-2015 is subsequently used to evaluate the models after482

the QDM procedure was applied over this reduced 1950-2000 calibration period. In this483

way, the EN4 objective analyses used for the QDM-correction are independent of the raw484

CTD data used for the model evaluation. We compute summary statistics for the agree-485

ment between TF from the CTD profile observations with the raw AOGCM TF and with486

the QDM-corrected AOGCM TF. Specifically, from the EN4 dataset, we take all the CTD487

profile data within the 7 oceanic sectors outlined in Figure 1a, extending at least until488

500 m depth, and falling into the period 2000-2015. For each individual CTD profile, we489

find the nearest AOGCM gridpoint, and compute its TF at the time step closest to the490

CTD collection date. MIROC-ES2L and IPSL-CM6A have 10 and 5 members, respec-491

tively. Because there are 17 390 CTD profiles fulfilling our conditions, this results in 173492

900 and 86 950 pairwise comparisons of modeled versus observed TF for MIROC-ES2L493

and IPSL-CM6A, respectively. The pairwise comparisons and summary statistics are shown494

in Figure 6. For MIROC-ES2L, the QDM correction reduces the bias magnitude by 42%.495

The Root Mean Squared Error (RMSE) is reduced by 29% and the proportion of vari-496

ance explained (R2) improves from 0.62 to 0.78. For IPSL-CM6A, the negative bias is497

amplified after the QDM correction from -0.11 to -0.29 K. However, the RMSE decreases498

by 24% and R2 increases from 0.63 to 0.83. These results show that, even in a case where499

calibration is performed only using the EN4 objective analyses over 1950-2000, QDM im-500

proves the agreement of AOGCMs TF with respect to 2000-2015 CTD profiles.501

3.2 Extrapolation results502

For each inshore location, our method selects one offshore predictor location by min-503

imizing the average cost function (Eq. (25)) for the mean (TF), seasonality (TFS), and504

residual variability (TF’ ) components (see Section 2.2.2). As an example of offshore pre-505

dictors selection, we show some total cost functions, JT , for member r1 of IPSL-CM6A.506

We show JT for three of the largest Greenland outlet glaciers, and situated in geograph-507

ically distinct areas: Helheim glacier in the South-East (Fig. 7a), Sermeq Kujalleq (also508

called Jakobshavn Isbræ) in the Central-West (Fig. 7b), and Petermann glacier in the509

North (Fig. 7c) (see also Fig. 1b for the glacier locations). For Helheim glacier, the pre-510

dictor location is further North, upstream along the East Greenland Current (Fig. 1b).511

This current, originating at about 80◦ North and flowing southward, provides a phys-512

ical connection to the offshore predictor (Strass et al., 1993). In this case, this location513

is preferred to closer gridpoints because of stronger discrepancies of the AOGCM with514

respect to ECCO close to the coast. The predictor location of Sermeq Kujalleq shows515

the shortcoming of the bathymetry used by coarse-resolution AOGCMs: the extent of516

the white areas in the map shows where ocean depth is less than 100 m in the AOGCM,517

whereas ECCO can simulate ocean dynamics up to the fjord mouth (see Fig. 1b). Fi-518

nally, the predictor for Petermann glacier shows that predictability for TF in the North-519

ern most latitudes is very low for the rest of the ocean around Greenland. The limit be-520

tween low- and high-predictability areas is likely attributable to the location of the south-521

ern edge of sea-ice in winter and to the respective influences of Atlantic and Arctic wa-522

ters (Straneo et al., 2022).523

For the same member r1 of IPSL-CM6A, we show the time series resulting from524

the inshore extrapolation process at Helheim glacier in Figure 8. In this particular case,525

the extrapolation results in a cooler inshore mean, and enhanced seasonality and resid-526

ual variability. Figure 9 shows the effect of the extrapolation for all the members of the527
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Figure 6. Comparison of raw AOGCM TF (a, c) and QDM-corrected AOGCM TF (b, d)

with in-situ CTD profile data. For the purpose of evaluation, the calibration period is limited

to 1950-2000, and the fit statistics are evaluated with respect to CTD data from 2000-2015 only.

Evaluation is performed for MIROC-ES2L (a, b) and IPSL-CM6A (c, d). RMSE, R2, and N

denote root mean squared error, coefficient of determination, and total number of pairwise com-

parisons, respectively.

Figure 7. Optimal offshore predictors for r1 member of the IPSL-CM6A AOGCM. Shown at

Helheim glacier (a), Sermeq Kujalleq (b), and Petermann glacier (c).
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two AOGCMs in both emission scenarios and for all glaciers. Figure 9a shows boxplots528

of three parameters: (i) α, the inshore-to-offshore ratio in mean TF (TF) (see Eq. (10)),529

(ii) γ, the inshore-to-offshore ratio in the total amplitude of the monthly effects in TF530

(see Eq. (13)), and (iii) β the inshore-to-offshore ratio in the standard deviation of the531

residual variability in TF (TF’ ) (see Eq. (15)).532

The parameter α has a mean of 0.84, and an inter-quartile range of [0.75;0.99] (Fig.533

9a). TF is thus, on average, slightly reduced from the offshore to the inshore. Potential534

physical causes are (i) shallower bathymetry blocking access to warm Atlantic Waters,535

(ii) Arctic Waters being carried along the coast via the East Greenland Coastal Current536

and, subsequently, via the West Greenland Current (Fig. 1b), (iii) vertical mixing dur-537

ing the transit from the shelf towards the glacier, and (iv) the cooling effect of freshwa-538

ter discharge from the ice sheet (Buch, 2002).539

The ratio in amplitude of monthly effects between inshore and offshore derived from540

ECCO (γ) spans a larger range of values (Fig. 9a). The median (1.10) and mean (1.11)541

show that the distribution of γ is approximately centered around 1. However, the dis-542

tribution is characterized by a high number of outliers in both the lower- and upper-end,543

with minimum and maximum values of 0.17 and 2.94, respectively. This large range of544

values suggests that processes influencing differences between offshore and inshore sea-545

sonal amplitude vary between geographical regions. This is illustrated by the map of sea-546

sonal amplitude in ECCO, which we approximate as half the difference between max-547

imum and minimum monthly effects (Fig. 10a). In the South-East, Central-East, and548

South-West basins, seasonal amplitude inshore is substantially larger. On the other hand,549

the difference between offshore and inshore amplitude is small in the Central-West, North-550

West, North, and North-East basins. These between-regions differences explain the large551

range of γ.552

Finally, the β parameter is closely centered around 1 (Fig. 9a, mean=0.99, median=1.01),553

with no strong outlier. Figure 10b shows that ECCO residual variability (TF’ ) is larger554

closer to the coast, which should favor β values larger than 1. The reason for β remain-555

ing close to 1 is that offshore predictors are generally located close to the inshore loca-556

tion, as the examples in Figure 7 show. As such, inshore locations and offshore predic-557

tor locations have, on average, equal standard deviation in residual variability in ECCO.558

3.3 Statistical models of the residual component559

Our procedure for isolating the residual variability by removing the trend and sea-560

sonality components (Eqs. (26),(27)) effectively renders the TF’ time series stationary.561

This is validated as the null hypothesis of non-stationarity in the Augmented Dickey Fuller562

test (Dickey & Fuller, 1981) is rejected with significance for all the 6780 TF’ time se-563

ries (p-values<0.05). For each TF’ time series, we calibrate ARMA models (Eq. (28))564

and select the best-fitting ARMA model by minimizing the BIC (Eq. (30)) among the565

models tested (see Sect. 2.3). Histograms in Figure 11 show the optimal (p,q) orders se-566

lected. Our procedure finds that, in general, low order ARMA models fit the TF’ time567

series best. An autoregressive order of 1 (i.e., p = 1) is selected for 51 % of the cases,568

and more specifically an ARMA(1,0) (i.e., AR(1)) for 42 % of the cases. None of the TF’569

time series have a best-fitting ARMA model that is pure white noise (i.e., p = 0, q =570

0), and only 3 (<0.1%) have the most complex ARMA model tested (i.e., p = 4, q =571

4) as the best-fitting model.572

Our goal is to find an ARMA model representative of TF’ at a given glacier for573

an AOGCM under a specific emission scenario. In other words, we derive a single ARMA574

model from the multiple realizations provided by the different ensemble members of an575

AOGCM. As explained in Sect. 2.3, we find the across-members optimal ARMA(p∗,q∗)576

combination, calibrate it to all ensemble members, and average the noise variance, the577

φi, and the θj coefficients across the different members (see Eq. (28)). To generate a TF’578
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Figure 8. Offshore and extrapolated inshore TF components for r1 member of the IPSL-

CM6A AOGCM in emission scenario ssp585, shown at Helheim glacier (see Fig. 1b for location).

Time series of (a) offshore and extrapolated inshore mean component (TF), (b) offshore and

extrapolated inshore seasonality component (TFS), and (c) offshore and extrapolated inshore

residual variability component (TF’ ). Time series (d) of the total offshore and extrapolated in-

shore TF. Time series are only shown over the period 1992-2030 for the sake of figure clarity.
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Figure 9. Statistics of the offshore-inshore relations at all glaciers for all the ensemble mem-

bers of all the AOGCMs in all the emission scenarios considered in this study (total of 6780

offshore-inshore relations). Boxplots of the ratio in TF (α, see Eq. (10)), ratio in the sum of ab-

solute monthly effects (γ, see Eq. (13)), and ratio in standard deviation of the residual variability

(β, see Eq. (15)).

Figure 10. Maps of the high-resolution (4 km × 4 km) ECCO: (a) amplitude of the seasonal

cycle, and (b) standard deviation in the residual variability. The amplitude of the seasonal cycle

is half the difference between the maximum and minimum monthly effects (see Eq. (11)).
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Figure 11. Histograms of best fitting ARMA models for the 6780 QDM-corrected, inshore-

extrapolated time series of residual variability in TF. Selection is based on the BIC. The autore-

gressive order is p, and the moving-average order is q in Eq. (28).

time series at a glacier for a given AOGCM-emission scenario combination, we can then579

use the ARMA model corresponding to that glacier. Adding back the mean, trend, and580

seasonality component yields a statistically-generated TF time series for the glacier. The581

mean-plus-trend (see Eq. (26)) and seasonality components (see Eq. (27)) are taken from582

the across-member ensemble mean.583

The statistically-generated TF’ time series are qualitatively similar to the deter-584

ministic TF’ QDM-corrected inshore-extrapolated time series to which they are calibrated.585

This is illustrated in Figure 12a, showing an example of a statistically-generated TF’ for586

the ARMA model corresponding to IPSL-CM6A in the scenario ssp585 at Helheim glacier.587

Subsequently, TF is reconstructed (Fig. 12b) from the ARMA-generated TF’. Both time588

series are compared to the corresponding TF and TF’ from one of the original IPSL-589

CM6A QDM-corrected and inshore-extrapolated ensemble members, which we refer to590

as the deterministic time series. These comparisons provide a visual intuition for the abil-591

ity of ARMA processes to reproduce the residual variability, and our general fitting pro-592

cedure to reproduce the characteristics of TF time series. We also find a good agreement593

between the deterministic and statistically-generated TF’ in terms of standard devia-594

tion and 1-year autocorrelation (Figure 12a). For illustrative purposes, we show statistically-595

generated TF time series for a single randomly-selected member of IPSL-CM6A under596

ssp585 at six of the largest Greenland outlet glaciers from different regions in Figure 13.597

Again, these examples demonstrate that QDM-corrected inshore-extrapolated TF time598

series with either deterministic or stochastically-generated residuals are qualitatively sim-599

ilar. In contrast, TF of the raw AOGCM from the glaciers’ nearest-neighbor locations600

show some systematic differences in terms of mean and variability, and can fail to repro-601

duce TF values of nearby CTDs (Fig. 13).602

Quantitatively, we find good agreement in the timescale and amplitude of variabil-603

ity between the stochastically-generated TF’ and their deterministic counterparts. In604

Figure 14a , we compare the 1-year autocorrelation of all the 6780 deterministic TF’ time605

series of our dataset to a stochastic TF’ generated for the corresponding AOGCM, emis-606

sion scenario, and glacier. We find that 59% of the variance in the 1-year autocorrela-607

tion is explained by the ARMA models, with an RMSE<0.1 and a bias magnitude<0.02.608

We perform the same comparison for the standard deviation of the time series in Fig-609

ure 14b, showing that 89% of the variance is explained, the RMSE is <0.1 K and the610

bias is negligibly small.611
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Figure 12. QDM-corrected and inshore-extrapolated time series of (a) TF’ and (b) TF us-

ing a a deterministic ensemble member of IPSL-CM6A under ssp585 at Helheim glacier (blue

curves), and a statistically-generated time series using the optimally-calibrated ARMA model

(orange curves). The blue TF’ curve shows the residual variability as given by the deterministic

QDM-corrected and inshore extrapolated AOGCM member, and the orange TF’ curve shows the

residual variability simulated as an ARMA process. The blue and orange TF curves in panel (b)

add the residual variability shown in panel (a) to the mean, trend, and seasonality components.

The standard deviation (σ) and 1-year autocorrelation (ρ1) of the TF’ time series are shown in

(a). Black dots in (b) show TF measurements from CTD data located at 100 km or less to the

glacier front. Time series are only shown over the period 1960-2100 and with a single randomly-

selected member for the sake of figure clarity. See Figure 1b for the location of Helheim glacier.
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Figure 13. Raw nearest-neighbor AOGCM (red), deterministic QDM-corrected and inshore-

extrapolated (light-blue), and ARMA realization of the QDM-corrected and inshore-extrapolated

(orange) time series of TF at six large Greenland glaciers in different oceanic sectors. Time series

are for the IPSL-CM6A AOGCM under the ssp585 emission scenario. The orange curves use a

statistically-generated time series of TF’ using the optimally-calibrated ARMA models for each

glacier. The blue curves use the residual variability as given by the deterministic QDM-corrected

and inshore-extrapolated AOGCM member as TF’. Both the orange and blue curves add their

respective TF’ to the mean, trend, and seasonality components, resulting in their respective TF

time series. Black dots show TF measurements from CTD data located at 100 km or less to the

glacier front. Time series are only shown over the period 1960-2100 and with a single randomly-

selected member for the sake of figure clarity. See Figure 1b for locations of the glaciers.

–26–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 14. Comparison of (a) autocorrelation function at lag 1-year, and (b) standard devia-

tion. Each pairwise comparison consists of a deterministic TF’ time series and a TF’ time series

generated from the corresponding calibrated ARMA model. RMSE, R2, and N denote root mean

squared error, coefficient of determination, and total number of pairwise comparisons, respec-

tively.

Finally, the correlation matrices (Ĉ, see Eq. (31)) show that the graphical lasso method612

(see Sect. 2.3, Friedman et al., 2008) effectively reduces the empirical correlation struc-613

ture and prevents overfitting caused by the small sample size. This is illustrated by com-614

paring the empirical and sparse correlation matrices in Fig. 15 for the case of the IPSL-615

CM6A AOGCM under the ssp585 emission scenario. Furthermore, the correlation ma-616

trices provide further evidence that our method effectively isolates the residual compo-617

nent of TF variability. As shown in the four sparse correlation matrices (Fig. 16), the618

correlation structure is similar for a single AOGCM under different emission scenarios,619

but differs between AOGCMs. The independence of Ĉ on the emission scenario can only620

be obtained if the non-stationary deterministic changes associated to the emission sce-621

nario are removed. This is achieved here by removing polynomials with glacier-specific622

parameters in Eqs. (26) and (27), which adequately capture the non-stationary patterns.623

In contrast, the correlation patterns differ between AOGCMs, as expected due to their624

different internal dynamics. For example, Fig. 16 shows that correlation in IPSL-CM6A625

extends over a smaller neighborhood than in MIROC-ES2L.626

4 Discussion627

The method developed in this study is complementary to, and extends previous628

work for parameterizing ocean thermal forcing in Greenland ice sheet model simulations629

(Rignot et al., 2016; Slater et al., 2019, 2020). The QDM correction adjusts the distri-630

bution of AOGCM TF with respect to observational datasets, the extrapolation method631

corrects for too-coarse model resolution, and stochastic realizations of residual variabil-632

ity in TF sample internal climatic variability in model projections. These steps are in-633

dependent of each other, and can be performed individually. While the melt parameter-634

ization of Xu et al. (2012) and Rignot et al. (2016) assumes that TF is given at the fjord635

mouth, the retreat parameterization of Slater et al. (2019) depends on sector-averaged636

values. The latter approach could therefore skip the extrapolation step, or alternatively637

be re-calibrated while accounting for extrapolation. Furthermore, each step can be ap-638

plied with any choice of model and reanalysis products, making the method highly flex-639

ible. The accuracy of the TF time series generated depends directly on the quality of640
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Figure 15. Across-members average of the (a) empirical and (b) sparse correlation matrices

for the residual variability between the 226 outlet glacier locations of the IPSL-CM6A AOGCM

under the emission scenario ssp585. Numbers on the x- and y-axis denote glacier number, with

0 corresponding to the Northern-most glacier, and glacier numbers increase in the clock-wise

direction. Distances between glaciers are shown in (c). The separation around number 125 corre-

sponds to the transition from East to West Greenland. See Fig. 1a for the glacier locations.

Figure 16. Across-members average of the sparse correlation matrices for the residual vari-

ability (Ĉ) between the 226 outlet glacier locations of the results from (a) IPSL-CM6A under

scenario ssp126, (b) IPSL-CM6A under scenario ssp585, (c) MIROC-ES2L under scenario ssp126,

and (d) MIROC-ES2L under scenario ssp585. Numbers on the x- and y-axis denote glacier num-

ber, with 0 corresponding to the Northern-most glacier, and glacier numbers increase in the

clock-wise direction. The separation around number 125 corresponds to the transition from East

to West Greenland. See Fig. 15c for distances between glaciers and Fig. 1a for the glacier loca-

tions.
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the products used. Disagreement between different reanalysis products on ocean heat641

content can be particularly high around Greenland (Palmer et al., 2017), and one could642

explore the sensitivity of the final TF generated to the reanalysis product used. High-643

resolution ocean model outputs are scarce, but are likely to increase in coming years such644

that the extrapolation method could use multi-model averages of offshore-inshore rela-645

tionships. The low computational expense of the ARMA statistical models also facili-646

tates the generation of large numbers of TF time series, efficiently sampling the irreducible647

climatic uncertainty associated with natural variability. This is important, as there is648

an increased awareness of ice sheet sensitivity to variability in ocean conditions (e.g., Hoff-649

man et al., 2019; Robel et al., 2019; Christian et al., 2020), and as numerical tools be-650

come available to investigate this sensitivity (Verjans et al., 2022).651

The QDM correction method is well-established in the climate- and hydrology-modeling652

communities (e.g., Gudmundsson et al., 2012; Themeßl et al., 2012; Cannon et al., 2015).653

It corrects the distributional properties of AOGCM output, and permits the projection654

of future changes without invoking a stationarity assumption. Our independent evalu-655

ation of the method against CTD data shows that it increases explained variance from656

the AOGCM by ∼ 25% and decreases the RMSE by ∼ 0.3 K (∼ 25%). However, one657

potential limitation is that it linearly adds AOGCM-projected changes in the future pe-658

riod (Eq. (5)), regardless of the model biases in the observational period. This assump-659

tion therefore does not correct a potential bias in the long-term climate sensitivity of the660

AOGCM. This though, is an intrinsic issue of all projections, and argues for the use of661

multiple different AOGCMs to force ice sheet models.662

The extrapolation method (see Sect. 2.2) offers large flexibility in the formulations663

of both the regression parameters in the linear relations (Eqs. (9-15)), as well as of the664

criteria used in the predictor selection (Eqs. (18-25)). For example, additional refinements665

can be applied to the predictor selection by including connectivity between gridpoints666

based on passive tracer advection (Oliver & Holbrook, 2014), or by using multiple off-667

shore predictors in a multiple regression method. We perform the calibration of the ARMA668

models on the residual variability in TF of the AOGCM time series, here spanning 250669

years. Alternatively, residuals could be calibrated from pre-industrial control runs of AOGCMs,670

which can be >1000 years long. However, this approach faces the limitation that pre-671

industrial control AOGCM simulations cannot be QDM-corrected prior to the ARMA672

fitting, as reanalysis products are based on data from the industrial era.673

Our procedure does not capture two-way interactions between the ocean and the674

ice sheet. Input of freshwater due to outlet glacier melt and subglacial discharge are im-675

portant components of fjord circulation. This could not only modify TF properties in676

shallow waters, but also alter the relationship between TF properties on the continen-677

tal shelf and glacier frontal melt (Slater et al., 2018; Wagner et al., 2019; Jackson et al.,678

2020). Capturing heat transfer through fjords and up to the ice-ocean boundary layer679

will require detailed, high-resolution fjord models in the future (e.g., Cowton et al., 2015;680

Zhao et al., 2021). The work presented here is relevant to such future model develop-681

ments, as it can provide boundary forcing to fjord models by applying our method to682

both ocean temperature and salinity, and thus density and stratification, in a similar man-683

ner. Nevertheless, in the current context of ocean modeling, our approach remains con-684

sistent with the assumption of the Xu et al. (2012) and Rignot et al. (2016) parameter-685

ization that the TF variable is prescribed from the fjord mouth. The interplay of atmo-686

spheric and oceanic forcing may also be an important factor in governing outlet glacier687

frontal melt, because of the dependence of melt rates to both ocean temperatures and688

to suglacial discharge, which is sourced from surface melt (Slater & Straneo, 2022). By689

exploiting the statistical nature of our method, covariance of TF with surface melt can690

be estimated using output from regional climate models and enforced in the TF gener-691

ation. Thus, using ocean and atmospheric model output, correlation can capture inter-692
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actions of TF with variables influencing marine-terminating glacier melt, as well as with693

variables influencing inland ice sheet mass balance.694

We provide the entire workflow of QDM-correction, inshore extrapolation, and sta-695

tistical generation of residuals as open-source code (see Open Research). These resources696

allow potential users to compute TF time series as detailed in this study. Furthermore,697

we provide ensembles of TF time series at the 226 outlet glaciers for the four combina-698

tions of AOGCMs (IPSL-CM6A and MIROC-ES2L) and CMIP6 emission scenarios (ssp126699

and ssp585) used in this study as an open-access dataset (see Data availability statement).700

These ensembles of 1000 members each, spanning 1850-2100, can be used by the glaciol-701

ogy modeling community to force ice sheet model simulations at the scale of the Green-702

land ice sheet, or sub-regions of the ice sheet.703

5 Conclusions704

We propose a statistical method to estimate ocean thermal forcing for the Green-705

land ice sheet on a range of different timescales. Starting from AOGCM output, and based706

on output from ocean reanalysis products and high-resolution models, this method bias-707

corrects, adjusts distributional properties, extrapolates, captures spatial correlation, and708

samples variability in ocean thermal forcing. The correction of bias and variability am-709

plitude via a quantile delta mapping approach reproduces the distributional properties710

of reanalysis products, while preserving the climate sensitivity of the AOGCM in the form711

of trends and future changes. The extrapolation method derives simple and independent712

linear relationships between offshore and inshore thermal forcing at different timescales713

from a high-resolution ocean model. The relationships are subsequently applied to AOGCM714

output to estimate ocean conditions at fjord mouth locations. Finally, we use autore-715

gressive moving-average models to represent the residual variability observed in thermal716

forcing. These statistical models not only reproduce temporal characteristics in mod-717

eled residual variability, but also capture spatial covariance in ocean thermal forcing.718

The workflow developed here offers a complementary approach to glacier melt pa-719

rameterizations that are applied in ice sheet model simulations. Generation of thermal720

forcing is computationally straightforward owing to the purely statistical nature of each721

step in the method, and ensembles of time series accompany this study as a data prod-722

uct. Given the current state of climate and ocean modeling, ice sheet model predictions723

will likely continue to face a dearth of long-term high-resolution ocean model output avail-724

ability. This highlights the need to use statistical techniques in order to bridge the gap725

between existing climate model output and ice sheet model requirements for boundary726

forcing. Our method is a first step in this direction. It offers the advantages of relative727

ease of computation, of addressing several limitations of AOGCMs at once, and of be-728

ing applicable to any combination of AOGCM, reanalysis product, and high-resolution729

ocean model.730

6 Open Research731

All code (python scripts) to reproduce the method described in this study are avail-732

able as a Zenodo repository (Verjans, 2023):733

https://doi.org/10.5281/zenodo.7808874734

The repository includes all intermediary and final output files for member r1 of MIROC-735

ES2L under scenario ssp585 as an example. The repository also includes samples of 1000736

TF 1850-2100 time series generated following the method presented at the 226 marine737

glacier fronts for the four combinations of AOGCMs and CMIP6 emission scenarios used738

in this study. The raw climate model output from the CMIP6 experiments can be down-739

loaded from:740

https://esgf-node.llnl.gov/search/cmip6/741
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The raw output of the Hadley Centre EN4.2.1 monthly objective analyses can be down-742

loaded from:743

https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html744

Output from the high-resolution ECCO Arctic forward run can be downloaded from:745

https://ecco-group.org/746
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